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Future R&D strategies of magnetic MEMS/NEMS sensors

CheolGi Kim'
Emerging Materials Science, DGIST, Hyeonpung, Dalseong, Daegu, 711-873, Korea

Magnetoresiatance (MR) effects in magnetic multilayers are opening a new era not only in industrial
applications especially related with information science and technology (HDD, E-compass), but also in bioassays.
In this talk, firstly, I will overview the commercialized electronic compasses and their functions (Asahi Kasei,
Yamaha, NVE etc.), and then would like briefly to introduce the industrial applications of MEMS/NEMS (GMR,
AMR, PHR, TMR) sensors. Thirdly I will introduce the performance of GMR/PHR sensors and theirs novel

applications like as biochips and magnetometry etc. Finally I will look up the future R&D strategies for new
technological era of mobile and wearable devices.
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Fig 1. Atom-projected density of states of C atoms in C-terminated (001) surface
(a) and CsBa-terminated (001) surface (b) of half-Heusler CCsBa compound.

[1] K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, J. Phys.: Condens. Matter 16, s5639 (2007).
[2] E. Yan, Physica B 407, 879 (2012).

[3] A. Lakdja, H. Rozale, A. Chahed, abd O. Benhelal, J. Alloy. Compd. 564, 8 (2013).

[4] E. Wimmer, H. Krakauer, M. Weinert, A. J. Freeman, Phys. Rev. B 24, 864 (1981).
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Size-specific dynamic properties of magnetic
nano-spheres with a three-dimensional magnetic vortex

Myoung-Woo Yoo, Jehyun Lee, Dong-Soo Han, Hayoun Lee, and Sang-Koog Kim'

National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices,
and Research Institute of Advanced Materials, Department of Materials Science and Engineering,
Seoul National University, Seoul 151-744, Republic of Korea
TCorresponding author: sangkoog@snu.ac.kr

1. Introduction

Magnetic resonant excitation of nano- and micron-sized magnetic particles has become a focus of attention
in nanomagnetism and spintronics owing to its potential implementations in information processing devices [1],
wireless power transfer in electric devices [2], and medical applications such as hyperthermia [3] and drug
delivery [4]. Soft magnetic particles of spherical shape show different static spin configurations according to their
size. For example, permalloy spheres, the radius of which is slightly larger than single-domain size and smaller
than multi-domain size, form a stable three-dimensional magnetic vortex [5]. Notwithstanding the many studies

on magnetic nano- and submicron-sized magnetic particles, reports on their dynamic features have been rare.

2. Results and Conclusion

Here, on the basis of finite-element micromagnetic numerical simulations of permalloy spheres of different
radii (range: 10 - 75 nm), we report a novel dynamic behavior of size-dependent magnetic resonant excitations.
We found that a single three-dimensional vortex precesses around a static magnetic field Hpc at a specific
frequency. This precessional frequency, we discovered, varies with the size of the sphere when the vortex structure
is retained, because the net magnetization of a given sphere projected in the direction of the vortex core <m,>
varies with its size, as expressed by a simple analytical form of f = |g|<m>Hpc (where |g| is the gyromagnetic
ratio, 2.80 MHz/Oe). The value of <m is determined by the interplay of the constituent magnetic material’s
parameters and dimensions, since the vortex structure is the result of completion between the short-range exchange
and long-range dipolar interactions. The simulation results obtained are in perfect agreement with the analytical
form derived using Thiele’s equation [6] of motion for a single three-dimensional vortex core in a sphere. The
characteristic behavior observed implies the capability of application to selective activation of three-dimensional
vortex precession. This simple but novel dynamic feature would open a new horizon in the field of high-frequency
magnetic-nanoparticle applications.

This research was supported by the Basic Science Research Program through the National Research
Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (grant no. 2013003460).

3. Reference
[1] C. Thirion, W. Wernsdorfer and D. Mailly, Nat Mater 2 (8), 524-527 (2003).
[2] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher and M. Soljaci¢, Science 317 (5834), 83-86
(2007).
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[4] E. Amstad, J. Kohlbrecher, E. Miiller, T. Schweizer, M. Textor and E. Reimhult, Nano Letters 11 (4),
1664-1670 (2011).

[5] R. P. Boardman, J. Zimmermann, H. Fangohr, A. A. Zhukov and P. A. J. de Groot, J Appl Phys 97 (10),
10E305-303 (2005).

[6] A. A. Thiele, Phys Rev Lett 30 (6), 230-233 (1973).

[7] J. Lee, M.-W. Yoo, D.-S. Han and S.-K. Kim, e-print arXiv:cond-mat/1311.0346.
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Magnetic properties of Gadolinium doped Bismuth
Tellurides: First-principles calculation

Tran Van Quang"? and Miyoung Kim®'
lDept of Physics, Hanoi Univeristy of Transport and Communications, Vietnam
*Dept of Physics, Ajou University
3Dept of Nano Physics, Sookmyung Women’s University
1C0rresp0nding author: kimmy@sm.ac.kr

Due to the strong localized f states of the rare-earth elements, the BiTesbased alloys with rare-earth dopings
have been found to show various magnetic and transport phases and interesting phase transitions [1]. In this
report, we studied the magnetic and electronic structures of the gadolinium doped BiTe; with different doping
sites in order to investigate the magnetic phase stability and its dependence on the doping site by first-principles
calculation within DFT, employing the precise full-potential linearized augmented plane-wave (FLAPW) method
[2]. The spin-orbit coupling interaction and the strong correlation effect are included by the second variational
method and +U corrections, respectively. The total energy comparison for the uniform and the clustering type
distributions for various magnetic phases and their band structures will be discussed. Also the formation energy

calculations will reveal the preference Gd substitution sites into the tellurides.

[1] T. V. Quang and M. Kim, J. Appl. Phys. 113,17A934(2013)andreferencestherein
[2] E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24,864(1981).
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Half metallic g-C4N3; on BN layer

Hashmi Arqum’, Jicheol Son, Jisang Hong
Department of Physics, Pukyong National University, Busan 608-737, South Korea

Half metallicity without any external factor in 2p materials may provide a new physics in spintronics. We
have investigated structural, adsorptive, and magnetic properties of metal free graphitic carbon nitride (g-CaN3)
layer on hexagonal BN layer (h-BN) using the van der Waals density functional theory. It is found that g-C4N3
layer can be adsorbed on BN layer due to the change of lattice constant of the hybridized system. Interestingly,
we have found that metal free half metallic behavior in g-CsN3 can be preserved even on BN layer and the half
metallicity originates mainly from the 2pyy planar orbitals of N atoms in g-C4Nj3 layer. Characters of spin polarized
planar orbitals suggest that our theoretical prediction can be verified using normal incidence of K-edge X-ray
magnetic circular dichroism (XMCD) measurement.

(This research was supported by Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2013R1A1A2006071) and
Converging Research Center Program through the Ministry of Education, Science and Technology (No.
2012K001312))
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Control of skyrmion magnetic bubble gyration

Kyoung-Woong Moon"’, Byong Sun Chun', Wondong Kim', Z. Q. Qiu?, and Chanyoung Hwang'
'Center for Nanometrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea
2Physics Department, University of California at Berkeley, Berkeley, California 94720, U.S.A.

The skyrmion magnetic bubble in a ferromagnetic disk exhibits hypocycloidal gyrations contrary to the vortex
gyration showing a simple circular trajectory [1]. To describe the hypocycloidal bubble gyration, a mass term is
needed in Thiele’s equation [2]. In this study, we analytically derived both mass and spring constant term, which
are crucial parameters for describing the bubble gyration. Values obtained by these analytic expressions were
consistent with those obtained by simulations. We could find the dependences of these two terms on several
external parameters including the bubble radius. Especially, using the radius’s dependence, we could obtain regular
polygon-like trajectories such as a square and a triangle confirmed by the numerical simulations [3]. Based on
this effective method to control the bubble gyration, the regular polygon-like trajectories of this skyrmion

magnetic bubble make it possible to study the bubble gyration without time-resolved experiments.

Reference
[1] C. Moutafis, S. Komineas, and J. A. C. Bland, Phys. Rev. B 79, 224429 (2009).
[2] 1. Makhfudz, B. Kriiger, and O. Tchernyshyov, Phys. Rev. Lett. 109, 217201 (2012).
[3] K.-W. Moon, B. S. Chun, W. Kim, Z. Q. Qiu, and C. Hwang, Phys. Rev. B 89, 064413 (2014).

(c) —2nm

wod¥

Hy=10mT  H,=—40mT  H,=-110mT H,=-240 mT

Fig. 1 (a) A magnetic bubble domain state in a perpendicular magnetic anisotropy disk. (b) A regular
pentagon-like trajectory of the bubble domain gyration with the external field H. = - 7 mT. (c) Several examples

of regular polygon-like trajectory with respect to the external field. The time scale is the same as in (b).
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Magnetism of atomically thin NiO films

J.-S. Kim’
Dept. of Physics, Sook-Myung Women's University

As the film becomes atomically thin, the on-site Coulomb interaction energy between two 3p holes of the
NiO films on Ag(001) U (Ni 3p) significantly decreases as revealed by both X-ray photoelectron and Auger
electron spectroscopies. The reduction of U (Ni 3p) for the ultrathin films is well accounted for by varied image
potentials and polarization energies in the films from their bulk values.

Those reduced charge fluctuation energies enhances the coupling constant of the superexchange according to
Anderson, which in turn would lead to the increase of the Neel temperature. We estimated the Neel temperature

of 3ML-thick NiO in the mean field approximation, which is compatible with the recent experimental observation.
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Perpendicular magnetic anisotropy induced
by spin direction of antiferromagnet layers in a
ferromagnetic-antiferromagnetic bi-layer system

Wondong Kim", Gwang-Eun Yang', Kyoung-Woog Moon', Byung Sun Chun’,
Chanyong Hwang1, Han-Ku Lee” and Jae-Young Kim?
'Center for Nanometrology, Division of Industrial Metrology, Korea Research Institute of Standards and Science.
*Industrial Technology Convergence Center, Pohang Light Source 11, Pohang Accelarator Laboratory

We investigated the influence of spin direction of an antiferromagnetic(AFM) layer on the perpendicular
magnetic anisotropy(PMA) of a ferromagnetic(FM) layer in a FM-AFM bilayer system by using X-ray magneic
dichroism.

We grew single crystalline NiO wedge layers on two different substrate, MgO(001) and Ag(001), where NiO
layers have two different spin directions, perpendicular and parallel to the surface, respectively. Then we grew
FePd multilayers on NiO wedge layers and capped the whole layers with Pd for protection against oxidation. The
magnetic properties of the samples were examine carefully in the magnetic spectroscopy beamlin in the Pohang
Light Source(PLS II), by using X-ray magnetic circular dichroism(XMCD) measurement at Fe L, edge and X-ray
magnetic linear dichrosim(XMLD) measurement at Ni L3 edge. The hysteresis loops and XMCD asymmetry data
clearly show the enhanced PMA for the FePd/NiO/Ag(001) sample with on-set of AFM ordering of underlying
NiO layers, whereas for the FePd/NiO/MgO(001) sample no enhancement of PMA was observed. Considering
XMLD signal of NiO, we temporarily conclude that the origin of the enhancement of PMA in FePd/NiO/Ag(001)
is the 90-degree coupling between Fe magnetic moments of FePd layers and spins of NiO layers, similar to the

spin coupling in Fe/NiO system.[1]

[1] Wondong Kim, E. Jin, J. Wu, J. Park, E. Arenholz, A. Scholl, Chanyong Hwang, and Z. Q. Qiu, Phys.
Rev. B 81, 174416 (2010).
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Fig 1. XMCD asymmetry measured at Fe L, absorption edge for FePd/NiO/Ag(001)
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[2] P.Ripka, Magnetic sensors and magnetometers artech house, Boston.London (2001)
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W.Geopel.et al., Sensors. vol.5 Magnetic sensors, VCH weinhelm (1989) pp. 154-203
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The magnetic refrigeration involves an intrinsically small irreversibility and may provide refrigeration systems
of good energy efficiencies especially at cryogenic temperatures. It is, therfore, encouraged to apply the magnetic
refrigeration system to the hydrogen liquefaction process, which would be an essential part of infrastructure of
the near future society driven by the hydrogen energy. For hydrogen energy system, liquefied hydrogen is suitable
for storage and transportation, because it provides the highest hydrogen densities with respect to both mass and
volume. In order to establish this refrigeration technology, it is necessary to obtain the efficient and reliable
magnetic refrigerant that possesses a large magnetocaloric effect (MCE) around and above the boiling point of
hydrogen.

Plasma arc discharge (PAD) with self-constructed equipment was performed to prepare rare-earth nitride
nanoparticles. Holmium (Ho) was purchased from Kojundo Chemicals Co. (Japan) in granular type with average
size of 3 mm. After removing oil on the surface of Ho granules, they were placed on Copper hearth as an anode.
Tungsten needle was used as a cathode.

In order to synthesize nitride nanoparticles, N, was added to Ar atmosphere in different ratios from 30 to
70% considering partial pressure. As the partial pressure of N, was increased, HON peaks became dominant and
peaks from Holmium Oxide (Ho,Os) as impurity was dramatically decreased. Finally, when the partial pressure
of mixed gas with 28000 Pa for N, and 12000 Pa for Ar was reached, typical X-ray diffraction pattern of HoN
was obtained. Series of six sharp peaks exactly corresponded to each planes of crystallographic structure of bulk
HoN. From TEM observation, HoN nanoparticles were agglomerated in spherical shape in Ar atmosphere.
However, as the partial pressure of N> was increased, the morphology was changed to cubic in shape and mean
size of nanoparticles was increased.

Data set of the magnetization measurements indicates field dependence of magnetizations at different
temperatures. Magnetizations increased linearly with applied fields in the higher temperature region and
magnetizations were almost saturated at 5 T. Magnetic entropy change (AS) of HoN nanoparticles showed the
highest value of 25.2 JK'lkg'1 at 16 K which is comparable with that of intermetallic compounds having a
transition temperature around 20 K such as DyNi,, HoAl, and GdoDyooNi,. It implied that HoN nanoparticles

are promising magnetic refrigerant materials for hydrogen liquefaction system.
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Strain effect on magnetic properties
in SrRug oFeg 103 thin films

Kirstie Raquel Natalia Toreh’, Octolia Togibasa Tambunan, and Chang Uk JungJr
Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791, Korea
"Email: cu-jung@hufs.ac.kr

SRO have been used widely as electrodes in oxide heterostructures due to their good conductivity and good
lattice match with most popular single-crystalline perovskite oxide substrates such as SrTiOs. Doping in
polycrystalline SRO has been used to control magnetic properties such as 7c and magnetic coercive fields.

In this paper, epitaxial films of SrRugo¢Feo;Oshave been grown by pulsed laser deposition onto both
SrTiO3(001) and SrTiO3(110) substrates. It has been found that Fe-doped SRO can be stabilized by using epitaxial
strain during film growth. We observed magnetic anisotropy and differences in 7c and saturated magnetic moment
between SrRugoFeo103/SrTiO3(001) film and SrRugoFeo03/SrTiO3(110) film. The correlation between magnetic

behavior defferences with Ru-Ru nearest neighbor distance in different substrate direction will be discussed.
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Electronic structure change due to migration
of oxygen vacancies in Ca-doped BiFeO3

Ji Soo Lim", A. Ikeda-Ohno®*®, T. Ohkochi’, M. Kotsugi*®,
T. Nakamura®, J. Seidel®, Chan-Ho Yang"’

1Depar‘[ment of Physics, KAIST, Daejeon 305-701, Republic of Korea

*School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
*Institute for Environmental Research, Australian Nuclear Science and Technology Organisation,
‘ apan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
CREST-JST, Kawaguchi, Saitama 332-0012, Japan
%School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
"Institute for the NanoCentury, KAIST, Daejeon 305-701, Republic of Korea

Doped correlated oxide systems would have shown exotic electronic condution phenomena such as
metal-insulator transition, superconductor and magnetoresistance. Bismuth ferrite (BiFeOs;), one of popular
multiferroic materials, has a large ferroelectric polarization and an antiferromagnetic order. Due to a stable
oxidation number of Fe ions, the divalent ion (Ca2+) doping on BiFeO; cannot produce hole carriers due to
formation of oxygen vacancies. In order to explore the electronic conduction of doped BiFeOs; compounds, we
fabricated a coplanar electrode structure and applied an electric field across the electrodes at a high temperature.
As a result, we can make relatively oxygen-vacancy-deficient areas in between, thereby producing a p-type doped
region. In this talk, we will present our recent observations of electronic transport properties. In addition, we
introduce its electronic structure which was characterized by x-ray absorption spectroscopy (XAS) and
photoelectron emission microscopy (PEEM) in a beamline (BL25SU) of synchrotron SPring-8. Remarkably we
have observed doping-driven occurrence of a new peak 2 eV below the t2g peak in oxygen K-edge spectra.
Interesting interplay between doping ratio. Furthermore, spatially-resolved x-ray circular dichroism (XMCD)

enables us to study the local spin and orbital angular momenta varying depending on the hole carrier doping.
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Electric field control of magnetic easy axis using phase
competition in tensile strained BiFeO3; thin films

Jin Hong Lee", Kanghyun Chu', Ahmet A. Unal, Sergio Valencia?,
Florian Kronast’, Stefan Kowarik®, Jan Seidel*, and Chan-Ho Yang"®
'Department of Physics, KAIST, Yuseong-gu, Daejeon 305-701, Republic of Korea
*Helmholtz Zentrum Berlin, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, Berlin 12489, Germany
*Institut fiir Physik, Humboldt-Universitit zu Berlin, Newtonstrasse 15, Berlin D-12489, Germany
“School of Materials Science and Engineering, University of New South Wales, Sydney,
New South Wales 2052, Australia

*KAIST Institute for the NanoCentury, KAIST, Yuseong-gu, Daejeon 305-701, Republic of Korea

Multiferroic BiFeOs (BFO) has been intensively studied since it displays both ferroelectric and
antiferromagnetic order at room temperature. Recently, phase competition between tetragonal-like BFO and
rhombohedral-like BFO in the regime of compressive strain has been discovered [1], and its intriguing properties
have been addressed in a strain-driven morphotropic phase boundary [2-5]. Nevertheless, phase competition
between rhombohedral-like BFO (R-BFO) and orthorhombic BFO (O-BFO) in the regime of tensile strain has
not been reported in-depth [6-8].

In this presentation, we report on phase separation and electric field switching between R-BFO and O-BFO
phases in tensile-strain-induced BiFeOs thin films. We analyze the strain state, ferroelectric domain structure, and
magnetic easy axis of tensile strained R-BFO and O-BFO through x-ray reciprocal space mapping, piezoresponse
force microscopy, and Fe L-edge x-ray absorption spectromicroscopy, respectively. We propose a new route
toward magnetoelectric application of BFO thin films by controlling the spatial distribution of R-BFO and O-BFO
with a voltage-biased conductive AFM tip [9].

[1] R. J. Zeches et al., Science 326, 977 (2009).

[2] J. X. Zhang et al., Nature Nanotechnol. 6, 98 (2011).
[3] A. R. Damodaran et al., Adv. Mater. 23, 3170 (2011).
[4] Q. He et al., Nature Commun. 2, 225 (2011).

[5] K.-E. Kim et al., NPG Asia Mater. 6, 81 (2014).

[6] B. Dupé et al., Phys. Rev. Lett. 106, 237601 (2011).

[71 Y. Yang et al., Phys. Rev. Lett. 109, 057602 (2012).

[8] I. C. Infante et al., Phys. Rev. Lett. 105, 057601 (2010).
[9] J. H. Lee et al., Phys. Rev. B (to be published).
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A New 8-Pole Alignment Ring-Shaped Nd-Fe-B Sintered
Magnet for High Power Motor

Hyo-Jun Kim"", Sun-Tae Kim', Sang-Hyup Lee’, Sang-Myun Kim', and Tae-Suk Jang®
'R&D Center, Jahwa Electronics Co. Ltd.
2Department of Hybrid Engineering, Sunmoon University

In the design of Brushless DC motor, permanent magnets (PMs) with high energy density, such as Nd-Fe-B,
are essential to have high power to volume ratio. Among the Nd-Fe-B PMs, plastic PMs, made by injection
molding process of the mixture of Nd-Fe-B powder and binders, are widely being used mainly for low power
applications. However, for higher power applications, sintered Nd-Fe-B PMs having higher energy density than
the plastic ones, are more attractive. In the viewpoint of the motor design, the polar anisotropic sintered Nd-Fe-B
PM is expected to give stronger magnetic field, and therefore a PM motor with higher powder density is expected
to be designed. However, the polar anisotropic sintered R-Fe-B PM, where R represents rare-earth metals, as well
as Nd-Fe-B sintered PM, is often noted but rarely studied because of their difficulties of the powder aligning
system construction. etc.

In order to apply strong static magnetic field to the anisotropic Nd-Fe-B magnetic powders, a powder-
aligning-fixture is designed employing a pulse current electromagnetic system.

In this paper, the magnetic properties under various aligning fields are experimentally measured and a
powder-aligning-fixture for a 8-pole alignment ring-shaped Nd-Fe-B sintered PM is optimally designed. Finally,
an anisotropic Nd-Fe-B PM is realized by using the optimally designed powder-aligning-fixture.
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Relative strength of perpendicular magnetic anisotropies
at bottom and top interfaces in [Pt/Co/Pt] trilayers

Young Chan Won"", Tae Young Lee', Dong Su Son?, Sang Ho Lim"?', and Seong-Rae Lee?
1Depar’cment of Nano Semiconductor Engineering, Korea University, Seoul 136-713, Korea
2Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea
wLCorlresponding author: Sang Ho Lim, e-mail: sangholim@korea.ac.kr

The relative strength of perpendicular magnetic anisotropies (PMA) at bottom and top interfaces in [Pt (3.0
nm)/Co (tco)/Pt (tp)] trilayers (where tc, and f#p denote the thickness of the Co and Pt layers) have been
investigated. An asymmetry in the magnetic anisotropies of Pt/Co and Co/Pt interfaces was observed in [Pt/Co/Pt]
trilayers. The PMA properties are sensitive to tPt and they are significantly better at 5 = 0.2 nm than at fp =
3.0 nm. The present results are agreement with the previous observation showing that inverted [Pt/Co] multilayers
with a very thin Pt layer of 0.2 nm exhibit a strong PMA and high-post annealing stability. Both interfaces of
Pt/Co and Co/Pt in the [Pt/Co/Pt] trulayers are responsible the observed PMA properties. However, it is reasonable
to consider that the Co/Pt interface is responsible for the change in the PMA strength as a function of . The
reason for this responsibility is the quality of Co/Pt interface significantly depends on #p. This information is of
great importance in understanding PMA properties in multilayers and furthermore developing new PMA structures
with improved properties.

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (2011-0028163).
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Formation of a CoFe(001) texture
in FeZr-inserted multilayer-based stacks
with perpendicular magnetic anisotropy

Young Chan Won", Tae Young Lee', Sang Ho Lim"?, and Seong-Rae Lee?

'Department of Nano Semiconductor Engineering, Korea University, Seoul 136-713, Korea
2Depar’tment of Materials Science and Engineering, Korea University, Seoul 136-713, Korea

[NM/Co], multilayers (NM and n denote a non-magnetic material and the number of iteration), where strong
perpendicular magnetic anisotropy (PMA) is originated from the interface effects, have some distinct advantages,
over L1, materials, of an easy fabrication due to a close-packed growth plane and a simple stack design allowing
for many different types of material systems. However, [NM/Co], multilayers have the two main problems of a
low post-annealing stability and a difficulty of forming a CoFe(001) texture essential for high tunneling
magnetoresistance. The authors recently reported new [Pt/Co] multilayers with an inverted structure that exhibit
strong PMA and a high post-annealing stability up to 500°C [1, 2], thus providing an important step of relieving,
if not solving, the first problem. This study deals with the second problem by inserting an amorphous FeZr layer
with a high crystallization temperature between the [Pt/Co] multilayers and CoFeB/MgO layers. The PMA stack
consisted of the following: Si substrate (wet-oxidized)/Ta (5)/Pt (10)/Ru (30)/[Pt (0.25)/Co (0.5)]6/FeZr (1)/CoFeB
(1H)MgO (3)/Ru (3) (all thicknesses are in nm). Because Ta was previously used for a similar purpose [3, 4],
the stack with Ta, instead of FeZr, was also considered for comparison. The stacks were fabricated by using a
UHYV sputter. The alloy targets with compositions of CoxFeqB2 and FesoZrso (in at.%) were used to deposit the
CoFeB and FeZr layers, respectively.

Preliminary experiments using thick FeZr thin films (10 or 100 nm) indicate that FeZr has a crystallization
temperature higher than 500°C and is magnetic with a very small saturation magnetization of 35 emu/cc. Figure
1 shows x-ray diffraction patterns for the FeZr-free (upper panel) and FeZr-inserted (lower panel) stacks after
annealing at 400°C. In order to amplify the x-ray signal, the thicknesses of CoFeB and MgO were increased to
10 nm. In both samples, CoFeB is amorphous in the as-deposited state, indicated by no obvious crystalline peaks
related to CoFe (data not shown). After annealing, crystalline peaks related to CoFe are clearly visible in both
samples but their locations are different. A strong close-packed CoFe(110) peak is seen in the FeZr-free sample,
with two additional weak peaks related to CoFe(111) and CoFe(210), indicating that the crystallization initiated
from the [Pt/Col¢/CoFeB interface. In the FeZr-inserted sample, however, a single peak related to CoFe(001) is
only observed, indicating the template effect from MgO(001). These results clearly demonstrate that the FeZr layer
with its high crystallization temperature is effective in suppressing the crystallization from the close-packed
muitilayers side and thus promoting the formation of the desirable CoFe(001) texture. Furthermore, the PMA
properties are only slightly affected by the insertion of FeZr both in the as-deposited state and after annealing
(data not shown). This is in a significant contrast with the results observed for the Ta-inserted stacks where the
PMA properties greatly deteriorate with the insertion of Ta layer. Recently, Cuchet ef al. reported the appearance
of an in-plane anisotropy component in their PMA stack at Ta thicknesses as low as 0.5~0.6 nm due to the

magnetic decoupling between multilayers and CoFeB across the Ta layer [3]. A similar result was also obtained
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in this study. Obviously, the observed PMA properties in the FeZr-inserted stack result from the fact that FeZr

is magnetic, thus allowing for almost a complete magnetic coupling between [Pt/Cols and CoFeB.
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Fig 1. X-ray diffraction patterns for the FeZr-free (upper panel)

and FeZr-inserted (lower panel) stacks after annealing at 400°C.
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[1] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
[2] P. J. Metaxas et al., Phys. Rev. Lett. 99, 217208 (2007).
[3] K.-W. Moon et al, Rev. Sci. Instrum. 80, 113904 (2009).
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[1] I. M. Miron, et al. Nature Mater. 10, 419 (2011).
[2] J. Sampaio, V. Cros, S. Rohart, A. Thiaville and A. Fert, Nature Nanotech. 8, 839 (2013).
[3] S. Kim, S. Lee, J. Ko, J. Son, M, Kim, S. Kang and J. Hong, Nature Nanotech. 7, 567 (2012).
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Magnetic Domain wall motion in [CoSiB/Pt]n thin films with
perpendicular magnetic anisotropy

Youngha Choi', Kyujoon Lee’, Jungbum Yoon?, Jaehun Cho?,
Chun-Yeol You?, Taewan Kim®, and Myung-Hwa Jung1‘

'Department of Physics, Sogang University, Korea
2Department of Physics, Inha University, Korea
3Department of Advanced Materials Engineering, Sejong University, Korea

Amorphous CoSiB/Pt multilayer is a perpendicular magnetic anisotropy (PMA) material to achieve high
squareness, low coercivity, strong anisotropy, and smooth domain wall (DW) motion, because of the smoother
interface compared with crystalline multilayers. For [CoSiB(6 A)/Pt (14 A)lx multilayers with N = 3, 6, and 9,
we studied the field-induced DW dynamics. The results suggest that the amorphous [CoSiB/Pt]y multilayers are
inherently homogeneous compared to crystalline multilayers. For N < 6, the pinning site density ppin is less than
IOOO/umZ, which is about 1 pinning site per the typical device junction size of 30 x 30 nm’. Also, the exchange
stiffness constant A, is obtained to be 0.48 x 10 erg/cm, and the domain wall width is expected to be much
smaller than other crystalline PMA systems. These results may be applicable for spin-transfer-torque magnetic

random access memory (STT-MRAM) and DW logic device applications.
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'CSO and Department of Physics, Seoul National University
*Center for Spintronics Research, Korea Institute of Science and Technology
3Departmen‘[ of Materials Science and Engineering, Korea University
*KU-KIST Graduate School of Converging Science and Technology, Korea University
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[1] A. Thiaville et al., Europhys. Lett. 110, 022405 (2012).
[2] S. Emori et al., Nat. Mater. 12, 611 (2013).
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Graphene as an effective tunnel barrier
for spin injection into n-Ge

=1 1 1 1 = 1 2 2 3 =1
was", MR, 25, walR' BE, @ME MUI4? uag? uE’ 0|43

| T — > To »
Department of Electrical Engineering, KAIST, Daejeon, 305-701, Korea
’Division of Materials Science, Korea Basic Science Institute, Daejeon, 305-333, Korea
3Depar’tment of Materials Science and Engineering, KAIST, Daejeon, 305-701, Korea
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Rare-Earth-Free Permanent Magnets as a
Next-Generation Magnet: MnBi-Based Alloys

Wooyoung Lee’
Department of Materials Science and Engineering, Yonsei University, Seoul, Korea
E-mail: wooyoung@yonsei.ac.kr

For the last three decades, rare-earth (RE)-based magnets have dominated permanent magnetic applications.
Although numerous studies have been done to find a new candidate as a next-generation magnet owing to the
rare-earthmetal crisis, the solution still remains elusive. Also, there are two important obstacles in the RE-based
magnets to be used in high efficiency sustainable energy applications, i.e.,operating temperature and unstable price
of the RE elements. Very recently, Y.K Hong, et.al have been developing new iron- and manganese-based
composite materials for use in the electric motors of electric vehicles and renewable power generators. Their
First-principles calculations for MnBi-Co and MnBi-Co-Fe have demonstrated magnetic properties superior to
today’s best rare-earth-based magnets. MnBi in it slow-temperature phase (LTP) shows attractive hard magnetic
properties; high uniaxial magnetocrystalline anisotropy and an unusual positive temperature coefficient of
coercivity. In fact, it is difficult by conventional synthesis techniques such as arc-melting, rapid solidification and
sintering to make single phase MnBi. This is because it forms through peritectic reaction ata relatively low
temperature. A comprehensive review on the MnBi-based alloys is introduced at the viewpoints of theory and

experiment.

[1] YK Hong, etal, AIP ADVANCES 3, 052137 (2013)
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Magnetically induced variations in phonon frequencies

Joo-Hyoung Lee’

School of Materials Science and Engineering, Gwangju Institute of Science and Technology

1. M&

The fundamental physics of metallic magnetism has not been satisfactorily understood as yet and continues
to be a highly active field of research both theoretically and experimentally. On the theoretical side, recent efforts
have been focused on the correct description of observed quantities

such as Curie temperature and magnon spectra, while experimental studies show the large variety and
complexity of materials whose magnetic properties can be investigated with today’s techniques. Manganites,
ruthenates, and even high Tc¢ superconductors are a few examples. However, all these studies are mainly focused
on the electronic and charge degrees of freedom; although an important constituent of solids, the phononic one

has not been seriously taken into account in magnetism research.

2. A EE

In this work, we present results of a systematic first-principles study of the phonon dispersions of fcc Ni with
variation of its magnetic moment. To this end, we used a combined density-functional perturbation theory (DFPT)
as implemented with full-potential linearized augmented plane wave (FLAPW) method and fixed spin moment
(FSM) approach. Nickel is selected because it is one of the ferromagnetic elements with a simple lattice and
electronic structure, which alleviates the computational workload in phonon calculations and simplifies the

interpretation of the results obtained.

3. AAZD R D

Our first-principles calculations reveal that due to the interplay between the electronic screening and the
magnetostriction, the phonon frequencies of Ni show an appreciable change as its magnetic moment varies: the
frequencies increase with the magnetic moment near the Brillouin zone center, whereas the situation becomes

reversed near the zone boundary.

4. 3=
We note that just as the magnetization affects the phonon frequency, the magnetization can be affected by phononic

contributions as derived by Kim, which implies that the phonons and magnetization need to be determined in a

self-consistent way. Thus, the present work is expected to stimulate more investigations in these directions as well.

-H. Lee, Phys. Rev. B 73, 172405 (2006).
D. J. Kim, J. Phys. Soc. Jpn. 40, 1244, (1976); 40, 1250 (1976).
E. Wimmer et al., Phys. Rev B 24, 864 (1981).
S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001).
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Applications of Metallic Glass utilizing
Soft Magnetic Properties

Haein Yim’
Department of Physics, Sookmyung Women’s University, Seoul140-742, Korea

In this talk T will be concerned with the soft magnetic properties of metallic glass. The term soft refers to
the fact that the response of the magnetization to an applied field is large. This large response of the
magnetization is desirable in applications as transformers and inductors. Metallic glass has excellent soft magnetic
properties such as low coercivityHc, modest anisotropy constant Ku, and almost zero magnetostriction A. The
source of “soft” magnetic properties of metallic glass will be discussed in aspect to magnetic domain theory.

Another application utilizing soft magnetic properties of metallic glass is Magnetic Tunnel Junctions (MTJs).
MTlJshave to possess a low switching field (Hsw) down to submicrometer size keeping a large tunneling
magnetoresistance (TMR) without degrading switching characteristics. Amorphous ferromagnetic Co7sSiisBio were
introduced as the free layer for MTJs and compared to MTJs with polycrystalline CoFe and NiFe free layers.
The details of various perpendicular magnetic anisotropy parameters dependence of Hc, Ku, and Ms will be

discussed

Keywords: metallic glass, Magnetic tunnel junctions (MTJs), soft magnetic materials
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The effect of source to image-receptor distance(SID)
on radiation dose for digital chest x-ray examination
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:

lo

SID A4S skin dose 0] 3 AHEAGFY SPS ol 3 FBRA A SHol= FoAn|3t G 7]
Ak, G XA A FRBAS AT 100 emol AHE AL ABEAAT 9O 2 me 7

FFDOIA 94l Hae %2 SHPwe] G4E 9 4 ekt B gk, uebd] 2 Aot FRua
A QoA SID Z7bol upE WA o] WakE obust

=

H Ao ARESE HWIARA PAMAFX| = Cesium iodide-amorphous silicon flat-panel detector, x-ray tube
(2P364DK-85, Shimadzu), high-voltage generator(UD150B-40)%2 A% o] 21t} Source-phantom-image receptorS
2304] W21417) 3 SIDE 180 emoflA] 340 em7H) 20 om €915 F74A171m) Akt shae) viske 24t
Aot WAL =72 Multi function tester(RaySafe Xi, Sweden), Ion chamber(Model 773027, FLUKE
Biomedical), Whole body phantom PBU-60 trunk(Kyoto Kagaku)E A}8-5}¢] HVL(half value layer), ESD(entrance
surface dose)E =435t FAr9] & HM3l= SNR(signal to noise ratio), FOM(figure of merit),
CTR(cardio-throracic ratio), A4 %¢] H7}&2 “European guidelines on quality criteria for diagnostic radiographic
images”] wa} “Visual grading analysis”S AA|3FAH. FHJA] pixel value= “Image J”(1.461/National
Institutes of Health, USA)E ©]-83}9. 21 ANOVA testZ $J3}] SPSS 16.0(SPSS Inc, Chicago, USA)S ARE-3}9iCh

3. Az

HVL-Z SIDZ7}o] vlgsle] AL Z718-S B2Fst 4= 919l o o] airfilter effecto]] 23} x-ray beamo]
hardsf] A|11 )& HojFoh ESD= SID 180 cmoﬂl\i 0.121 mGy, 340 cmo]| 4] 0.113 mGy= 6.31%2] 347}
225 ek, SID7} S74845 xeray beamo] AshElo] Fahelo] FojEnR MRS Facks AOR
k=Tl SNRE SID 180 cmof|A] 2.16, 280 cmof|A] 2242 ZH2 H3ILE H ¢ O 1} 300 cmo]|A] 1.98, 340 cmoj| A
L122 5435] faEal glgo] W=k SID F7Fol| wheh x-ray beamo] 73} of -Evﬂre—ﬂfi S 7Fskd 300
em 13191 AN IO B band sy ek AT A BN P G Hepo
noise”} Z7}%o] SNRo| 7+4 AHog HolAth FOM E3SF SNRe| Hsle} =as) okAlo g2 kA Qith

CTRZ SID ZF7}e] wheh élxo*ﬂ“‘f‘?l ofte} 7o g o] Hagr] wiEe] ¥kt %i% oz WEE
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of. goabo] disk VGA A3 SID wsio] w2 it A Wsis B o folgt Aol gl Ao
UFERdTHF=1.153, p=0.338).

X
=

A ezol Fash ARRE FHWKY), THAFMA), =EAZKs) D SID(em)7} Qlck 1 F & Aol A
+ SIDE S7HA#A 71 phantom®] FHRGAS E5star Akt 3ha o) ¥skE dotrgfet. SID7F F7tol wh
2 ESD9| 742 2918 4= 3J3ITh J Robinson 5-& SIDQ| Z7}o| wh2 Aew 314 Brlsto] SIDO| Z7}
7F A A U T abdtal 5%l o knee EYoll 4] SIDE 100 cmofA] 176 cm& F7}AIZ]
A3} ESDE 134% 77t Ieha shaleh. 9dake] & mrtoll A SNRE SID 280 em7HA] 2+ 4SS Helo
1} 300 em o] Aol A 7o) Eo] F7pelgith ol XA Ee] g gt AthA 9l noise] F71E o]tk
Herrmann 59| Q17014 XAE 0] 43k At GAbolA X-Aeo] 7181w SNRo| /A= 0] AECE =86}
xl e mmw A 57}7&6;01 WA 4 9lrk STl VGA Ak SID S71e) et tha gastglont
o3 2po]7} Q1 ACE UEhth Maria & T2 GAo|A SIDE xH5}o]
FolotA st on, VGA score= AT o8 Z8g 7EX7F Qgdekal &

>
=
-

S

O

o

Hepoll fah FBeE 2ol MeT Ao ARHL

5 48

B AR Aol A Qubgo® BT gl 4 AR SID Stel we shawt Hapel wist
2 orobu A shelch. FHEYGIA SID F7bo] ueste] ESD7F Z4E9lon] SNR, FOM 2404 SID
300cm7bA) = 180 em] A4 2 Aol S Ho|x) ¢skrh. SIDZL Z7kgo) uhek CTRe] Waki giglov] 72
22l B7hel VGASIAE o8 Aol7h gl AR Uebulth weba] S Bol QlolA] BXHA9l
Alekol giehel @A) ol WISk ¢l 180 eme] SIDE 300 cm W97 FAHAAE Bhae] Astglo]

A
SAAGS AN 4 e AoR TerEol
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The clinical usefulness about the fat saturation method
which is effective in 3.0T MRI

Man-Seok Han", In-Mo Yang? Jae-Hwan Cho®, Cheol-Soo Park?, Jeong-Min Seo”

1Dept. of Radiological Science, Kangwon National University
2Dept. of Biomedical Engineering, Graduate School, Chungnam National University
*Department of International Radiological Science, Hallym University of International Graduate
4Department of Radiological Science, Hanlym College
*Department of Radiotechnology, Daewon University College

1. Purpose
The sign of the water and fat affects the influence that it is abundant in the MRI examination among the
component of the human body. Obtaining the phantom image make by ourselves and trying to analyze the signal

intensity and homogeneity that present the way for the optimum fat saturation.

2. Materials and methods
It measure the signal intensity of the ROI set up and calculate the average, the standard deviation, the
maximum, the minimum, the range of the clinical image and phantom image with the CHESS, SPAIR, STIR,

Dixon sequence.

3. Results

SPAIR was analyzed to be the finest in fat saturation, CHESS>Dixon>STIR>SPAIR, in the Signal Intensity
of the Phantom image. CHESS was remarkable reduced the more became far of the central part of image in the
fat removal. Dixon was to be the fines in the coefficient of variation, CHESS>SPAIR>STIR>Dixon, in
homogeneity of the whole image. STIR was fine in the fat saturation and Dixon was the fine in the homogeneity
in brain image. Both STIR and Dixon were fine in the fat saturation and homogeneity for C-spine. Both SPAIR
and CHESS were fine in the fat saturation and both Dixon and STIR were in homogeneity for L-spine.

4. Conclusion

Both SPAIR and STIR were the most excellent of the fat saturation in the phantom image and Dixon was
analyzed to be the finest of the homogeneity in the image. STIR was fine of the fat saturation for brain, Dixon
was fine of the homogeneity in the clinical examination aimed at patients. Both STIR and Dixon were fine of
the fat saturation and homogeneity for C-spine, SPAIR and CHESS were for L-spine, Dixon and STIR were for

homogeneity.
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TARMX|Z 2O X7 |& HEAERIAT

MERIY, eaA? B, Han g
EEEEER AR
YA AT ek A ot
TSk AR 8
‘o a AT S AR 8t
At s o) 238

1. 42
o)z 9 AR} Fopol A ARp] 714 RS A ek B RRAA L olus} Hok 3 Fake]
ilii S AR 27| 2ol A SHAIANE sk WAbAe] B S Ul Aol B S]] 28

d AA777Eel Hiet ARE A EL vl ojukst Fopof digt WS =MSkalA} Sk

2. ML
7t MEIIA7|9| MXHM & XHAM(bending magnet)
WAMAR EE QI AP 7EEG7104 AU A 7F 6 MeV o]42] AAAAE AHESh= -9, 71 Tapke] ®eF
S A 5§ W FAFT 2 FFoR vjdsto] AAe = o, AAM el B AR Fo R A}
Ko ARE #3]7] Yokl & A A|ado] ARgET

- 90° bending : T oA MR M= FA S ARESHE A= QLo TRt olv A2 AARA e
Ag3t7] flote] MRS Ao ARl A=E 90° 9 :

- 270° bending : AR}FA o x| Q] Ao TS W] a1 AAA B B EAUSE 929 AxA AL
H3elA ALbd 4 Es 270°R Sstel HRE Wit

- 112.5° bending : A A2l AxpAo] AxLA Q] oy R0 wfe} B Hr2 2Hste] A2 Aslat 9
ZAEES RO R 90° 3 270° Fo| @S HAsIoirh

Wi

12

Lt SExd XIZE #gt A &5 2 =A0| HEE AP Jl&

- FEAALY o ARIZRER B YARERA THEE FIAE A RS WEYIA #F517] ¢
sto] of2] o] 4= A 5ol vidHo] WO F2E FA45tH, WE M= 25 A Ee 45 A4
AREEl ARE AT e IS Eoh

- 552 ZAHactive scanning) 71 : 7hotieh FEfO] FARAL ARIAA 2 2AES BAFE SEA
AP (passive scattering) 7t ThE ) Fhchet FekE TR ARGRH SBA RARE PR At
RS 9]l (sweeper) AHA 02 2, 7] AKicken) AR WS HAAAE PR A gact

oAl xm AL o] §3 N2Z 9Jste] ARE AL H471E0] AMGE T, FHAE T4
7H71 FAAH AR W FAA A2 ALSET T 98 7147152 AR Z140] Kol
EANEER I i =
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U] ofg] AP Fofo| A8H A 7]we] AtE|et o] nlEfo] AR R W oAy 2ts) Fof
o= gL HUsly IHAE (R7E 93t AAr7|&9 Aevt SUE Aoz AlRHoh

4. 8029
[1] David Greene, Peter C W, Linear Accelerators for Radiation Therapy
[2] Peter M, Thomas K, Peter H, The Physics of Radiotherapy X-Rays from Linear Accelerators
[3] Wioletta W, Waldemar H S, Proton Radiotherapy Accelerators
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Switching Current Density Reduction in Spin Transfer
Torque Magnetic Tunneling Junction

F 7 micromagnetics A& 0|4 Z 2732 OOMMF (Object Oriented Micro Magnetic Framwork)of| A 2
I Ad B3 &L Z7}3le] AFLE &= 9] extension moduled 73} ch 7EHE extension moduled o]-&
A, 2D B 89 A7) w2 axpof| A o] 290 AREE=E FaAZ 4 Sl of 27| ol
thstol A dAtshgich AW v ko] FAREef A9 AFUEE 2Ashe ARl et s 4] 5
of MALEALE Bat a1 | mateieh. slHH el ol A RAIEAE 4pe] 27], exchange stiffness constant,
polarizer3-3}-2] non-collinearity, 2x2}-9] H.Fe] thA o] 77 52 PS50 A=o] 29 ARE=
& FE & 7 UFE TS, olF oA 2o B4 FE VU & e Aeg

B

le]

O
ol

o
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Spin-torque nano-oscillators for wireless communication

Byoung-Chul Min’
Korea Institute of Science and Technology, Seoul 136-791, Korea

Spin-polarized current can excite magnetization precession by spin-transfer torque in magnetic nanostructures,
leading to spin-torque nano-oscillators (STNOs). The STNOs raise prospects for the application in RF transceivers,
but should overcome critical challenges such as weak output power, broad spectral line width, and necessity of
external magnetic fields. The STNOs have been realized with nano-magnetic elements such as, for instance,
nano-pillars and nano-contacts having single magnetic domain or vortex structure. Here we employ a novel
magnetic entity in STNOs, which can provide unique properties resolving major challenges. It is shown that, in
a properly-tailored magnetic nano structure, the perpendicular spin current gives rise to microwave oscillation with
a strong spectral intensity and narrow linewidth; and, more importantly, the microwave oscillation is observed
even without applying external magnetic fields. This nano-tailoring of magnetic elements opens a new venue to

engineer the properties of STNOs, and thereby sheds light on their real applications.
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APIBTUEZE OI§ T OXI2 MEXIo

1. 42
W MZZ AR E 2fo] 8l A Righe= of2] B[ A] g2 Fio] W2 FHolv l% A+sh] st
of Al=EIL Q= Al Alo] 71e2 obd ) Al oske] AERES AT 5= Uk FeR NEAE AFE

S15ke] 10,000 74 ol 4ro] 74 M| Aol EH WU A, BAlo] e 3AH B A ojdlo] H 7)ol
st 2 =R A7|AEsRe} o|F olgdt tAE AE Aolo] daiA wstuA T

2. Aoy

2 Ao AM-E 27953 == NiFe U] miAlag o2 S Elon mAase- (5 ~ 20 m) ZEL
ATie T} oI EE AHE T WHS o] 83 liftoff WAIO R AR elE /|wslo] EEdxAg
(AZ 5214E)& =323519] 3500 rppmo. =2 A FE 3t F 120 C oA 187t soft bakingdlal ufAIE 7|3 9o
Mo ¥ A9 Mol 1, WAUAZ SOMIF)S A185to] EEA A AE WS B4 aholct. ofF, vp1d =
2 20 E Y WS o]83to] NiFe Hhg Fabskal Striper(Acetone)i o]-§sto] PR A|Aske] sjdE =3l
o} o] sfEe Fejoll whet A7) 32 axAe} Zro] o 7o a2At2 ES sklew 724 FEl
EA R, tolet 9 ATAE 5o 55 AR} E%Xli’&l, AND/OR A°|E 59| 5& 24 40 7Hs
skt

AIE o]FE x-5 W y-Fo2 77 IAR] 9 AR 5 o] A7 Q7Fste] x-y HHA oA 2 sk=
A7) WA A HZ7F ZA oA st o] B9 Alaz o F2abE A iAo 4s 289
ol 2717 3 Wekap Axpel el wheba] Ysks WFOR AEE ofd W 2HT 4 Tk

Aol AHEE AlEZ= FY "HEA A2 Al E2]ofl= negative MACS7} o]-8= itk 9 v 4&3}
o cell strainero]] =11 7354 &2 A|ZdEH O 2 7= & BSA-PBS (0.5% BSA and 0.2 mM EDTA in PBS)|
A 7= W ARk Ao} ARt vl e 'lat A 4 oA 1027 vkt & A 9F A3t AHdn| =9 3H
4 CollA 1587 vjokat & %= ¥ A A3}9th 0|3 LS MACS column©]] midi-MACS magnet2 ©|-8-3}o] HA]%
A5 L 9 mle] BSA-PBSEHO = column =5 E BIER] AZE Aol & U5 ZIA R

3. M}

A7) GE8R 2Abe Gt 7 v S0 s WA o7t bsstgle Ee Almet AgE 24
A e Aeh 2410 AEAGO] O3 FEAL AE AN R A1 A7lsk Feel s A E v,
E3 AE Rl BuY B A8E, AVF Gl WE AZY FrhE 9)xo] ) Aol Hgick

Z7te) 2Ab £5Y SEFOR FRAG. £FF At A7) HAYF) e FAshe] w4 o
o105, AN thr 5 Gtk EALE 4710 82 WPl uet AES WL upie] o ste] o
o|9OE Al W% WFO R NES ALstel A1 Aol ure A Heleh 2o 712 stk A
A 2ol AR ML A7) BT TUS AR AL 5 glo] AEE T FL AT

7% st
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4. 0%

EALAE F3 ol4H AL thlot 248 B3 LelHn ARE Faol AXE ARAE LA
S 2 AZE ARE Ahe] THT & Ach WAGe wAsHos 7
9% 317 A71AR0] Wkl Aleglo] T ol WALLSA) S Stk (AE AAE). wheba] B AZE A4
T el whel Wi 4 glow, o] WHE olgotE N e g 247} %
wot ofye} Wao] et 2% A7 E: w4 ARE ol§dte] AEES W 4
2, ol 2.5, AhAE U ERXAHE o] §ak AABlze| Mot fAHA AZE 7

5 A2
Ao\ B R} ol wA, 22 AYE AL AN GBAR &S Foto] B AEE AU @

St e A shelet
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HMO1

Dy-X (X=F S2= H) E2f 712 2 A =&t FA| X8t
Nd-Fe-B &ZXIA2| OIMIP =Lt AP X 49 X 24

?:'EH—§—1*, 0|A-|EH1 25?2 o|n|o3 xl-EHM?’

1 O
't Al AR Fet) A E %A] AE okebE e, 136-713
243} A2 R&D A E, ZHEE J AT 23 d 7 363-922

SHREsw A A28, g o}/\L/\] LA 2o 8, 336-708

il

1. 42

Nd-FeB 228449 Dy B AFsH 4718 B FHA717] 9o, 2844 o] Dy U7}
BgHoR BIEE v]4T2Y AAZ 2 [, 2] Dy-X (F Sk H) S9HE-S ol g3t B A7}
2 Q7 B4 3 A NdFeB 2244 o] Dy £ES ARH O Alo] & 4 9=, DyF;¢} DyH,
8}e12 9] Dy SAFAS-S Aolshy] wiitel, 7o) BhibRo] Bt A7 Bl QA S FAClA 224
TR W A47)H S4o) nAt 9F EG ufP okt (1, 2). DyH,e] Dy YA B B FAoR
SHAF E|4]5, DyFse] Dy 2% SHAHS B3k SHto] Ao dofdet (1, 2). wehd, 22449 nAjee
A A7) QlolAl B H7k BAol A DyFs 8KlEo] SoshAul 9 St 3ol A Dyl sEo]
o felsich E8 DyFs sheho] 22844 ol 24 & 3, Dyol 2aRsh $AEo] Ut Nd AshE
(RE-rich 4, Dy-Nd-0) & ®4jo] elAlsliu] [1, 2], oled Alskee] F4e A Sk 34 5eke] Dyel
SALS oSt FH 8471 @ S Utk B AT)AE Dy-X B A7l $HI Dy-X §4L ol g% A
AL A2 NdFeB 22440 SAl0] Helsto] Dy-X shgre A7t 448 FHSHAIA Dy A7 Gne
A2 olTo] 7] 93 BH O ATk

ZA] 0] NdsoFeraBioMaa (Wt.%, M = Cu, Al, Co, 18|31 Nb)Ql o] DyF; = DyH, 3I5tE B2
Ndy;DyxFep BioMag (x = 0.5 ~ 3.0 wt.%) A9 BT FH|3t 3 1060 Toj|A] 441759t A48 A5t
FHIE 2424 0] £ DyFs B DyH, 8912 of-&sto] I8 3t &, AIZ S 13l 900°ColA] 2A]7HE<t
A2 sFAT o]F-ol, Nd-rich 42} mAlF2 7j4lS ffsiA 500 °CoflAf 2417 &7t AR stk 2- AlH
| AFEZ HIH= AR (JXA-8500F) 2 £ AZFE v (FEI TecnaiF20)S o]-835to] & 5191 0w, EPMA
(JXA-8500F Electron Probe Micro Analyzer), SADP (FEI TecnaiF20)E ©|-& sto] AMHsl W AR XS 2 st

3. Zap Y n&

Nd-FeB 4224 o] DyFs= Dye| 22} S4hS f=8kA)h DyHots Dye] 4] SHARS fedich [1]. web,
A A B B0l DyH; §O4E o]gato] AATL Heldh AN HAo] DyFs S o] g3 A4 e
WA Rk G SRStk mhebs] DyFs B A7t At Dy £ 37} 2o DyH 08 olg:3kf 917
S Qe P 0o TR % A71E B4 WSE FHHOR BY sk ulTR 24 23, DyFs 29
HISERL QIASAL He@ 28R4 B9, A4 EHOzRE ] Dy S Zol7k oF 600 ym w9 sk
LA X2 o] DyH, B2-& H7HeE 227442) ZSoli= Dye] B4t Zol7k oF 200 um o] itk DyFs Hike
A7k BHT Q1A BHAE Qd AA9] B9 RE-rich 4] F4o] oA HAIu, DyH; Bee A7k A st
Helgk A4 9] 9ol REsich 49| F4o] WAL 5 & ¥ 3 Fe, A4 EwOZNE ByE Dyol

flo
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B}4} S 5o] REich A4 8318, RErich Aol -510] o o4 97| B4t 517 ¢kt £Als|o] waleh. thA
AL, A SHaE B ol el DyFs 222 H7lstol RErich 4¢] §4o] elAIg .o =M, A7
Dye] St Zlolt vh$ P4 Stk Eak DyFs Bo] A bEW £FA4e Arl &

3z

=
I DyFs 28a A7FStaL A 24E A et dApA 9] Dy 2HF o] el wdle] "k 17 12 DyFs
E= Dyl 319k £8& 715l DyH, Shghe 89l o850 AR 22|’k Nd-Fe-B 2244 9] Dy o]

w2 21714 EA4e] Hshs Uehdict o2, DyFs 2% 371 5 DyH, 84S o]8ate] ARt Hejgt 427149
Bapgo] 7P Ssktk shAIRE F 104 iz upe o] DyFs &9 X7F 3743 DyH, oA SHAF 385
Aol g 2442 Dy ghgo] 1.5 wt.% oldold ZHRAskrt FASHA Aaskyleh 9hA Ag3iloel, DyFs
B H7Ee) Hdf wido] zhRakske] £Ao)7] wiiol, W] DyFs £ X7kgto] s 8-Huh [1]. wheba, 19
LoflA] Bzo] oA 2kt 34 AvkE el & 4= Sl= DyFs 71 249 Dy §2 05 Hx= 1.0 wt% 71 29fsit.
ojwf o] K2 747} 19.729} 21.1 kOe&A, SFFHE WS k4] ¢kal DyH, 894 o]-8-ato] A Aejgt
AAAA ] BAFRETE ZHE 99 %, 111 % =2 42xjo|n, o] 3.5 wt%, 40 wt%2] Dy 7kt b 2A%4 o)
B sl gith. A2 0= DyF; S 3715kl DyH, 84S o]8ate] YAkt Xejet 244 HqAiste]
s glo] Bapgo] mfe- F Hol oF 3.0 wt.%2| Dy At aiE dZ 4 AT

4.2
DyFs i DyH, 3138 Ha& H7bsha DyH, BHeHE 942 olgako] YATHE Xol NdFeB 227

Ao] 2714 B4 9 uNFRE B3 Stk DyFs B9 H7F 343 DyH, A BHE 3482 Bl A%
g A, B 7 glo] AAl AF A el 2pA 3t vlarste] Dyo] ghak Zlo]7t 200% T E ik T YA
shab 22 A DyFs 27} 21419] Dy ko] 1.0 wt% < o] ZEx}ske] 7h4 glo] ®aEo] 11.1 % kA =<9

i
oh Al 2kt 37 ool ATFel DyFs 2% HUEE Sdll A S 34 avE Sk oF 224 oF 3.0
wt.%2] Dy A¢t &35 d& o Atk

5. Xk 28]
[1] Tae-Hoon Kim, Seong-Rae Lee, Hyo-Jun Kim, Min-Woo Lee, and Tae-Suk Jang, J. Appl. Phys. 115,
17A763 (2014).
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6. Aol 2
B ATl 20124E BS|ER AUCRE FRATATY AUS Wob 1AW S| 2ATLARY
(2011-0007200)T 2| AAAE 2 29] 7|4 3AIAFI(No.10043780)2] AtH] 7 OJOEL' 23595 h

26.0
25,9 | Coercivity (kOe)

el /;éz
2o} / -

20} i Q\ ‘ 123
20.0F : N {126
B DyF,dopin, AN N
.Dngdp_g Dy, & Z |ios
Y. oping
: dip-coating \E 1122

19.0
A  Un-doped
0.0 05 1.0 1.5 20 3.0 00 05 1.0 15 2.0 3.0
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HDDR-treated powder
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1. INTRODUCTION

The key feature of Nd-Fe-B-type HDDR (hydrogenation, disproportionation, desorption and recombination)-treated
powder is the unique microstructure consisting of ultra-fine Nd,F 4B grains(~300 nm for Nd;F4B). This fine grain
structure can be exploited for high coercivity in permanent magnet. The HDDR-treated material is generally in powder
form, and it would be desirable if the material can be consolidated into a high density bulk magnetkeeping the fine
grain structure. Our previous work revealed thatNd-Fe-B-type HDDR material lostthe coercivityradicallywhen the

material was consolidated by hot-pressing. In the present study, the cause of radical coercivity reduction was investigated.

2. EXPERIMENTAL WORK

Ndi2sFes0.6Be4GagsNby, HDDR-treated powder (iHc =13.5 kOe) was used as a starting material. The hot-pressing
was performed using different dieconfigurations (closed- or open-type). Magnetic characterization of the hot-pressed
compacts was undertaken by means of vibrating sample magnetometer (VSM) with a maximum field of 12 kOe.
Microstructure of the compact prepared in theclosed-type die was observed by SEM. Differential thermal analysis
(DTA) was also carried out to investigate the phase change in the material during heating. X-ray diffraction (XRD)
(Cu-K, radiation) was usedfor studying thecrystallographic lattice parameter change in theNdFe 4sB-type phase in
the compact caused by the desorption of residual hydrogen.

3. RESULTSAND DISCUSSION

The coercivity in the compacts was influenced by evacuation system of dies and heating rate. In spite of identical
hot-pressing temperature and heating rate,coercivity was radically reduced above 600 °C in the compacts prepared
in the closed-type die compared to the compacts prepared in the open-type die. The coercivity in the compact prepared
in the same die decreased with increasing the heating rate and the value further increased when high heating rate
was employed. The HDDR-treated powder contained significant amount of residual hydrogen (approx.1500 ppm)
in the form of Nd>FesBHy hydride. The radical coercivity reduction in the compact is believed to be attributed to
the disproportionation of Nd>FeisBHy hydride. Having considerable coercivity in the compacts prepared by the open-die

is due largely to the effective desorption of hydrogen or suppressing hydrogen-related disproportionation on hot-pressing.
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Fig. 1. Comparison of the coercivity and relative density of the hot-pressed compact of
Ndi25Feso6Bs4GaosNby, HDDR-treated powder prepared in the (a) closed- or (b) open-type die.
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1. Introduction

Grain boundary diffusion treatment has been a method to save heavy rare-earth (HRE) elements in a NdFeB
sintered magnet, where HRE atoms are allowed to diffuse in the magnet through grain boundary [1, 2]{Hirota,
2006 #7}.However, optimization of such diffusion treatment to maximize the improving effect on magnetic properties
is still a challenge. Among many candidates for the diffusion treatment, Cu and Al could be beneficial for the
diffusion of HRE atoms by improving wettability of Nd-rich grain boundary phase. The solubility of Cu to Nd,FesB
is almost negligible, whereas Al has small solubility to the Nd,Fe;sB phase [3, 4]. In this study, we investigated
the effect of Cu and Al on the diffusion behavior of Dy in grain boundary by using a mixture of Cu or Al with

DyFsfor the grain boundary diffusion treatment and corresponding effect in magnetic and microstructural properties.

2. Material and Experiment

Powders of 32.0Nd-Bal.Fe-1.0B-2.4M (wt. %, M= Cu, Al, Co and Nb) having average particle size of 5 pm
wereused. The magnet samples were prepared through the powder metallurgical root and sintered at 1060 °C for
4 hours. The sintered bulk magnet samples were cut into pieces of 10 mm x 10 mm x 5 mm size and polished
to remove the oxidized surface layer. Further, the polished samples were dipped in the solution prepared from
the powders of DyFs, Cu or Al, and absolute ethanol. Three kinds of solutions; Cu + DyF;, Al + DyF; and DyF;
were prepared as the Dy supplier for diffusion treatment. Ultrasonic vibration was provided to make uniform
coating layer of Dy-source on the magnet surface. Then the coated magnet samples were annealed in two stages;
first stage annealing was performed at temperature of X °C (where, X = 790, 820, 850, 880, and 910 °C) and
second stage at 500 °C for 2 hours each in vacuum (~ 10”Torr). Magnetic properties of the magnet samples were

measured using a BH-hysteresis loop tracer. Microstructural investigation was carried out using SEM and EPMA.

3. Results and Discussion

The Dy-source prepared by mixing of DyF; with Cu or Al was found to be effective to some extent for the
coercivity enhancement. These elements may act as the carrier of Dy atoms so that large number of Dy atoms
diffused into the magnet interior from Dy-source coated at a magnet surface. Fig. 1 shows the variation of coercivity
of magnets coated with three kinds of Dy-sources; Cu + DyFs, Al + DyFs, and only DyFswith respect to heat

treatment temperatures. The coercivity of all diffusion-treated magnets was increased with increasing heat-treatment
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temperature except for the one coated with Cu + DyFsand then heat treated at 910°C. Moreover, at 880°C, the
coercivity of those magnets which were coated with Cu or Al mixed DyF; was increased by 2.5 kOe. Cu and
Al had almost similar effect on coercivity improvement particularly in the temperature range of 790°C to 880°C.
The diffusivity and diffusion depth of Dy was increased in those magnets which were treated with the Dy-source
prepared by mixing of Cu or Al with DyFs; mainly due to comparatively easy diffusion path provided by Cu and
Albecause of their solubility toNd-rich grain boundary phase. The Cu/Al-rich grain boundary phase might have enhanced
the diffusivity of Dy-atoms. Moreover, it seems that relatively a large number of Dy atoms were reached at the
interface of Nd,Fe;sB and grain boundary phases covering Nd,Fe ;4B grains so that the core-shell type structures
were developed. The formation of high anisotropic (Nd, Dy),FeisB phase layer, which acted as the shell in the

core-shell type structure, was the cause of enhancing the coercivity of diffusion treated Nd-Fe-B magnets.

17.5 T . T . T . T T T
—=&—Cu + DyF,
Al +DyF,
170 |- - -A--DyF, E
< -~
< Y
= 165 |- I -
. s
A -
-
16.0 |- E
15.5 1 " 1 " 1 " 1 " 1
790 °C 820°C 850 °C 880 °C 910 °C

Heat treatment temperature

Fig.1. Coercivityof NdFeB magnets treated with

three different Dy-source solutions at various heat treatment temperatures.

4. Conclusion

The coercivity of diffusion processed magnet could be enhanced with the aid of low temperature melting
elements such as Cu and Al after being mixed with Dy-source. These elements particularly enhance the diffusion
depth and diffusivity that are realized as the important aspects of grain boundary diffusion treatment for increasing

anisotropy and so as to improve the coercivity.

5. Acknowledgement

This work is supported by the Strategic Core Material Technology Development Program (No. 10043780)
funded by the ministry of Trade, Industry and Energy (Korea) and the New and Renewable Energy of the Korea
Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Knowledge
Economy, Republic of Korea (No. 2011T100200304).

6. References
[1] K. Hirota, H. Nakamura, T. Minowa, and M. Honshima., IEEE Trans Magn 42 (2006) 2909-2911.
[2] H. Sepehri-Amin, T. Ohkubo, and K. Hono, J. Appl. Phys. 107, 09A745 (2010).
[3] O.M. Ragg, and I.R. Harris, Journal of Alloys and Compounds 256 (1997) 252-257.
[4] JJ. Ni, TY. Ma, Y.R. Wu, and M. Yan, Journal of Magnetism and Magnetic Materials 322 (2010) 3710-3713.

- 83 -



MOO01

YFeo 6|V|no 403—| 5|_|AI:I|-_?_O-| E‘% ou_'_rl

AR, Ol ME", FSW, LA
'Ry st Ee)sta)
CREEEEEEE

o
il

b

—L
L

o
Jo
)
o,
oz
1;
—|—‘
N,

2

o,

i)
o

offt
>,
-3
i3
el
i
rr
o
ofN
o
2

magnetodielectric & ¥7} HAYET B EHojFrh wEbA, 2 dAFoAe AFFAHEer Az €
YFeosMno4O; Al= o] AAeH2A] 9 2712 EAof tis Attt

2. MHYH
Z) A &+ H(soild-state reaction method)E Eﬁﬁ YFeosMno40; ZA Q] th2A B A 2E A| 23519 Y.0s,
Fe,03, 18]I MnOs 5 E AR AME 3191, o]& &7, Ralshoirh. 2EH 22 1300 “CollA 243}
24 9] YFeoeMno4Os T A RE A2 AR AATHE EA4S Cu-Ka Aof| o]-&3t x-4l 34 A3
(XRD)& 53| =439, Rietveld 212 o6& full prof TRIHE 53] HAFAck Ae A= Aok
(VSM) AL o] gste] 2mof thE 25k WskE ZAetth B3 u]AH 2l 7]F EAL ZH5t7] 95
FE 400 K7HA] #2ukg-o] B3 AHS AAlsHd

Al | a
3. dYEG A U

24O 2 A ZE YFeoeMnosOs TFAA B A2 9] XRD £4 Ax), B2 QIAKHRs)2} Bragg ¢l
S

AHRp)Z 5 % MINEO R TGS SRISHRITE AXA Q] 2714 548 S4st7] S8 VSM Add& HAIsH
th 1000 Oe QA7 42 QI7Fsto] 2o whE #A4okg Woks 4T Ak 311 K F-ZollA Auxdo] (Ts)
b AL, 395 KE Hem ()2 A8k Alme] 2ul4 4582 2l 5l7] $18). 4.251E 400
K7HA] w|2upe-of 233 AdE AASITh 25 olstoll A= sextete] A E-0] £ 3o, doublet?]
sHEYo] 54 H 395 K& =2 AASA o5 wx o] 3 d2&= olsto A= 4 sextets2
AdEYo R BAsI o, Aqo] FRbollA o] A o] FAet 7] AsSA £ EA7E AsH MekE
7HA ek

Fned

[1] P. Mandal, et. al., Phys. Rev. Lett. 107, 137202 (2011).

-84 -



MO02

Magnetic hysteresis loop investigated by teraheriz
magnetic resonance in canted antiferromagnetic YFeO;
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We investigate a free induction decay (FID) process for the canted antiferromagnetic YFeOs single crystal after
the resonant excitation of a ferromagnetic mode located at about 0.3 THz. Employing terahertz time-domain
spectroscopy (THz TDS), we used two wire-grid polarizers with polarization of +45 or -45 degree from y-axis
of the c-cut parallel crystal plate, and could obtain the FID signals excluding a strong contribution of the
transmitted THz wave. By varying the magnetic field strength applied along the c-axis of the sample, we could
observe the hysteresis behavior of FID signals which are in good agreement with the results obtained by other
conventional techniques, such as a magneto-optic Kerr effect measurement and vibrating sample magnetometry.
By examining the FID process in detail, we discuss the spin dynamics which are possibly contributed to by a

domain distribution, particularly by magnetic domain walls.

Keywords :canted antiferromagnet, free induction decay, YFeOj;, hysteresis
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Influence of Co content on the magnetic and transport
properties of CoxFesxO4 thin films grown on MgO(100)
substrate using MBE
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IDepartment of Physics, University of Ulsan, Ulsan 680-749, Korea
Institute of Physics and Chemistry for Materials of Strasbourg, UMR 7504 UDS-CNRS, Strasbourg, 67034, France

Giant magnetoresistance(GMR), tunneling magnetoresistance(TMR), and magnetic random-access memory
(MRAM) are currently active areas of research. Magnetite, FesOs, is predicted to possess as half-metallic nature,
~100% spin polarization(P), and has a high Curie temperature(7~850 K). On the other hand, Spinel ferrite
CoFe,04 has been widely studied for various applications such as magnetostrictive sensors, microwave devices,
biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical
stability, and unique nonlinear spin-wave properties. It has been reported that ions such as Mn®" and Zn*" have
a preference to occupy the A sites, while Ni*" and Co’" ions tend to occupy the octahedral B sites in the inverse
spinel structure. Here we report the transport and magnetic properties of CoFes.«O4 thin films. XRD patterns
confirmed the inverse spinel structure of films. Temperature dependent resistivity curves showed the Verwey
transition (Ist order metal-insulator transition) temperature in un-doped Fe;Os film, which was disappeared in
Co-doped films. The resistivity of films increased with the increasing x up to 1.6 Q-cm for x=1. Semiconducting
behavior was observed in Co-doped films. A transition at above room temperature for the sample x=1 indicates
a ferromagnetic to antiferromagnetic phase transition. Magnetic properties of the doped films are sensitive to the
Co-doping concentration. The magnetization curves showed a drastic increase in coercivity and decrease in
saturation magnetization with Co concentration. Out of plane magnetoresistance(MR) curves at 250 K show a

negative MR values with butterfly effect but was disappeared with x=1.
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Dynamic parameters of superparamagnetic carrierson the substrate coated by DNA are studied with anjoint
experimental/numerical approach. The acting magnetic forces on the superparamagnetic carriers are provided by
micro-magnets under an applied in-plane rotating magntic field, and obtained numericallyusing the finite element
method(FEM) simulation depending on the measured magnetic performances of the superparamagnetic carriers and
the micro-magnets. In order to acquire a maximum control ability on the carriers, the optimized scale ratio
between the carrier size and the diameter of micro-magnets is demonstrated by the experiments and simulations.
Moreover, the maximumrotational force on the carriers is given at the phase angle of 7 /4 based on the direction
of the applied field, and at the optimum ratio of that the radius of micro-magnets is around 2 times of the carrier
diameter, depending on the magnetization of the mcro-magnets under an applied field. Additionally, the retarding
forces of the carriers on the DNA substrate are estimated numerically, sticking force, viscous force and friction

force.
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1. INTRODUCTION

Spinel structures AB,O4(A,B=transitionmetal) have attracted much attention, because of the unprecedented
magnetic properties such as spin-glass, colossal magnetoresistance(CMR) effect, metal-insulator transition at low
temperature.[1,2] Recently, it has been reported that the cubic spinel FeGa,O, is antiferromagnet with spin glass
behavior with disordered spin, atomic short-range-order, incommensurated spin structure at low temperature.
Furthermore, FeGa;Os is concurrent with clusters and ferromagnetic spin-ordering below T7=12K, as
superparamagnetic behavior[3,4]. Especially, J.Ghose[5,6] has shown that FeGa,O4 is purely inverse [FeoosGaoos]
A[FeoAgsGal_os]BOA;, whereas FeGa,O4 is normal spinel[Fe]A[Gaz]BO4 from Mossbauer measurements[5]. Then,
microscopic magnetic properties are as yet unsolved problems with dependent site distribution of iron. In this
paper, we have researched magnetic properties of FeGa,O4, arising from magnetic structure-transition,

spin-relocation, and site distribution of iron on dependent temperature.

2. EXPERIMENT PROCEDURES

Synthesis of FeGa,O4 sample was done by a standard solid-state reaction method in evacuated 10”torr quartz
ampoules. In order to obtain homogeneous materials, it was necessary to grind the mixed powders of Fe (99.99
%), Fe203(99.995%),andGa»05(99.99%) and press the powder into pellet before annealing process in evacuated
quartz ampoules. A single phase of FeGa,O4 was obtained by annealing at 1000°C with nitrogen gas in evacuated
quartz ampoules for 4 days. The crystal structure of sample of FeGa,O4 was analyzed by using Philips X’Pert
diffractometer with Cu Ka radiation source. Their magnetic properties were characterized by superconducting
quantum interference device (SQUID) magnetometer. The Mdssbauer spectra were recorded using a conventional
spectrometer of the electromechanical type with a >'Co source in a rhodium matrix. The obtained Mossbauer

spectra were analyzed by a least-squares fitting program.

3. EXPERIMENT RESULTS

The X-ray powder diffraction experiment on FeGa,Os was performed at room temperature. The diffraction
patterns analyzed showed a single-phased material without any impurities. The crystal structure of FeGa,O4 is

determined to be an inverse spinel.

4. DISCUSSION

We conclude that spin-redistribution by distribution of Fe-cations depends on A and B-site with increasing

temperature.
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5. RESULTS

The crystal structure of FeGa,O, is determined to be an inverse spinel, with Fe atoms occupying both
tetrahedral(4: 43.16 %) and octahedral (B: 56.88 %) site from Mossbauer analysis at room temperature. It agrees
with the refined XRD analysis result. From temperature dependence of zero-field-cooled (ZFC) and field-cooled
(FC) magnetization curves under 100, 400, and 1000 Oe from 4.2 to 300 K, the slopes all of the curves changes
depends on temperature. The temperature of change in slope is 25 and 190 K. Then, after each other slops is
connected, the meeting temperature is 38 K. It is coincide with the curves electric quadrupole splitting AEq from
Maossbauer analysis. It comes from charge re-distribution due to spin-relocation at 25, 38, and 190 K. Also, each
other areas of the Mossbauer spectrum changes with increasing temperature, as area ratio is 53 and 47 % of at
25K, 50, and 50 % at 38 K, and 30 and 70 % at 190 K on A and B site of FeGa,Os.
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1. Introduction

Perovskites and double perovskites are very attractive because of the interest in applications and fundamental
areas. The general formula of a simple perovskite is ABO; and is a highly flexible structure. The perovskites
have historically proved themselves to be extremely robust structures that can accommodate a wide variety of
cations on the A and B sites. Recently, Fuertes et al were prepared new type double perovskite of La;Co.MOg
(M = Ta,Nb,Sb) and conclude that the M = Ta, Nb have ferromagnetic and M = Sb has a antiferromagnetic
behavior. Therefore, it would be very interesting to study the magnetic properties of this kind of compound. In

this paper we studied the magnetic behavior of La;Co,TaO¢ double perovskite.

2. Experiments

Polycrystalline samples are prepared by the solid state reaction method using stoichiometric mixture of high
purity La;O3(3N), CoO(3N) and Ta,Os(3N). The mixture was heated in alumina crucibles in air atmosphere at
temperature 900°C for 30 hours after cooling down to room temperature and sintering with 1320°C and 1400°C
for 24 hours. Room temperature X-ray diffraction(XRD) data were collected using diffractometer with a step size
of 0.02° and Cu Ko radiation. The temperature dependence of DC magnetization data was measured by a

vibrating sample magnetometer(VSM) from 10 to 300 K with 50 Oe applied magnetic field.

3. Results

Fig.1 shows the temperature dependence of magnetization and inverse susceptibility. This results are coincide
with La;Co,SbOy which is magnetic frustrated antiferro-magnetism. The reciprocal susceptibility is linear fitted
between 100 and 150 K temperature range with a Curie-Weiss law, x=C/(T-6). The values obtained from the fit
are: 8 = 65 K and Cy = 3.131 emu K/mol Oe. The effective magnetic moment obtained from the Cis is 5 pg
by using A =[8Cy1” | This value is nearly same with experimental magnetic moment of 4.8 4 for the Co’". The

positive sign of  is indicates the presence of ferrimagnetic interaction in this compound.
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Fig.1 Magnetization and inverse susceptibility Fig. 2 magnetization vs.
versus temperature applied field with temperature

- 97 -



Fig. 2 shows the field dependence of magnetization of 20 K, 25 K. 30 K and 35 K. The values are nearly
same at more than 5000 Oe applied field. As can be seen in insert figure 2, after Neel temperature(above 35
K) the high field magnetization is gradually decreased with temperature. This is one evidence this system have
antiferromagnetic behavior. The coercivity force and residual magnetization as a function of temperature are
dramatically decrease to Neel temperature of 30 K after that the coercivity force maintain almost constant and
residual magnetization is gradually decrease. The hysteresis behavior at higher than Neel temperature and positive

Curie-Weiss temperature imply this compound has ferrimagnetic behavior.

4. Conclusion

We have studied the magnetic properties of double Perovskite La;Co,TaOq. The Neel temperature is 30 K and
at high temperature obey Curie-Weiss law. The coercivity and residual magnetization are rapidly decrease in lower
than Neel temperature and the coercivity is nearly constant and residual magnetization is gradually decrease in
higher than Neel temperature. Our results that show that this system have antiferromagnetic with some

ferrimagnetic interaction.
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1. Introduction

ZnFe,04 have several advantages with their high electromagnetic performance, excellent chemical stability, low
coercivity and photoluminescence nature with a great potential in many applications including photocatalyst,
magnetic data storage, drug delivery, white light emitting diodes, soft magnets and low-loss materials at high
frequencies, etc”. ZnS is a wide band-gap semiconductor showing good emission in the blue and UV region, and
ZnS nanostructures have found many applications for phosphors, solar cells, and IR window. We report here the
preparation and characterization of core-shell ZnFe,O4/ZnS nanocomposites, aiming to use the advantages of both

ZnFe;O4 and ZnS to realize a potential magnetically recyclable photocatalyst.

2. Expertimental

The core-shell ZnFe;04/ZnS composite was first synthesized by a hydrothermal method. The morphology and
the average particle size were investigated using a scanning electron microscopy (SEM) and transmission electron
microscope (TEM). The phase determination of the as prepared powders was performed using an X-Ray
diffractometer (XRD). Diffuse reflectance measurements (DRS) on dry powders were performed.
Photoluminescence (PL) measurement was performed at room temperature. The magnetic properties were studied

with vibrational sample magnetometer (VSM) by the applied magnetic field up to 1 T.

3. Results and Conclusion

The XRD of ZnFe204/ZnS composites clearly revealed the diffraction peaks from spinel ZnFe,O4 and cubic
ZnS. The average nanocrystallite size (D) of ZnFe,O4 was around 29.72 nm by using the Debye - Scherrer
formula D=0.89A\/BcosO. In addition to core, XRD result showed ZnS shell was 4nm thick. This result also
agreed well with the SEM observation of morphology [Fig. 1]. The TEM images of ZnFe,O4/ZnS composite
exhibit that ZnS was grown at the surface of ZnFe,Os nanoplates of 40-80 nm in diameter and ~10 nm in
thickness.

The comparison between the UV - Vis DRS spectra of the ZnFe,04/ZnS composites and bare ZnFe;O4
nanoparticles showed that the optical absorption maximum increase remarkably after the deposition of ZnS on
the surface of ZnFe;Os. The shift of the absorption probably originated from the hybridization and strong
electronic coupling between ZnFe,O4 and ZnS nanoparticles. The band gap energy of ZnFe,O4/ZnS was calculated
by plotting a graph between the square of the Kubelka - Munk function F (R)2 and energy in electron volts. From
the Kubelka - Munk plots the optical band gap of ZnFe,Os and ZnFe,O4/ZnS are 2.0 and 2.2eV, respectively.
Compared to the bare the band gap was increased for the composite material mainly due to the much larger band

gap energy of ZnS (3.7 e¢V). Much enhanced photoluminescence was observed in the ZnFe204/ZnS composites
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due to the good optical property of ZnS [Fig. 2]. The ZnFe204/ZnS composites showed lower saturation

magnetization as compared to the bare ZnFe,Os4 nanoparticles, presumably attributed to the coating of ZnS

nanoparticles.
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Fig. 1 (a) SEM image, and (b) high resolution Fig. 2 The optical properties of ZnFe;04/ZnS
TEM image of ZnFe;O4/ZnS composites. composites and bare ZnFe,O, nanoparticles.
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Detection of the thickness loss in the ferromagnetic steel
pipe covered with insulation using Pulsed Eddy Current

M.B. Kishore', Duck-Gun Park’

Nuclear Materials Development Division, Korea Atomic Energy Research Institute, Taejeon, South Korea -305-353,
1C0rresp0nding author: dgpark@kaeri.re.kr

The thickness loss by corrosion of pipeline during operation in the power and oil industry is important
problem to threat the integrity of plants. Therefore, local wall thinning is a point of concern in almost all steel
structures such as pipe lines, and pipelines are usually covered with a thermal insulator made up of materials
with low thermal conductivity (fiberglass or mineral wool); hence, NDT methods that are capable of detecting
the wall thinning and defects without removing the insulation are necessary. The pulsed eddy current (PEC)
technique offers an alternative to these conventional techniques because of its potential advantages such as less
susceptibility to interference and less power consumption owing to the use of short pulses, which are more
desirable specifications in the development of portable instruments. In the present study, a PEC system to detect
the wall thinning of a pipeline without removing the insulator is proposed. The PEC system consists of a pulse
amplifier, a probe with a driving coil with a magnetic field detecting sensor (Hall-sensor), a sensitive differential
amplifier with variable gain to amplify the output voltage from the Hall-sensor, a A/D converter, and a computer
with signal processing software. The PEC probe characteristics are determined by a combination of measuring
environments such as induced current, insulation thickness, and sample thickness. The excitation coil in the probe
is driven by a bipolar rectangular current pulse; the time domain features of the detected pulse, such as ‘peak
value’ and ‘time to zero’ were used to describe the wall thinning in the tested sample. A real-time LabVIEW
program was developed for the data acquisition and for scanning the probe on the insulated sample. The scanning
results were continuously displayed on the computer monitor. To simulate the wall thinning of a steel pipe, a
mock-up of a wall thinned pipe was fabricated. The strength and duration of an induced pulse signal resembles
the average wall thickness that can be measured. The duration of the eddy currents will have an effect on the
transition period of the detected pulse. The system was applied in the mock-up sample with various thickness
regions covered with a 95 mm thick insulator with galvanizing cladding. The system can distinguish a wall

thickness of 2.5, 5, and 8 mm under 95 mm insulation covered with 0.4 mm of stainless cladding.

Keywords: steel pipe, wall thinning, pulsed eddy current, Hall-sensor
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[1] S. Ikeda ef al, SPIN 2, 1240003 (2012)
[2] T. Y. Lee et al, J. Appl. Phys. 113, 216102 (2013)
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Tailoring the direction of current-driven domain-wall
motion in Pd/Co/Pd films with insertion
of thin Pt layer at the Pd/Co interface

Sang-Cheol Yoo'?, Duck-Ho Kim', Soong-Geun Je', Byoung-Chul Min? and Sug-Bong Choe'

lDepartment of Physics and Astronomy, Seoul National University, Seoul 151-747
*Center for Spintronics Research, Korea Institute of Science and Technology, Seoul 136-791

Current-induced domain-wall motion (CIDWM) in ferromagnetic nanowires has been predicted theoretically
[1, 2] and demonstrated experimentally in recent years [3, 4]. However, in several materials such as Pt/Co/AlOx
[3] and Pt/Co/Pt [4] thin films, the domain wall (DW) moves along the direction of the current that is opposite
to the prediction of the spin transfer torque (STT) theory [1, 2]. To explain such peculiar behavior, several origins
including the spin orbit torques (SOTs) combined with the Dzyaloshinskii-Moriya interaction (DMI) and a
negative polarization (or nonadiabaticity) have been proposed [5, 6], but it is still under debate mainly due to
the lack of experiments.

Here, we report that a series of the Pd/Pt/Co/Pd films exhibit an interesting behavior useful for this kind of
experiments, since the DW-motion direction in this series samples is systematically reversed depending on the
Pt layer thickness tp. The DW moves along the electron in the films with tp<I monolayer, whereas the DW
moves along the current in the films with tp>>1 monolayer. From a quantitative analysis on the DW speed [4],
the effective magnetic field induced by the current is estimated to change gradually across zero (at tp~1
monolayer). To quantify the contributions of the STT and SOT in these series samples, the effective fields induced
by the DMI and the SOT are measured from the asymmetric DW expansion under an in-plane magnetic field
[7] and the shift of the out-of-plane hysteresis loop under current injection, respectively. From these measurement
results, the magnitude of the pure STT is determined and the correlation with the DW-motion direction will be

discussed.
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Thespin-orbit interaction (SOI) is one of the major concerns in the field of spin transistor devices because
spin precession can be controlled by SOI parameter [1].In a semiconductor channel SOI is divided into two terms,
Rashba and Dresselhaus terms. The Rashba spin-orbit interaction(RSOI) is induced by the structural inversion
symmetry andthe Dresselhaus spin-orbit interaction(DSOI) isresulted from bulk inversion asymmetry. Detection
and applicationofRSOI has been researched,however,DSOI has not becausethese two effects are
phenomenologically inseparable so extraction of individual field is not simple. The Rashba field is always
perpendicular to the wavevector but the orientation of the Dresselhaus field depends on the crystal orientation
of channel [2]. Thus, for the various crystallineorientations we measuredthe Shubnikov-de Haas oscillations in
anlnAsquantum well system. Values for the Rashba parameter of 6.73 x 10> eVm and for the Dresselhaus
parameter of 0.57 % 10 eVm were sequentially extracted and also the gate dependences of the two parameters

were determined.
[1] H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, Science, 325, 1515 (2009).

[2] Y. H. Park, H. -j. Kim, J. Chang, S. H. Han, J.Eom, H. -J Choi, and H. C. Koo, Appl. Phys. Lett. 103,
252407 (2013).
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In 2-dimensional electron system (2DES), the inversion asymmetry of structure induces Rashba effect, and this
is the key factor of spin modulation in Datta-Das spin FET. On the one hand, since Rashba spin-orbit coupling
(SOC) is able to be understood in terms of spin splitting energy (Aso) and effective magnetic field (Br), the
g-factor of conduction electron which mediates electric and magnetic properties of carrier is closely related to
Rashba SOC. In this research, we propose the method to obtain the g-factor of conduction electron in 2DES using
Shubnikov-de Haas (SdH) oscillation, involved with Rashba SOC.

Generally, SdH oscillation is measured in perpendicular magnetic field, and affected by intrinsic Rashba SOC
which makes beats in conductance oscillation.Then, Rashba parameter is determined with the period of the beats
in oscillation, and obtained parameter is 6.41 % 10-"? eV-m. Rashba SOC,meanwhile, is able to be modified with
in-plane magnetic field, so it changes the period of beats and Rashba parameter. To manipulate the Rashba SOC,
we applied in-plane magnetic field in addition to perpendicular field. While perpendicular field induces the
conductance oscillation, constant in-plane field modifies the Rashba SOC. Also we can write the relation between
modified Rashba parameter (o) and total magnetic field asa = (gus/2kr)(Br +Binplanc). Consequently, g-factor is
estimated from the equation, with the value of -13.

We observed the g-factor of conduction electron in 2DES by applying in-plane magnetic field in measurement

of SdH oscillation. This experience gives the simple method to determine g-factor in strong Rashba SOC.
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In the field of spin-based devices, spin-orbit interaction is very fascinating mechanism, becasue spin and
charge can be simultaneously modulated at the same time. Using a high mobility semiconductor channel, gate
controlled spin precession has been reported [1]. Recently, the oxide based two-dimensional system has a great
concern in the field of spin electronics because it shows interesting electronic and magnetic properties.
LaAlOs/SrTiOs; (LAO/STO) has an inherent space inversion asymmetry causing an internal electric field near the
interface. The Rashba spin-orbit coupling arising from this structural characteristics has a considerable influence
on spin transport. However, the detection of Rashba effect using the conventional Shubnikov-de Haas oscillation
or weak antilocalization method is not simple due to the relatively low mobility. In this research, we detect
Rashba effect induced mobility change in a LAO/STO interface using spin filtering effect [2, 3]. Due to the
different barrier heights, the applied magnetic field produces two different conductivities for spin-up and -down
electrons.

In order to observe the Rashba effect, transport measurement of the Hall bar is performed at 1.8 K. The
channel consists of a Snm LAO layer on the STO substrate. The bias current induces Rashba spin splitting which
results in the different carrier concentrations for spin-up and -down electrons. When the magnetic field is applied
parallel or antiparallel to the Rashba field, the magnetoresistance of the channel is measured.

In a LAO/STO interface, the Rashba field induced magnetoresistance change is observed which is dependent
on the sign and magnitude of the field. Our systematic study revealed that these results come from spin dependent
transport, by which we obtained quantitative strength of the Rashba coupling. This Rashba strength is highly
dependent on temperature: it varies from 2.6 x 10" eVm to negligible value in the temperature range of 1.8
~ 12 K.

[1] H. C. Koo et al., Science, 325, 1515 (2009).

[2] M. J. Gilbert and J. P. Bird, Appl. Phys. Lett. 77,1050 (2000).
[3] G. Papp and F.M. Peeters, Appl. Phys. Lett. 78,2184 (2001).
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Magnetic tunnel junctions (MTJs) with perpendicular magnetic anisotropy (PMA) are used to scale down the
cell size of magnetoresistive random access memories (MRAMs), since magnetic layers with PMA can provide
large enough thermal stability to avoid unwanted switching of nano-magnetic elements. The Ta/CoFeB/MgO
structure is known to have a decent interfacial PMA, and perpendicular-MTJs based on these structures provide
a high Tunnel magneto-resistance (TMR) of over 120% [1]. It has been recently reported that the PMA in Ta/
CoFeB/ MgO structure can be improved by replacing Ta by Hf [2]. Here we have studied the effect of composite
underlayers on the PMA in underlayer/CoFeB/Mg/MgO structures.

We have deposited samples using both DC and RF magnetron sputtering on the oxidized Si substrates, and
annealed the samples at various temperatures. The magnetic properties were characterized by vibrating sample
magnetometer (VSM), and the PMA and interface anisotropy energy are obtained using M-H curves.

The magnetic properties of composite underlayer/CoFeB/Mg/MgO structures depend significantly on the
underlayer and annealing temperature. We found that the diffusion of boron as well as the underlayer material
mainly contributes to the effective magnetic thickness, saturation magnetization, and interface PMA of
underlayer/CoFeB/Mg/MgO structures. By selecting a proper combination of underlayer materials, it is possible

to obtain a high interfacial PMA with annealing at a relatively high-temperature.
References

[1] S. Ikeda, K. Miura, H. Yamamoto, et al., Nature Materials 9, 721 (2010).
[2] T. Liu, J. W. Cai, and L. Sun, AIP Advances 2, 032151 (2012).
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1. Introduction

Examining the thermal stability of nano magnets with perpendicular magnetic anisotropy is important because
the data retention time of magnetic random access memory(MRAM), the most promising next generation memory,
is determined by the thermal stability.[1] In this work, based on the Nudged Elastic Band(NEB) method[2-5] we
calculate the energy minimum state of the switching situation. [4, 5] Then we investigate the thermal stability
of a non-uniform switching in these nanomagnet system for two type of cell geometry and various sizes.

We find that the energy barrier depends not only on the cell size but also on the shape of cell when the
switching is governed by the domain wall nucleation. We will also show the field-dependence of the energy

barrier for circular cell and then compare the energy barrier of the circular cell with that of square cell.

2. Modeling Scheme

Using the NEB method, we compute the energy barrier by tracing the energy minimum path that is obtained
by minimizing the gradient of the energy [3]. We use the following parameters for NEB modeling: the
perpendicular magnetic anisotropy density Kuis7x106erg/cm3i,the saturation magnetization is 1000emu/cm’, and the
free-layer thickness t is 1.5nm. We use the exchange stiffness constant A.c of 1x10'6erg/cm. We also vary the
shape and diameter L of the nanomagnet cell and applied external field. Commonly, STT-MRAM shows uniform
single domain switching for a small cell and domain wall switching for a large cell. Figure 1(a) shows the NEB
images of the domain wall switching (DWS) for Aex:1x10'6erg/cm, and cell size=40nm for two types of the cell

geometry. A rainbow color section in the middle is a domain wall formed during the magnetization switching.

3. Result and Discussion

Figure 1(b) shows the field dependence of energy barrier Ep at Ax=1x10" erg/cm and various cell sizes for
a circular cell. We find that the single domain switching occurs for the cell diameter smaller than 30nm whereas
the domain wall switching occurs otherwise. An interesting feature is that the critical field vanishing Eg depends
strongly on the cell diameter.

We also compare the energy barrier for various cell size according to the cell geometries(see the Figl(c)).
When the cell size is small, the energy barrier for square shaped cell is larger than that for the circular cell.
However, as the cell size increases, the energy barrier of the square and circle cells becomes similar. We attribute
this phenomenon to domain wall formation. When the domain wall switching occurs, the energy barrier is
crucially affected by domain wall energyand thus domain wall length that is determined by the cell diameter.
Therefore, when the system undergoes domain wall switching, the energy barrier should be proportional to the

cell diameter regardless of the shape.
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Fig 1 (a) NEB image of domain wall switching for Aa=10"° erg/cm, cell size = 40nm for both of square and
circular cell and external field is zero. (b) Field-dependence of energy barrier at various cell diameters for circular

cell. (¢) comparison of the energy barrier for square and circular cell when the cell size is 40nm.

4. Summary

We investigate the field-dependence of energy barrier for various cell diameters and two type of geometry
through the NEB method. We find that the energy barrier can depend strongly on the cell size when the switching
is governed by the domain wall motion. Moreover we also examine the cell size dependence of energy barrier
for two type of cell geometry. In the presentation, we will discuss the effect of domain wall formation and more

various cell size on the energy barrier in detail.

5. Acknowledgments
This work was supported by the KU-KIST School Joint Research Program.

6. References

[1] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F.
Matsukura and H.Ohno, “A perpendicular-anisotropy CoFeB - MgO magnetic tunnel junction,” Nature
Materials., vol.9, 721 - 724 (2010)

[2] G. Henkelman, B. P. Uberuaga, and H. Jonsson, “Improved tangent estimate in the NEB method for
finding minimum energy paths,” J. Chem. Phys., vol. 113, p. 9901, 2000

[3] H. Jonsson, G. Mills, K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths
of Transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, Ed. B. J. Berne, G.
Ciccotti and D. F. Coker, 385 (World Scientific, 1998).

[4] A V Khalkovskiy et. al., J. Phys. D: Appl. Phys. 46 074001 (2013).

[5] G. D. Chaves-O’Flynn, E. Vanden-Eijnden, D. L. Stein and A.D. Kent. J. Appl. Phys. 113, 023912 (2013)

- 121 -



STo9

Spin Hall Magnetoresistance in W/CoFeB/MgO structure

SOONHA CHO", Y. W. Oho', K. D. Lee', B. G. Park'
lDepartment of Materials Science and Engineering, KAIST, Daejeon, 305-701, Republic of Korea

1. Introduction

Heavy metal/CoFeB/MgO heterosturctures with large perpendicular magnetic anisotropy(PMA) have been
known to exhibit efficient current-induced magnetization switching by in-plane current injection[1]. The origin of
magnetization switching by current is typically ascribed to the interfacial contribution of CoFeB/MgO and a large
spin-orbit coupling(SOC) of a heavy metal underneath where both the Rashba[2] and the spin Hall effect[3] play
an important role. We investigated magnetoresistacnce for such stack by utilizing tungsten(W) as a heavy metal
layer because of the giant spin Hall effect of W due to large spin Hall angle compared to other heavy metal
such as Ta and Pt[4].

2. Experiment

W and CosFessB are sequentially sputtered on an oxidized silicon substrate by DC magnetron sputtering at
3 mTorr. On top, MgO layer is deposited by RF magnetron sputtering at 10 mTorr. Finally, Inm Ta layer was
deposited as capping layer to prevent MgO layer from being over-oxidized. After the sputtering processes,
subsequent thermal annealing procedure was followed at 250 °C for 30 min.

The magnetic properties of the films were characterized by Vibrating Sample Magnetometer(VSM). For
electrical measurement, Sum Hall bar structure was patterned by the photo-lithography and etched by the ion
milling. Subsequently, Ru top electrode was fabricated by sputtering and lift-off method. The anomalous Hall
resistance(AHR) and the anisotropic magnetoresistance(AMR) were measured simultaneously by injecting ac

current under in-plane magnetic fields tilted a few degree out of film plane(Fig. 2a).

3. Result and Discussion

First, a considerable PMA(~0.2 erg/cmz) was achieved in W(5)/CoFeB(0.8, 1.0, 1.2, 1.4)/MgO(1.6) structure
by VSM(Fig. la); numbers in the parenthesis have nanometer unit. Such PMA is sufficient for high thermal
stability and low critical current for magnetization switching[5].

For the sample with 1.2nm CoFeB thickness, the AHR was measured under in-plane magnetic fields in the
direction of both x and y(Fig. 2b). However, the AMR was measured in the samples only under the magnetic
field along y direction(Fig. 2c). Recently, this phenomenon, called spin Hall magnetoresistance(SMR), has been
reported in thin films using YIG as ferromagnetic layer[6][7]. We measured much lager SMR for CoFeB than
previous studies for YIG.

To clarify the results, W(5)/CoFeB(3.0)/MgO(1.6) sample with in-plane magnetic anisotropy along x direction
was prepared(Fig. 2d). The planar Hall resistance(PHR) was measured due to in-plane magnetization(Fig. 2e), and
SMR was also observed(Fig. 2f).

The same measurements were done for other samples possessing the PMA, and similar results were
obtained(Fig. 3).
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4. Conclusion

Effective magnetic fields induced by in-plane current injection in heavy metal/CoFeB/MgO heterostructures,
causing current-induced magnetization switching or domain wall motion mostly, originate from the spin-Hall and
the Rashba effect. Since the symmetry of effective fields arising from those two effects is the same, decoupling
of each contribution is difficult. By employing tungsten as a bottom layer in such heterostructures, the contribution

of spin Hall effect can be differentiated due to large spin Hall angle of tungsten.
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Fig 1. Characterization of magnetic properties.
(a) Perpendicular magnetic anisotropy energy, (b) Anomalous Hall resistance under magnetic
field perpendicular to the film in W(5)/CoFeB(t)/MgO(1.6). t=0.8, 1.0, 1.2, 1.4nm.
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Fig 2. Device schematic and magnetoresistance measurment.
(a) Hall bar geometry. (b) Anomalous Hall resistance and (c) spin Hall magnetoresistance under in-plane magnetic
fields along x or y direction for W(5)/CoFeB(1.2)/MgO(1.6) with PMA. (d) VSM measurement, (e¢) anomalous
Hall resistance and (f) spin Hall magnetoresistance under in-plane magnetic fields along x or y direction for
W(5)/CoFeB(3.0)/MgO(1.6) with in-plane anisotropy.

- 123 -



(b) oz 0

L 025 H

Vg r(CoFeB_1.4)

?3 # Vgyp(CoFeB_3.0) t 020 H

E - &
P |
C;>—~2 EUJ. * n
§I ¢ " %0.10- 3 L]
> . i . .
5
& * .

*
[] H " " " " " "

0 10 20 30 40 &0 60 70 80 20 30 40 50 80 70 80
| (uA) I {uA)

lems

0.00
]

=

Fig 3. Magnetoresistacne measurment for various ferromagnetic layer thicknesses and current levels.
(a) Spin Hall voltage under in-plane magnetic field along y direction.

(b) Anomalous or planar Hall voltage under in-plane magnetic field along y direction.
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Spin Injection Properties in MoS, Lateral Spin Valves

1. M&

2D-layered transition metal dichalcogenides semiconductor molybdenum disulfide (MoS;) has received
significant attentions. The bulk MoS; is an indirect-gap semiconductor with a band gap of 1.29eV consisting of
weak van der Waals bonded S-Mo-S units. With decreasing thickness, whereas, shift in the indirect gap from the
bulk value to the direct gap with a band gap of 1.9eV at monolayer due to the quantum confinement. Because
monolayer MoS, has a band gap completely block the current in the FET’s off-state with carrier mobility of 200
cm’/Vs at roomtemperature.

Monolayer MoS; has strong spin orbit coupling originated from the d orbitals of the heavy metal atoms but
induces large spin splitting of up to 456meV at the valance band due to a broken structure inversion symmetry
of the bulk compounds in the monolayer case. This spin splitting suppresses the Dyakanov-Perel spin relaxation
time and results, long spin diffusion length is expected regardless of the strong spin orbit coupling. On account

of broken structure inversion symmetry,MoS, is a fascinating material for spintronics application.

2. NEYY

Mo thin film samples were prepared on 1x1 cm MgO (100) single crystalline substrates by molecular beam
epitaxy (MBE). MoS, thin films were prepared by sulfurization of molybdenum layers based on a vapor phase
growth technique. The Raman measurements with a 532nm laser wave length were performed using a Witecalpha
300R confocal Raman system. Device fabrication was carried out using e-beam lithography employing a
negative-tone ma-N2403 resist and Ar' ion etching. Subsequently, after removal of the resist, UV lithography
patterning was performed to fabricate the macroscopic metal contacts. The magnetoresistance and I-V curves of
MoS,/CoFe lateral spin valve structure were characterized using a physical property measurement system (PPMS)

by Quantum Design.

3. Mo A

A schematic illustration of the device structure and a scanning electron microscopy (SEM) image are shown
in Figure. A standard local geometry was used to measure the spin signal of the lateral spin valve (SV) structure.
As shown in this figure, our lateral local SV structure is composed of ferromagnetic (FM) CoFe electrodes
separated by a non-magnetic semiconductor MoS, layer. By applying a current between the two electrodes, spin
polarized carriers are injected into a MoS, from a first CoFe electrode then detected by a second CoFe electrode
that is placed within the spin diffusion length associated with the semiconductor materials. The local resistance
is measured as the applied magnetic field swept from a positive to a negative value followed by an pposite sweep
back to positive value both the field direction along in-plane and perpendicular to the sample axis. The difference
in the CoFe electrodes shape is proposed to facilitate a magnetic configuration due to the shape anisotropy at

which the magnetization in the pads switches so that a variation of coercivity can be obtained. In order to
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analogize the spin diffusion length in the MoS;,we fabricated different gap size between the CoFe electrodes from
240 nm to 680 nm.

The magnetoresistance (MR) ratio was measured to detect spin injection and transport in MoS, lateral SV by
applying both in-plane and perpendicular magnetic field to the easy axis of sample from 300 K to 10 K. No
measurable MR was observed for MoS, lateral SV above 120 K but clear MR is observed at below 120 K. This
indicates electrical spin injection from CoFe then transport to MoS, layer. The magneto-transport curves show
magnetization switching characteristics consistent with the coercivity(H.) difference between the spin injector and

spin detector CoFe electrodes due to the different shape anisotropy.

4072 -

4068 -

4064 -

Resistance (ohm)

-6000 -4000 -2000 0 2000 4000 6000
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Effect of activated electron beam
on FCC to FCT phase transformation of FePt films

SY. KIM*, H.N. LEE, Y.K. KIM, TW. KIM
Department of Advanced Materials Engineering, Sejong University, Seoul, 143-747, Korea

During the past several years, FePt films of face-centered tetragonal (FCT) structure have drawn remarkable
attention because of its potential technologies for ultra-high density magnetic recording media and its large
magneto-crystalline anisotropy energy density.

To make L1, structure from Al structure in FePt films, we used a different method unlike general annealing
process. General process of phase transformation in FePt films is post deposition annealing for over 2 hours in
more than 400°C. But we designed the phase transformation from face-centered cubic (FCC) structure to
face-centered tetragonal (FCT) structure at FePt films by using activated electron beam.

FePt films is used as alloy target which has a FesoPtso proportion, and FePt 100nm deposited on SiO, substrate
through the DC magnetron sputtering system. 400V voltage electron beam is powered into this experiment, and
time range of exposed samples is from 30sec to 10min. Samples are fixed in 2 x 107 Torr Initial pressure and
3 mTorr working pressure, and energy is supplied to FePt films by using activated electron beam. In an X-ray
diffraction (XRD) measurement of FePt films, perfect phase transformation occurs in about 10 min.

Consequently, exposed electron by using activated electron beam is shown a simple process of phase

transformation in contrary with long-term annealing method.
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MTo02

A first principles study of electric field effect on
magnetization and magnetocrystalline anisotropy:
FeCo and FeCo/MgO

Purev Taivansaikhan, Dorj Odkhuu, Oryong Kwon and Soon Cheol HongT

Department of Physics and Energy Harvest Storage Research Center, University of Ulsan,
Ulsan 680-749, Republic of Korea
TCorresponding author: schong@mail.ulsan.ac.kr

The magnetic and electronic properties of bulk and thin films of FeCo and FeCo/MgO have been investigated
using first-principles calculations. For the thin film FeCo, as number of layers increases from a monolayer (ML)
to 5 MLs, surface magnetic moments of Fe are feasibly decreased from 3.19ug to 2.97us, whereas it is enhanced
from 2.16 to 2.71 for Co case. Those magnetic moments at surface are much larger than that in bulk FeCo.
However, in the presence of the substrate MgO, magnetic moments of interface Fe and Co are dramatically
decreased caused by interaction with the MgO substrate. Additionally, the magnetocrystalline anisotropy (MCA)
energies of FeCo/MgO film enhanced to +1.74 meV/cell in the 2ML, but it showed in-plane MCA in the 3ML
to SML FeCo/MgO.

Furthermore, by applying electric field along z axis, magnetic moment of Fe atom in Fe/MgO is increased
from 2.82up (EF=0 eV/A) to 2.87us (EF=1 eV/A). Additionally, MCA at the interface can be modified by an
applied electric field. We will discuss in detail in the presentation the external electric field effect on MCA

depending on thickness of FeCo films on MgO substrate.
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Magnetic Anisotropy of Boron Doped FeCo Alloy:
First principles study

Khan Imran’, Jicheol Son, Jisang Hong
Department of Physics, Pukyong National University, Busan 608-737, South Korea

Using the full potential linearized augmented plane wave (FLAPW) method, we have investigated the role
of boron doping on the magnetic anisotropy of FeCo alloy. Furthermore the coercive field H. and Maximum
energy product (BH)max is investigated. With these studies, we have discussed on the potential application of rare
earth free permanent magnet.

(This research was supported by Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2013R1A1A2006071) and
Converging Research Center Program through the Ministry of Education, Science and Technology (No.
2012K001312))
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MTo04

Strain induced Magnetocrystalline Anisotropy
in double perovskite Sro,FeMoOg

Jicheol Son’, Jisang Hong
Department of Physics, Pukyong National University, Busan 608-737, South Korea

Transition metal oxides with perovskite structure is an essential class of materials which posses a range of
typical properties in magnetism. Herein, we have systematically investigated the electronic structure, magnetic and
optical properties of the double perovskite oxides SroFeMoOg using first principles calculations. In particular, we
have explored the strain effect on the magnetocrystalline anisotropy and optical property of Sr.FeMoOs,

(This research was supported by Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2013R1A1A2006071) and
Converging Research Center Program through the Ministry of Education, Science and Technology (No.
2012K001312))
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] H. Won, H. S. Ju, S. Park and G. S. Park, IEEE Trans. Magn. 49(5), 2045 (2013).
[2] H. Won, Numerical Modeling of Hysteresis Phenomenon Based on the Mechanism of Magnetic Structures,
Ph.D. Thesis, Pusan National University (2010).
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Phase diagrams of the stable skyrmion with
Dzyaloshinskii-Moriya interaction

Jae-Woong Yoo"', Seung-Jae Lee?, Jung-Hwan Moon', and Kyung-Jin Lee'?
1Department of Materials Science & Engineering, Korea University, Seoul 136-701, South Korea
*KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul 136-701, Korea

1. Introduction

Magnetic skyrmions are topologically stable spin textures. Recently, a single magnetic skyrmion is of
considerable interest because of its rich physics and potential for information carrier in storage devices [1, 2].
In this work, we study a single skyrmion generated by Dzyaloshinskii-Moriya (DM) interaction [3, 4], and provide
phase diagrams with various parameters. The DM interaction, the antisymmetric exchange interaction, is caused
by the broken inversion symmetry with the spin-orbit coupling (SOC). We use the interfacial DM interaction that
is present at the interface between a ferromagnet and a normal metal with strong SOC. Based on micromagnetic
simulation, we find condition for the stable single skyrmion. Sampaio et al. [5] reported the phase diagram of
an isolated skyrmion in nanodisks. However, the phase diagram of a single skyrmion in nanowires has been not

reported yet. This work will be useful to design nanowires, for use of the single skyrmion.

2. Method

We solve Landau-Lifshitz-Gilbert equation, given as
dn/dt = -¥ mXHer + a mXdm/dt, )

where m is the unit vector along the local magnetization, 1" is the gyromagnetic ratio (= 1.76 X 10" O¢™
sec’), a is the damping constant (= 0.3), and H.yr is the effective magnetic field including the exchange,
anisotropy, magnetostatic, and DM fields.

To construct phase diagrams, we vary the DM constant D (0 to 9 erg/cmz), the perpendicular anisotropy
energy density K, (0.1 to 1.9 X 107 erg/cm3), the exchange stiffness constant A« (= 1.5 X 10° erg/cm), the
saturation magnetization M; (= 580 emu/cm3), the thickness (= 0.4 nm), and the width (= 40 nm) of nanowire.
The cell size is 1X1X0.4 nm’. We also construct phase diagram for nano squares. The width and length of the

nano square are the same (= 40 nm).

3. Result

We define several magnetic configurations as shown in Fig. 1.

Phase diagrams as functions of D and K, for nanostructures are shown in Fig. 2 (a) and, (b). Here, we use
Aex of 1.5 X 10-6 erg/cm, and M; of 580 emu/cm’. We obtain several distinct regions; the uniformly magnetized
state (stable FM) is stable (in blue), a single skyrmion is stable (in green), and distorted magnetized array is
obtained (in yellow).

By comparing Fig. 2(a) and Fig. 2(b), one finds that a stable skyrmion region in nano square is much wider

than in nanowire. We attribute this difference to the confinement effect due to the pattern shape. In nanowires,
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the confinement exists only in the y-direction, but In nano squares, the confinement exists in both x- and

y-directions.

4. Conclusion

Based on micromagnetic simulation, we investigate the phase diagram of a single skyrmion in nanowire and
nanosquare. We find that the single skyrmion phase is obtained more easily for the case with higher perpendicular
anisotropy, higher DM interaction.

Our result will be helpful in order to design materials and devices of a single skyrmion in a nanowire.

5. reference
[1] A. Fert, V. Cros, and J. Sampaio, Nat. Nanotech. 8, 152 (2013).
[2] N. Nagaosa and Y. Tokura, Nat. Nanotech. 8, 899 (2013).
[3] 1. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241-255 (1958).
[4] T. Moriya, Phys. Rev. 120, 91-98 (1960).
[5] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotech. 8, 839 (2013).
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Fig. 1. Definition of each magnetic state. (a) is Fig. 2. D (DM interaction) - K, (perpendicular anisotropy)
uniformly magnetized state, (b) is stable skyrmion phase diagrams of (a) nanowire and (b) nanosquare. Here
state, (c) and (d) are distorted shape state. we use A of 1.5x10 ° erg/cm and M; of 580 emu/cn’.
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Effect of damping and external field on current-induced
skyrmion dynamics in a nanowire

Seung-Jae Lee", Jung-Hwan Moon?, and Kyung-Jin Lee'?

'KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
2Department of Materials Science and Engineering, Korea University, Seoul, Korea

1. Introduction

When inversion asymmetry is present in magnetic system, the system has the antisymmetric exchange
interaction called Dzyaloshinskii-Moriya (DM) interaction [1,2].

The DM interaction can make nano-sized skyrmions which are topological spin textures. It has been predicted
that such nano-sized magnetic skyrmions can be used for information unit in ultrahigh density storage and logic
devices [3]. In this respect, it is important to understand current-induced skyrmion dynamics for various magnetic
properties. In this work, we investigate effect of the damping constant and the magnitude/direction of external

field on current-induced skyrmion motion in a nanowire, based on micromagnetic simulations.

2. Simulation Scheme
In Ref. [3,4], skyrmion velocity is expected to be proportional to skyrmion diameter, current density and
inversely proportional to the damping constant. Skyrmion diameter changes with perpendicular external field. [4]
We investigate skyrmion velocity using Landau-Lifshitz-Gilbert equation with an spin hall spin transfer torque
with current density, damping constant, and external field as variables. We assume following parameters; nanowire
width is 40 nm, thickness is 1 nm, cell size is 1< 1x1 nm?, saturation magnetization is 800 emu/cm’, exchange
stiffness constant is 1.2 106 erg/cm, DM constant is -2 erg/cm? spin hall angle is 0.4, perpendicular

magnetocrystalline anisotropy K, is 0.8 107 erg/cm’.

3. Result and Discussion

Figure 1 shows the velocity of skyrmion linearly increases with current density and 1/(damping constant) (=1/a).

30
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0 & 6 4 2 0 2 4 6 & 10
Current density 10°A/cm’
Fig. 1. Skyrmion velocity versus current density at the Gilbert damping constant of 0.3, 0.1 and 0.05.
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Fig. 2. Skyrmion diameter and velocity versus angle between Hext with x(Fig. 2 a), y axis.

H,,, is 4000e black squares are simulation result and red line is fitting curve using

scaling sin function which indicate ratio of H, to H,,,

Figure 2 shows the correlation between the skyrmion diameter and its velocity. Here the skyrmion diameter
is modulated by applying an external field at a certain angle. We test two cases; the external field is in the x-z
plane or in the y-z plane, where the x-axis, y-axis, and z-axis are collinear to the nanowire length, width, and
thickness directions, respectively. The angle is measured from the z-axis. We find the skyrmion diameter is scaled
with the z-component of the external field, that is, cosq (Fig. 2(a) and (c)). The skyrmion velocity is also scaled
with the z-component of the external field (Fig. 2(b) and (d)), confirming the linear proportionality of the
skyrmion velocity to the skyrmion diameter. We also find that this cosq - dependence of the skyrmion velocity
is not obeyed strictly in some conditions (see circle in Fig. 2(c)). We attribute this discrepancy to the fact that

the boundary effect becomes stronger when the external field is aligned along the width direction.

4. Reference
[1] 1. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957)
[2] T. Moriya, Phys. Rev. 120, 91 (1960)
[3] A. Fert, V. Cros & J. Sampaio, Nature Nanotechnology 8, 152 - 156 (2013)
[4] M. E. Knoester, Jairo Sinova, and R. A. Duine, Phys. Rev. B 89, 064425 (2014)
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Strain effects on magnetocrystalline anisotropy of bulk
CoFe and its (011) films: A density functional study

Soyoung Jekal, Oryong Kwon, Soon Cheol Hong
1Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749, Republic of Korea

In this study, we carry out first principle calculations of strain effects on MCA energies of CoFein bulk, using
the VASP code. The strains are assumed to be forced on the (001) and (011) planes by adjusting 2-D lattice
constants of the (001) and (011) planes. Exchange-correlation interaction is described in general gradient
approximation. In the bulk system, MCA energydecreases from 1.1 to -0.5 erg/cm2f0r the (011) strain and from
0.3 to -0.3 erg/cm2 for the (001) strain as the 2-D lattice increases from2.62 A to 3.00 A, as shown in Fig. I:
The strain effect of the (011) plane is relatively significant.

For CoFe(011) thin films of the thickness of from 2-MLs to 7-MLs, their MCA energies are also
investigatedas functions of the 2-D strain of the (011) plane and compared to the MCA behaviorin bulk. In the
film systems, interestingly perpendicular MCA getslarger as the 2-D lattice constant decreases. For anenhanced
2-D lattice, the easy axis turns to be [0-11] and for a reduced 2-D lattice constant gets a perpendicular MCA.
In particular, the film with a reduced 2-D lattice constant of 2.62 A hasa relatively large saturated perpendicular
MCA energy of ~4.0 erg/cm2 when the film becomes thicker than 5-ML.

(011) Plane (001) Plane (011) Plane (001) Plane
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=
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5 °0u030-0-0-
&) -0.2}F 0\222_
= 04f gy ]

6L :
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2-D Lattice Constant(A)

Fig 1. MCA energies as functions of 2-D lattice strains. Black lines are for the strain of the (011) plane and
gray line the strain of the (001) plane. Squaresrepresent MCA energy between [100] and [011] magnetic
orientations and circles MCA energy between [0-11] and [011] orientations. The vertical red line indicates the
lattice constant (2.84 A)of the bulk CoFe in equilibrium.
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1. Introduction

Magnetic nanostructures such as patterned thin films and nanoparticles of different shapes are promising as
bio applications and information-storage and -processing technologies [1-5]. Self-assembly of isolated or
aggregated magnetic nanoparticles, one of the bottom-up approaches to making novel metastructures, requires
controllability. Notwithstanding the recent insights into such self-assembly mechanisms, the formation of
spherical-shape nanoparticles of a very specific spin configuration known as a three-dimensional (3D) vortex
remains elusive. In the present study, we clarified the magnetic interaction of the permalloy (Py) nanoparticles
of 3D vortices in the forms of isolated-single and aggregated-double, -triple, and -quadruple spheres of different

geometrical configurations.

2. Experimental method

In our approach, Spherical permalloy 100nm nanoparticles have been prepared by the process known as polyol
method. We performed TEM, SEM observation. We then carried out micromagnetic simulation to focus on the
interaction between magnetic nanoparticles of the ensemble of intermediate assemblies in terms of the magnetic
interaction energy. We used micromagnetic code FEMME (version 5.0.8) [11] to determine the equilibrium
magnetic configuration and energy of assemblies. The Landau-Lifshitz-Gilbert equation was solved to calculate
the magnetizations of individual nodes (mesh size 5nm) at zero temperature. The 3D nanoparticle sizes introduced
for the simulations are deduced from the SEM images with the assumption that the permalloy nanoparticles are

perfectly spherical spheres with diameter of 100nm.

3. Result and Conclusion

Using TEM and SEM, we found self-assembled building-block structures, secondary particles, consisting of
between one and four primary nanoparticles in geometrically different configurations. With the help of
micromagnetic simulations, we revealed spin configurations both in each secondary particle and in the respective
interacting primary particles. We determined the stability or instability of the geometrical configurations of those
Py nanoparticle assemblies in terms of the exchange and dipolar interacting energies. Our results indicate that
there is a controllable means of assembling complex geometrical configurations of the nanoparticles of unique

3D-vortex spin configuration.
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We report, based on micromagnetic numerical calculations, the discovery of vortex quasi-crystals in a variety
of dynamic transient states in soft magnetic nano-disks. A simple method entailing the application of
spin-polarized dc currents perpendicularly to the disk plane leads to many different vortex quasi-crystal transient
states of a few tens of ps period, without consideration of the external bias magnetic field, magnetic anisotropy
or Dzyaloshinskii-Moriya interaction. The below figure is a topological-density-based image of an example of
vortex quasi-crystal states. What actualizes such novel spin textures in confined nano-magnets are intrinsic dipolar
interaction and exchange coupling, as assisted by spin torque and the Zeeman field. This work provides a further,
crucial step towards a fundamental understanding of vortex crystal formation and the interaction between

topological solitons.

()
Topological density
(1016 m2)

50

Fig: Plane-view image of topological-density in a vortex quasi-crystal state
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1. Introduction

Magnetic vortices in confined geometries of ferromagnetic nano-dots have been studied owing to their
potential applications in information storage [1] and microwave devices [2]. Magnetic antivortices, the topological
counterpart of the vortex, have been investigated less intensively because of the difficulty to form stable antivortex
states due to their own stray fields[3]. However, periodically arranged vortex-antivortex (V-AV) pairs can be
formed stably as in crosstie domain walls that are typically found in thin films. Although several earlier studies
focus on fundamentals and application of V-AV systems, it has still been lacking in a complete understanding

of novel dynamic behaviors of V-AV lattice arrays.

2. Simulation Method

In the present simulations, we used V-AV lattice arrays that consist of 3 vortices and 2 antivortices in a
connected triple-disk structure, which was defined by overlapping disks of 303 nm diameter, 20 nm thickness
and the overlapped length of 60 nm between disks. We applied a static local field of + 2000¢ along the + y
axis in the left end disk of the connected triple-disk structure, in order to displace vortex core. After the field
was turned off, we obtained the simulation result of dynamics for 200 ns. We conducted additional micromagnetic
simulation for extended lattice arrays of alternating vortex and antivortex up to 13 vortices and 12 antivortices.

Other simulation conditions were not changed except for the thickness of 40 nm.

3. Results and Discussion

The simulation results revealed the existence of several discrete modes of collective V-AV gyrations. Each
mode has a characteristic distinct eigenfrequency that is related to the evolution of coupled effective
magnetizations of individual vortices and antivortices. Spatial profiles of low frequency modes were described by
a standing wave form, however, those of high frequency modes were described by two- branch standing wave
forms.[5] These two types of collective V-AV oscillations were analogous to the “acoustic mode” and “optical
mode” of the lattice vibrations of a diatomic system. In addition, dispersion curves obtained from the V-AV chains
showed that two distinct low and high branches and curvature of the high branch are strongly influenced by the
polarization ordering of the antivortices. This work provides a new mechanism of signal transfer via coupled
V-AV gyrations and building blocks for further investigations of V-AV based magnonic crystals.

This research was supported by the Basic Science research program through the national Research Foundation
of Korea funded by the Ministry of Science, ICT & Future Planning (grant no. 2013003460).
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Collective spin excitation in magnetic nanodots has attracted much attention owing to its various potential
implementations in information processing devices. Although a lot of varieties of those excited modes are
fundamentally understood, collective vortex-gyration modes in coupled vortex-state disks still remain elusive [1-6].
Here, we report on the first direct experimental demonstration, by means of a state-of-the-art time-resolved
scanning transmission x-ray microscopy, of quantized (or discrete) wave modes of collective vortex gyrations
excited in a one dimensional chain of physically separated but dipolar-coupled permalloy disks. Furthermore, we
interpret the experimentally observed discrete modes and their dispersion relations with the help of numerical
calculation, micromagnetic simulations, and analytical derivations. The results reveal that characteristic dispersions
can be expressed simply in terms of the intrinsic angular eigenfrequency of isolated disks and their specific
polarization (p) and chirality (C) ordering. The dynamic dipolar interaction determined by the specific p and C
orderings governs the magnonic band structure of a given one dimensional array. Accordingly, and promisingly,
the propagation property of collective vortex gyration and its dispersion can be manipulated by vortex-state
ordering, the dimensions of each disk, and the nearest-neighbouring disks’s interdistance [7]. This work constitutes
a milestone towards the practical achievement of this new class of magnonic crystals.
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a-Fe/oxide and FeCo/oxide core/shellnanoparticles were synthesized by surfactantlesspolyol method followed
by hydrogen reduction process.Iron oxide (Fe;04) and (CoFe;Os4) nanoparticles were first synthesized through
modified Polyol process, followed by thermal annealing in presence of hydrogen (H,) gas for 2 hours for
reduction into Fe and FeConanoparticles. Polyethylene glycol (PEG) has played a key roleas solvent and reducing
agent simultaneously in this synthesis process. X-ray diffraction (XRD)confirmed that the nanoparticles were
Fe;04 andCoFe,;04 before reduction processand composed ofFe;04CoFe,O4 anda-Fe, FeCo phases after reduction
process.The structural and magnetic characterizations of the synthesized nanoparticles after oxidation by
transmission electron microscope and vibration sample magnetometer measurements confirm the formation of
core-shell Fe/oxideand FeCo/Oxide nanospheres. In view of the obtained high magnetic core Fe, FeCo and
biocompatible oxide shell, these core-shell Fe/oxide and FeCo/oxide nanoparticles are expected to be promising

materials for different bio-sensing applications.

Keywords: o-Fe/oxide,FeCo/oxide nanoparticles, Core/Shell nanostructures, polyol method, magnetic properties,

immobilization.
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(@) D=4.67 nm (b) D=5.64 nm (c) D=6.34 nm
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Fig. 1. Comparison with measured and calculated FMR signals of iron oxide nanoparticles
with (@) D = 4.67 nm, (b) D = 5.64 nm and (c) D = 6.34 nm.
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