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Since Nd-Fe-B magnet was first discovered by Sagawa et al [1], many kinds of methods have been developed
to fabricate, such as powder metallurgical, rapidly quenching and reduction-diffusion (R-D) processes. Nowadays,
powder metallurgical and rapidly quenching methods are commonly used. But both of them need several processes
for achieving fine particles and increase the production cost due to the use of high purity metals as raw materials.
Compared with above methods, main ad-vantages of our proposed process are the use of a relatively inexpensive
Nd oxide as raw material and the direct production of fine alloy powder suitable for further procedures. In this
study, a novel route to prepare Nd-Fe-B magnetic particles by utilizing mechanochemical and R-D process was
proposed.

Precursors were prepared by spray drying method using the aqueous solutions containing Nd salt, Fe salt and
boric acid with stoichiometric ratio. The spray dried powders were desalted at 800 °C for 2 h in air, followed
by ball milling for 20 h. To reduce iron oxides, heat treatment of the milled powders was performed under H»
atmosphere at 800 °C for 2 h. The amount of Calcium (Ca) as a reducing agent in R-D process was mixed with
powders obtained by H, reduction in appropriate ratio. The R-D of the compacts was carried out at 1000 °C
for 3 h in Argon (Ar) atmosphere. For the effective washing, the compact was pulverized to fine powder and
the powders were washed with water several times to achieve Nd,Fe 4B powders. The phases and the magnetic
properties of the particles were examined by X-ray diffractometer, Scanning electron microscopy and vibrating
sample magnetometer.

XRD patterns of each step in this procedure as shown in Fig. 1, depicted that precursors obtained by spray
drying was amorphous structure due to volatile compounds and physical adsorption of elements. They were
crystallized into oxides of Nd and Fe through desalting at 800 °C that was performed previously by Dong et
al. [2]. And then ball milling was performed to triturate the aggregates after desalting. As shown in Fig. 1, Fe
oxides were reduced to o-Fe by heat treatment in H, atmosphere. After mixing and compacting with reduced
powders in H, and exceeded Ca granules, R-D process was carried out. Nd,Fe 4B particles were formed and CaO
and unreacted Ca were remained. This result came from the reactions as following equations and was almost the
same as references by Dong et al. [2] and Jang et al. [3].

Nd,0; + 3Ca — 2Nd + 3CaO
Nd + 13Fe + FeB — Nd)FeisB

The final step of washing was performed using water to wash out CaO for 1-3 h. The washed powders of
(BH)max reached 15.5 MGOe after washing for 1 h with de-ionized water.

To reduce non-magnetic phase, ball milling process under an ethanol was added in washing process. The final
magnetic property was enhanced to 16.7 MGOe of (BH)max with a rectangular demagnetization shape, as shown
in Fig. 2. This demonstrates that our process is a promising route for fabrication of Nd-Fe-B magnetic powders,
especially for recycling of the Nd magnets. In this paper, we will present the change of phases, morphologies

and magnetic properties in Nd,Fe;4sB powders in R-D process and discuss the potential application to industry.
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Fig. 1. XRD patterns of powders after
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Fig. 2. Demagnetization curve of Nd.Fe;4sB powder after ethanol balling milling and washing process.
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Synthesis and Magnetic Properties of
SanxFe(Q-X)Feszy (00 < X< 20]

Jae-Hyoung You', Sung Joon Choi, Sunwoo Lee, and Sang-Im Yoo'

Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM),
Seoul National University, Seoul 151-744, Korea
wLSang—Im Yoo, e-mail : siyoo@snu.ac.kr

The hexagonal ferrite or simply hexaferrite is a ferromagnetic oxide material that has a hexagonal crystal
structure. Since its discovery in 1950s, hexaferrite has drawn a great attention of many researchers due to its low
price and multitude of uses and applications. W-type hexaferrite exhibits high saturation magnetization (M,) about
80 emu/g and high anisotropy field (H,) about 19 kOe. For this reason, W-type hexaferrite has attracted attention
for microwave applications. In this report, we tried to prepare Zn-substituted SrW bulk samples with the
compositions of SrZn.Fep.nFeis027 (0.0 < x < 2.0) in a reduced oxygen atmosphere, and identify the effect of
Zn®" substitution on their magnetic properties. Furthermore, we tried to investigate the phase stability region
change of SrZn.Fen.FeisO,; with varying x. For these purposes, the samples were annealed at the temperature
region of 1125-1350 °C for 2 h in PO, = 10” atm. As a result, lattice parameters of the samples increased with
increasing x due to larger ionic radius of Zn*" than Fe’". The saturation magnetization of the samples increased
with increasing x from 0 to 1.0, and decreased from x = 1.0 to 2.0 which is a similar behavior to the spinel
ferrite when nonmagnetic ion of Zn®" is substituted. The temperature of phase stability region of
SrZnFep.nFeis027 decreased with increasing x, and the width of the phase stability region remained almost

constant. Detailed properties of SrZn.Feqn.FeisO27 W-type hexaferrite will be presented for a discussion.
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Magnetism and magnetocrytalline anisotropies of
ordered L1, MnPt adlloy: A first principles study

Qurat-ul-ain’, S. H. Rhim, and Soon Cheol Hong

Spintronics of antiferromagnets is a new and rapidly developing field of the physics of magnetism [1-3]. Even
without macroscopic magnetization, antiferromagnets, similar to ferromagnetic (FM) materials, are affected
by spin-polarized current, and as in ferromagnets this phenomenon is based on a spin-dependent interaction
between localized and free electrons. We studied electronic structure and magnetism of an ordered binary L/, type
MnPt alloy by using density functional theory (DFT) in generalized gradient approximation (GGA). Four different
magnetic configurations shown in Fig. 1 have been taken into account. For bulk MnPt we find Type-2
antiferromagnetic (AFM) ground state whose magnetic configuration is FM alignment in the inter-plane but AFM
in the intra-plane, with c/a = 0.894 which is in good agreement with experimental results [4-5]. In this
configuration, our calculations show magnetic moment of 3.745 uB on Mn atom and 0.096 uB on Pt atom and
in-plane magnetocrystalline anisotropy (MCA) energy of 0.22 meV/atom. For all the magnetic configurations,
lattice parameters, magnetic moments, and MCA energies are catalogued in Table 1. In addition, MCA and

magnetism of Mn-terminated and Pt-terminated thin films will also be discussed.

. "
G Mg
ﬂ)r"“’)ﬂ?

Type-1 AFM
Fig. 1. Schematic diagram of Type-1 AFM, Type-2 AFM and Type-3 AFM phase for L/, crystal structure

Table 1. Calculated equilibrium lattice parameters, a (A) and c/a, magnetic moments (in pg) on Mn and Pt atom,
total energy difference (in eV/atom) with respect to Type-2AFM structure and MCA energies (in meV/atom) of
FM, Type-1, Type-2 and Type-3 AFM configuration in bulk. Previous Theoretical results are also given for comparison.

Type-1 AFM Type-2 AFM Type-3 AFM FM
Present  Previous? Present Previous? Present Present  Previous®
a 412 4.10 4.09 3.99 4.10 414 417
c/a 0.87 0.87 0.89 0.93 0.88 0.86 0.84
nin 3.81 3.89 3.75 3.80 3.71 3.83 3.94
e 0.00 0.00 0.09 0.00 0.00 0.39 0.39
AE 0.46 0.00 0.63 0.65
Frocon 0.17 0.22 0.30 1.24

#7hihong et al. [6]

-15 -



References
[1] A. H. Macdonald Phil. Trans. R. Soc. A 369, 3098-3114 (2011).
[2] A. B. Shick, S. Khmelevskyi, O. N. Mryasov, J. Wunderlich, and T. Jungwirth Phys. Rev. B 81, 212409
(2010).
] Xavier Marti, IEEE transactions on magnetics, 51, 4 (2015).
4] E. Krén, C. Kadar, L. Pal, J. Sélyom, P. Szabo, and T. Tarnéczi, Phys. Rev. 171, 574 (1968).
5] C. S. Severin, C. W. Chen, and C. Stassis, J. Appl. Phys. 50, 4259 (1979).
6] Zhihong Lu, Roman V. Chepulskii and W. H. Butler Phys. Rev. B 81, 094437 (2010).

3

[
[
[
[

-16 -



O-I-5

Manipulation of magnetic state in armchair black
phosphorene nanoribbon by charge doping

M. Umar Farooq*, Arqum Hashmi and Jisang Hong
Department of Physics, Pukyong National University, Busan 608-737, Korea

Using the first principles studies, we investigated the width dependent magnetic properties of armchair black
phosphorene nanoribbons (APNRs) by controlling the electron charge doping. In the unrelaxed APNRs the
antiferromagnetic coupling between two phosphorus atoms in the same edge was found. However, the edge
magnetic moment vanished after structure relaxation, and all the APNRs showed a semiconducting feature.
Interestingly, the charge doping substantially altered the band structures of the APNRs because the metallic states
reappeared in the charge doped APNRs. Besides, the magnetic moment was found in the charge doped systems.
We found that the Stoner condition could nicely explain the magnetic moment at the edge atoms. Moreover, we
propose that that the edge-to-edge magnetic coupling can be manipulated by charge doping because the transition
from antiferromagnetic to ferromagnetic state was achieved. Our findings may bring interesting issues for
spintronics applications.

This research was supported by Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2013R1A1A2006071) and
by the Supercomputing Center/Korea Institute of Science and Technology Information with supercomputing
resources including technical support (KSC-2015-C3-021).
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Effects of the Ar pressure on the magnetic properties of
amorphous Fe-Zr thin films

Miri Kim", Nark Eon Sung®and Sang Ho Lim'

1Department of Nano Semiconductor Engineering, Korea University, Seoul 02841, Korea
*Beamline Division Engery & Environment Research Team, Pohang Accelerator Laboratory, Pohang 37673, Korea
3Depar‘[ment of Materials Science Engineering, Korea University, Seoul 02841, Korea

Amorphous Fe-Zr thin film is one of promising materials for [Pt/Co], multilayers for p-MTJ with strong PMA,
which suppresses crystallization at the interface with the multilayer side during annealing.l’2 It is also well known
that the magnetic properties of amorphous materials are extremely sensitive to their microstructure.”* This study
deals with the change in the magnetic properties of Fe-Zr thin films depending on Ar pressure during sputtering.
The thin films with the structure of Fe-Zr/Ta were fabricated on a Si/SiO, substrate by using a DC magnetron
sputtering system. The sputtering conditions were fixed, except for the Ar pressure which was varied widely from
2 to 10 mTorr in steps of 4 mTorr. The composition of was controlled by varying Fe chips placed on an FexZrsg
alloy target. The amount of Fe, relative to Zr, decreases with increasing Ar pressure due to the fact that Fe atoms
which have reduced mass (55.845 g/mol) compared to Zr atoms (91.224 g/mol) are subject to stronger scattering
with the Ar atoms. Magnetic properties of as-deposited samples fabricated with the same number of Fe chips
were dramatically changed with increasing Ar pressure, which is shown in Fig. 1. For the as-deposited samples
which were fabricated with 16 Fe chips(Fig. 1(b)), their M values were increased almost 20 times with increasing
Ar pressure from 2 mTorr to 10 mTorr. Also, high field susceptibility was emerged with increasing Ar pressure.
After annealing at 150°C, the M value and high field susceptibility were considerably decreased for samples
fabricated at 10 mTorr, whereas only slight changes in both values were observed for samples fabricated at 2
mTorr. This indicates that samples fabricated at 2 mTorr has more relaxed microstructure than samples fabricated
at 10 mTorr. The magnetic property changes depending on Ar pressure were dominated by the number of Fe

cluster rather than the size of Fe cluster, which was analyzed by the Langevin fitting.

20F (a) 4120
10+ 460
i
5
S of 10
€
8
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H (kOe)
Fig. 1. M-H loops for Fe-Zr thin films for as-deposited and annealed samples.
(a) Cre = 40 at.% (b) Cp. = 60 at.%
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Energy Product and Coercivity of Rare-earth free
Multilayer and Bilayer FeCo/FePt and FeCo/AuCu
Exchange Spring Magnet

Imran Khan, Jisang Hong
Department of Physics, Pukyong National University

Using the full potential linearized augmented plane wave (FLAPW) method, we have explored the energy
product and the coercivity of rare-earth free FeCo/FePt (001) multilayered exchange spring magnet, bilayer
FeCo/FePt and FeCo/AuCu systems. A giant perpendicular magnetocrystalline anisotropy energy (Emca) is
observed in multilayer and bilayer FeCo/FePt systems. For instance, an Emca of 27.24 meV/cell is found in
FeCo(9ML)/FePt(SML) multilayer structure. Besides an energy product of 82 MGOe and coercive field of 130
kOe was obtained for FeCo(9ML)/FePt(SML) multilayer structure. In bilayer Feco (2ML)/FePt(4ML) system a
very high value of uniaxial anisotropy constant of 9.8 MJ/m’® was obtained along with a 74 MGOe maximum
energy product and coercive field of 143 kOe. In bilayer FeCo(SML)/AuCu(5ML) we have obtained a uniaxial
anisotropy constant of 0.98 MJ/m’, Additionally, the estimated coercive field and maximum energy product for
this system are 24.7 kOe and 25 MGOe. Both energy product and coercive field stated above imply that these

systems can be utilized for potential rare-carth free permanent magnet.
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Electrical detection of ballistic spin Hall and Rashba
effects in a semiconductor channel

Hyun Cheol Koo', Won Young Choi"?, Hyung-jun Kim', Joonyeon Chang', Suk Hee Han'

'Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
*KU-KIST Graduate School of Converging Science and Technology,
Korea University, Seoul 136-701, Republic of Korea

The spin-orbit interaction in a semiconductor channel provides an exceptionally fascinating area. Coherent spin
precession in a Rashba effective magnetic field in the channel of a spin injected field effect transistor (spin-FET)
and the spin Hall effect (SHE) are the two most important topics in this area. The original Datta-Das prediction
[1] of a gate voltage controlled conductance oscillation in a spin injected field effect transistor (Spin-FET), caused
by coherent spin precession in a Rashba spin-orbit system, is the cornerstone of semiconductor spintronics
research. Our previous report [2] was the first experimental observation and confirmation of the Datta-Das
prediction. In this research [3], we combine spin Hall and Rashba effects to provide two novel results: a direct
demonstration of the ballistic SHE and a new technique for an all-electric measurement of the Datta—Das
conductance oscillation. We confirm our model of both results by fitting the measured precession spin phase of
the conductance oscillation with the Datta—Das wavelength calculated using independently measured parameters.
Finally, we use the original Datta—Das technique with a single inverse SHE detector and measure the channel
conductance oscillation as gate voltage is varied. Our experiments show that the ballistic SHE can be used for
efficient electric injection or detection of spin polarized electrons in a spin transistor or other semiconductor

spintronic structures.
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Spintronics with carbon-based materials

Jung-Woo Yoo
School of Materials Science and Engineering,
Ulsan National Institute of Science and Technology, Republic of Korea

Recent years witnessed increasing research activity in exploiting carbon-based materials as a spin transporting
channel, which introduces a new avenue for device integration and functionality. In this talk, I will present
application of an organic-based magnetic/non-magnetic semiconductor as an electron spin polarizer/spin
transporting layer in the standard spintronic device geometry. The application of organic small molecule films as
the spin transporting layer has been studied extensively recently. However, conceptual understanding of how the
spins are injected into and transport through these organic semiconductor films was still lacking. With careful
study on film thickness, temperature, and bias dependencies, significant differences between tunneling and giant
magnetoresistance were resolved. In addition, the room temperature organic-based magnet, V(TCNE), was
successfully incorporated into the standard magnetic tunnel junction devices in tandem with LSMO
(LaysSr;3Mn0O3) film.

The second part of this talk will be devoted for engineering spin dependent dispersion in graphene and
non-local transport study therein. Graphene has been perceived to be an outstanding material for delivering spin
information due to its high electron mobility and weak spin-orbit coupling. The mandatory requirement for
exploiting electron spins in graphene is facile control of spin-orbit coupling. Instilling spin-orbit coupling into
graphene allows splitting and detecting electron spins via spin Hall and its inverse effect. We introduced ultrathin
metal pad on graphene to enhance spin-orbit coupling and studied non-local signal to demonstrate alternative spin

current generation.
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Infrared Spectrum of the Lunar Surface

Young-Jun Choi’
Space Korea Astronomy and Space Science institute (KASI)

It was well known, since Apollo human exploration, that the Moon has no water results from high temperature
condition when originated from giant impact hypothesis. Modern observations, such as neutron spectrometer,
however, present indirect evidence that water ice could exist, in particular, at its polar region. Because rotational
axis of the Moon is almost perpendicular to the Sun, craters at north/south pole, containing water ice results from
cometary impact, will never be heated by solar radiation. Recently Moon Mineralogy Mapper (M3), which is
onboard instrument of Chandrayaan, Indian lunar explorer, obtained the global map of hydroxyl and/or water ice
of the lunar surface. Due to the limitation of wavelength coverage of M3, unfortunately, direct detection of water
ice absorption band near 3.1 um was not possible. Infrared spectrometer whose wavelength covers up to 4 um

will give us direct evidence of water ice.
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Solar Neutrino Detection Technology As a Probe
to the Inner Structure of Heavenly Body

Gwang-Min Sun” and Bo Young Han
Neutron Application Technology Division, Korea Atomic Energy Research institute (KAERI)

Neutrinos are universal particles emitted from stars and especially our sun emits the solar neutrinos radially
outwards like a point radiation source. The neutrinos have three flavors (electron, mu and tau), which act like
three colored lights for imaging. Neutrino tomography for the heavenly body, which is very challenging, is just
being devised for the study of inner structure of our earth and moon. For the detection of the solar neutrinos,
the p-type point contact germanium detector seems to be most promising sensor based on the neutrino-nuclear
coherent scattering. The recoiling germanium atom gives its kinetic energy ranged from 10 to 100 eV to the
sensor material, which informs us the energy and the flavor of the detected neutrino to reconstruct the inner
structure of the heavenly body. The theoretical study of this idea is underway to calculate and expect the
attenuated and oscillated solar neutrino intensities during the penetration into the massive moon medium based
on the MSW theory.
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Development Status of Korean Radioisotope
Thermoelectric Generator

Jintae Hong', Kwang-Jae Son, Jong-Bum Kim,
Jong-Han Park, Jin-Joo Kim, and Young-Rang Uhm
Department of Hanaro Utilization and Research, Korea Atomic Energy Research Institute (KAERI)

Radioisotope Thermoelectric Generator (RTG) is one of the most promising power sources which generate
stable electricity in a tough environment such as space, deep sea, and arctic area owing to its high reliability
and long lifetime. Therefore, RTGs have been applied in many space missions of USA, Russia, and so on.
Recently, Korean government announced a plan for lunar exploration, and Korea Atomic Energy Research
Institute has been started researches about RTGs to supply electric energy for the lunar lander or the rover. In
the RTG, because decay heat of radioisotope is converted to electric energy, technologies for fabrication and
treatment of radioisotope, radiation shield, thermoelectric material, shock protection, and heat insulation should
be considered. KAERI tested several RTG designs by referring to the designs of USA and Russia, and found
out design variables which affect the efficiency of thermoelectric conversion. Then, a simulator which analyzes
the efficiency of thermoelectric conversion has been developed, and its performance was verified with several
sample tests. Finally, a new RTG was designed for 100 watts of heat input, which uses BiTe type as a

thermoelectric material. In this study, development status of RTG and future works will be introduced.
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Modification of magnetism in
transition-metal thin films by external electric field

Kohji Nakamura’
Department of Physics Engineering, Mie University, Japan

Electric-field (E-field) induced modification of magnetism in transition-metal thin films has received much
attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy
power consumption. It was originally reported that the coercivity of thin films, FePt and FePd, was reversibly
varied by the application of a voltage, and the magnetocrystalline anisotropy (MCA) of the 3d transition-metal
thin films with MgO interfaces was controlled by a voltage, thus opening a new avenue towards MgO-based
magnetic tunnel junction electronics. However, continuing challenges still remain for understanding an E-field
modification of the Curietemperature (Tc) and, more recently, for the Dzyaloshinskii-Moriya interaction (DMI) of
thin film ferromagnets. Here, from first-principles calculations by using the full-potential linearizedaugmented
plane wave method, the E-field-induced modifications of magnetism, namely the MCA, Tc and DMI, were
demonstrated for prototypical transition-metal thin films with perpendicular magnetic easy axis, a freestanding Fe
monolayer and a Co monolayer on Pt(111).[1] The resultspredict that a change in the screening charge density
at surfaces/interface due to the E-field, which causes a small change in band structures around the Fermi energy,
gives rise to the modification of the MCA energy. The applied E-field further modifies the magnon (spin-spiral
formation) energy, which leads to modification of the Heisenberg exchange parameters, i.e., the Tc. The DMI,

calculated by the second variation SOC method, was modifed by the E-field.

[1] K. Nakamura et.al., PRL102, 187201 (200); M. Oba et. al., PRL114, 107202 (2015).
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DFT study for novel noncollinear magnets

Tatsuya Shishidou’
ADSM, Hiroshima University, Japan

Noncollinear magnetism (NCM) has been a very active research field. It is known that the emergence of NCM
may provide unusual physical properties such as anomalous transport propertiesin metals and ferroelectric
polarizationin insulators. NCM includes the magnetic skyrmions and the chiral spin solitons, which are extensively
studied now.

In this talk we will pick up two materials exhibiting NCM, PdCrO, and Cr(NbS,);, and will see how important
the theoretical study based on the density functional theory (DFT) is to understand their physical properties.

PdCrO,[1] crystallizes in the delafossite structure, which is made of alternating stack of triangular layers of
Pd and Cr. The Cr’" localized moments (S=3/2) show antiferromagnetic ordering at Tn=37.5K, forming 120
degree noncollinear spin structure.Due to the Pd 4d electrons it shows metallic conductivity bearing strong
two-dimensional anisotropy. At temperatures lower than Ty, unusual Hall resistivity was measured[2]. It displays
very strong dependence on the temperature and external magnetic field. Its microscopic mechanism has been
unclear for a while. We carried out first-principles DFT calculations and measurements of de Haas-van Alphen
oscillations[3]. We found thatthe Fermi surface reconstruction and the magnetic breakdown at high fields play
essential role in the Hall resistivity.

The layered intercalated compound Cr(NbS;); has been attracting extensive interest. The Cr local moments,
whose directions are confined in the c-plane, show a spiral magnetic structure of very long periodicity (L=48nm)
with a handedness being in a one-to-one correspondence to the crystal chirality. It has been theoretically predicted
[4] and experimentally confirmed [5] that a small external magnetic field perpendicular to the c-axis can lead
to an emergence of a noble chiral spin soliton lattice. In accord with this intriguing soliton formation, an anomaly
in the electrical conductivity has also been observed [6]. In the talk, we will present our DFT calculations and
discuss the crystal chirality, fundamental electronic structure, magnetocrystalline anisotropy, and various magnetic

interactions between the Cr moments.

References

[1] H. Takatsu, H. Yoshizawa, S. Yonezawa, and Y. Maeno, Phys. Rev. B 79, 104424 (2009).

[2] H. Takatsu, S. Yonezawa, S. Fujimoto, and Y. Maeno, Phys. Rev. Lett. 105, 137201 (2010).

[3] Jong Mok Ok, Y.J. Jo, Kyoo Kim, T. Shishidou, E. S. Choi, Han-Jin Noh, T. Oguchi, B. I. Min, and
Jun Sung Kim, Phys. Rev. Lett. 111, 176405 (2013).

[4] J. Kishine, 1. V. Proskurin, and A.S. Ovchinnikov, Phys. Rev. Lett. 107 (2011) 017205.

[5] Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J. Akimitsu, S. Nishihara, K. Inoue, A.S.
Ovchinnikov, and J. Kishine, Phys. Rev. Lett. 108 (2012) 107202.

[6] Y. Togawa, Y. Kousaka, S. Nishihara, K. Inoue, J. Akimitsu, A.S. Ovchinnikov, and J. Kishine, Phys. Rev.
Lett. 111 (2013) 197204.
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Spin-Orbit-Coupling induced Anisotropy effects in
Antiferromagnets

Alexander B. Shick
Institute of Physics, ASCR, Prague, Czech Republic

The tunneling magnetoresistive effects which couple electrical transport with magnetization orientation are the
cornerstone of spintronics.

While in ferromagnets these phenomena have more than 150 years of history, and are routinely accessible
due to the broken time reversal symmetry of the ferromagnetic state, they have been elusive in anti-ferromagnets
(AFMs) with compensated moments.

Replacing ferromagnetic electrodes with antiferromagnets (AFMs) is an attractive prospect which may lead
to ultrafast and ultrahigh-density spintronics.

Based on high-accuracy relativistic density functional theory calculations I will discuss the tunelling
anisotropic magnetoresistance (TAMR) phenomena in AFMs. I will consider as examples MmAu [1] and Mnlr
[2] bimetallic anti-ferromagnets, as well as anti-ferromagnetic semiconductor Sr2IrO4 [3]. Large magnitudes of the
spin-orbit-coupling induced magnetic anisotropy energies and anisotropies in the density of states can open the

route to use these materials in the nanoscale AFM spintronics devices.

References
[1] A. B. Shick, S, Khmelevskyi, O.N. Mryasov, J. Wunderlich, and T. Jungwirth, Phys. Rev. B 81, 212409
(2010).
[2] Park, B. G. et al., Nat. Mater. 10, 347 (2011).
[3]1. Fina et al.,, Nat. Comm. 5, 4671 (2014).
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Materials with large MCA
and design principles of large MCA

S. H. Rhim’, Soon-Cheol Hong, and Soyoung Jekal
Department of Physics and Energy Harvest Storage Research Center, University of Ulsan

We review here recent studies on MCA, more specifically, Fe/MgO, FeRh films, and Fe layer with transition
metal capping using first-principles calculations. While d-d hybridization between Fe and transition metals
enlarges spin-orbit matrix, the large MCA found in Fe/MgO can be attributed to perfect epitaxy of the interface
rather than widely accepted hybridization between Fe and O. Furthermore, design principles of MCA will be
presented relying on the irreducible representation of crystal symmetry. Some other spin-orbit related phenomena,

Dzyaloshinskii-Moriya interaction, are discussed briefly within scheme of density functional theory.
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Composition and temperature dependent electronic
structures of NiS2—xSex alloys: First-principles dynamical
mean field theory approach

Chang-Youn Moon', Hanhim Kang? Bo Gyu Jang?, and Ji Hoon Shim*
'"Materials Genome Center, Korea Research Institute of Standards and Science,
Yuseong, Daejeon 305-340, Republic of Korea
2Department of Chemistry & Physics, Division of Advanced Nuclear Engineering,
Pohang University of Science and Technology, Pohang 790-784, Korea

We investigate the evolution of the electronic structure of NiS,.Sex alloys with varying the temperature and
composition x using the combined approach of density-functional theory and dynamical mean-field theory.
Adopting realistic alloy structures containing S and Se dimers, we map their electronic correlation strength on
the phase diagram and observe the metal-insulator transition (MIT) at the composition x = 0.5, which is consistent
with the experimental measurements. The temperature dependence of the local magnetic susceptibility is found
to show a typical Curie-Weiss-like behavior in insulating phase while a constant Pauli-like behavior in metallic
phase. The comparison of the electronic structures for NiS, and NiSe; in different lattice structures suggests that
the MIT in this alloy system can be classified as a bandwidth-control type, where the change of the hybridization

strength between Ni d and chalcogen p orbitals is the most important parameter.
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Analysis of Images According fo the Fluid Velocity in Time
of Flight Magnetic Resonance Angiography

Heo Young Cheol", Park Cheol Soo® Cho Jae Hwan®, Choi Jae Hyock®, Yoo Se Jong®

1Depamnent of Radiological Science, hallym polytechnic University

2Department of Radiological Science, hallym polytechnic University
3Radiological Science, Hallym University of Graduate Studies
4Depar‘cment of Proton Therapy Center, National Cancer Center

*The Department Diagnostic Radiology, Konyang University Hospital

In this study we evaluated that flow rate changes affect the TOF(time of flight) image in a three-dimensional
TOF angiography. We used a 3.0T MR System, SENSE head coil and a non pulsatile flow rate model. The flow
rate model was composed of plastic body and a polyethylene tube, tube had through the plastic body. The inner
diameter of the tube was 0.211cm, the conduit area was 0.26cm’. Saline was used as a fluid injected at a flow
rate of 11.4, 20.0, 31.4, 40.0, 51.5, 60.0, 71.5, 80.1, 91.5, 100.1 cm/sec by auto injector. The fluid signal strength,
phantom body signal strength and background signal strength were measured at 1, 5, 10, 15, 20 and 25th
cross-section in the experienced images and then they were used to determine signal-to-noise ratio and contrast
to-noise ratio. The inlet, middle and outlet length were measured using coronal images obtained through the
maximum intensity projection method.

As a result, the length of inner cavity at the flow rate of 11.4cm/sec was 2.66 mm with no difference among
the inlet, middle and outlet length. We also could know that the magnification rate is 49-55.6% in inlet part,
49-59% in middle part and 49-59% in outlet part, and so the image is generally larger than in the actual
measurement. Signal-to-noise ratio and contrast-to-noise ratio were negatively correlated with the fluid velocity
and so we could see that signal-to-noise ratio and contrast-to-noise ratio are reduced by faster fluid velocity.
Signal-to-noise ratio was 42.2-52.5 in 5-25th section and contrast-to-noise ratio was from 34.0-46.1 also not
different, but there was a difference in the 1st section. The smallest 3D TOF MRA measure was 2.51 £ 0.12
mm with a flow velocity of 40 cm/s.

Consequently, 3D TOF MRA tests show that the faster fluid velocity decreases the signal-to-noise ratio and
contrast-to-noise ratio, and basically it can be determined that 3D TOF MRA is displayed larger than in the actual

measurement.

Keywords : TOF angiography, fluid velocity, length of inner cavity, signal-to-noise ratio, contrast-to-noise ratio
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Perpendicular magnetocrystalline anisotropy of
5d TM/CoxFe1./MgO (TM=Hf, Ta, and W; x=0, 0.5, 1):
A first principles study

P. Taivansaikhan*, S. H. Rhim, and S. C. HongT

Department of Physics and Energy Harvest Storage Research Center,
University of Ulsan, Ulsan 680-749, Republic of Korea
TCorresponding author e-mail: schong@ulsan.ac.kr

One of key requirements for STT-RAM is high thermal stability [1]. Ta-capped CoFeB/MgO is widely
employed in a typical magnetic tunnel junction (MTJ), but it has been reported that its perpendicular
magnetocrystalline anisotropy (PMCA) degrades during the annealing process at temperatures higher than 300 °C
[2, 3]. Therefore, to achieve a thermal stability simultaneously with keeping PMCA, it is demanded to replace
the Ta-capping layer with other films [4-7]. In this work, we propose possible candidates with strong PMCA,
performing a first principles study on magnetism and MCA of Hf/Co.Fei.«/MgO and W/CoFei/MgO (x=0, 0.5,
1) and comparing them with those of Ta/CoyFe;./MgO. We demonstrate that the magnitude of MCA energy of
Fe/MgO strongly depends on capping layers, as shown in Fig. 1(a). And Fig. 1(b) shows that MCA sensitively
depend on the composition, x: the W-capping has PMCA of 2.02 and 0.29 meV/cell for Fe/MgO and Co/MgO,
respectively, while in-plane MCA for CoFe/MgO. Interestingly, the MCA behavior of W/CoxFe;«/MgO is quite
similar to that of Ta/CoxFe;«/MgO. On the other hand, Hf/Co.Fe|«/MgO exhibits PMCA without respect to x.
The largest MCA energy is 2.34 meV/cell for CoFe/MgO, where the Hf is interfaced with Fe. Further explanation
for origin of MCA for different capping and FM thin films will be elucidated.

This work is supported by grants from Priority Research Centers Program (2009-0093818) through the NRF
funded by the MOE and the Basic Science Research Program (2015R1A2A2A01003621) through NRF funded
by the Ministry of Science, ICT and Future Planning.

(@) (b)
fa— — -m Hf
§ Ta/Fe/MgO = 5 Q /.\ o-Ta
§ o) W/Fe/MgO § \ P I \ AW
o 0 | \ \/I ‘m
£ Fe/MgO ) r/" <
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& g \ A
5 1 5 0 O
: ; ,
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Fig 1. (a) MCA energies of Hf, Ta, and W capping layers on Fe/MgO; Red-dashed line indicates Fe/MgO;
(b) MCA energies of Hf/CosFei/MgO, Ta/CosFe;/MgO and W/ CoFeix /MgO [x=0; 0.5; 1;].
Coint and Fej imply Co and Fe interfaced with Hf, Ta or W, respectively.
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2 =EollAs Addy AT o]&ste] AL Ltz CrPto] 2] 9 Bhabo] 2pdof digh A4k
AWNE HustaR sit) AAPPHO 2= Vienna Ab-initio Simulation Package (VASP)S FEiZHAH LS
projected augmented wave(PAW) O .2 AAJSIQITE 221 B 2ol oo A E S 4335}7] ¢J3f 8§ x 8 x § k-H
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Fig. 1. (a) FM (b) A-AF (c) C-AF (d) G-AF

Table 1. 2t A AEjd of Cr ¥ Pt A7|HE

FM A-AF C-AF G-AF
Cr 2.807 uB -2.805 uB -2.794 us -2.869 us
Pt -0.05 s -0.012 up -0.01 ps 0
Pt, -0.05 s 0 0 0.022 pp
Pt; -0.05 s 0 0 0.027 g

- 63 -



eVv)

g

L

Er

<

E

0.70
0.65
0.60
0.554
0.501
0.454
0.404
0.351
0.30
0.251
0.204
0.154
0.10
0.05

0.00

Fig. 2.

C-AF
% oA ol

- 64 -




MTO03

The Effect of Interfacial Roughness
on a Skyrmion Structure
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1. Introduction

Recently, magnetic skyrmions draw a lot of interests because of their fascinating properties for spintronic
devices such as topological stability, high density, and energy efficiency[1]. Although skyrmions are topologically
stable, they are inevitably influenced by the interfacial roughness and the thermal fluctuation since they are
formed in a monolayer-scaled-thickness thin film. To study such atomistic effects on skyrmion, a numerical
method based on the atomistic model for spin dynamics is necessary. In this work, we investigate the effect of

roughness on a skyrmion by atomistic simulation [2].

2. Simulations

As a model system, 2-monolayers Conanodisk with 60 nm diameter is used in our atomistic simulations. As
shown in Fig. 1(a), Co film has face centered cubic (FCC) structure with the lattice constant of 2.5 A and the
interfacial Dzyaloshinskii-Moriya interaction (DMI) appears only at the bottom layer (red colored line) [3][4]. The
atomistic material parameters for Co are obtained from experiments [2]: the atomic moment is 1.72 pp, the
exchange contant Ji= 2.0x10™" J/link, the atomistic magnetocrystalline anisotropy k, = 2x10™ J/atom with the
direction perpendicular to the nanodisk plane. The magnitude of DMI is 1.87x10* J/link, and it is applied as
the tensor form of magnetic interaction between neighbor spins. As shown in Fig. 1(b), the radomly formd atomic
defects at the bottom monolayer give rise to the interfacial roughness[5].To obtain the stable skyrmion structure,
the initial skyrmion configurations which are formed artifically are relaxed during 500 ps with damping constant
o = 0.5 under 0 K.

(a) (b)

——H,_

H = +HDAI
J .
L4
g

Fig. 1. (a) Unitcell of Co layer and its magnetic interaction.

(b) Surface morphology of the interfacial bottom monolayer.
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3. Result and Discussion

As shown in Fig. 2, the skyrmion size varies dramatically with roughness, the number of atomic defects; the
area of skyrmion decreases exponentially with the number of atomic defects. Which is attributable to the fact
that the interfacial defects decrease the number of the spin-orbit coupling between the heavy metal atoms and

Co atoms. Consequently, the magnitude of DMI on the whole Co layer decreases with the number of interfacial

defects.

These results suggest the fundamental reason about the difference between theoretical value of DMI and

experimental one.

(a)

The number of defects: 0

The number of defects: 3000

(b)

Skyrmion Size (nm?)

600

B
=]
=]

(=]
=
[=]

The ratio of atomic defects (%)

0 3.42 6.09 11.94 17.61

M I v I 1
i
N
- .\

\I
.
|

0 1000 2000 3000

The number of atomic defects

Fig. 2. (a) Atomic spin configurations of the skyrmios with different numbers of defects.

(b) Area of the skyrmion as a function of the number of defects.

The upper X axis indicates the ratio of the total number of atoms at the interface.
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Abinitio Investigation on the
Magnetic Phase Stability of the FePt Surface

Miyoung Kim" and Hanchul Kim
Department of Nano Physics, Sookmyung Women’s University, Korea
*mykim.nu@gmail.com

FePt; alloy is one of the most studied materials for the patterned media storage applications. Controlling the
magnetic phase stability is the main issue for this material since it has a variety of magnetic phases that
sensitively transform depending on the environment. In bulk, two antiferromagnetic (AFM) phases in ordered L1,
cubic structure are stable at low temperature while a chemically disordered single crystal structure is found to
stabilize in ferromagnetic (FM) phase with a high T. well above room temperature and a large saturation
magnetization. In this study, we report ab-initio density functional theory (DFT) calculations to predict that, in
contrast to the bulk alloy, the ordered FePt; thin films on Pt(110) substrate can be stabilized in the FM phase
over the AFM phases. Our results reveal that the FM phase is significantly stabilized by missing row surface

reconstruction.
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Origin of robust interaction of spin waves with a single
skyrmion in perpendicularly magnetized nanostripes

Junhoe Kim" and Sang-Koog Kim'
'National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory,
Research Institute of Advanced Materials, Department of Materials Science and Engineering,
Seoul National University, Seoul 151-744, South Korea

1.2

The topological stability of skyrmions is highly advantageous to their memory-device applications, owing to
both their nano-scale dimensions and ultra-low critical current density [1]. Therefore, reliable manipulation of
magnetic skyrmions by spin-polarized currents or magnetic fields has attracted great interest[1-5]. Very recently,
skyrmion motions also have been found to be driven by means of propagating spin waves (SWs) in nanostripes
[6,7]. This alternative approach is of particular interest in terms of the promise of all-magnetic control of
skyrmions in geometrically constricted elements. Despite their fundamental and technological importance,

however, the underlying physics of spin-wave-skyrmion interactions remain obscure.

2. MplurIp A5}

In the present study, weemployed micromagnetic numerical simulations to study interactions between
propagating spin waves (SWs) and a single skyrmion in a perpendicularly magnetized CoFeB nanostripe where
the magnetic layer is interfaced with W and MgO. Micromagnetic numerical calculations revealed that robust
interactions between the incident SWs and the skyrmion give rise to considerable forward skyrmion motions for
specific SW frequencies (e.g., here: fow = 12 — 19 GHz). Additionally, it was found that there exists a sufficiently
low threshold field amplitude, e.g., 0.1 kOe for the fw = 15 GHz SWs.

3. 1%

Considerable SW reflection from the skyrmion will occurin the specific 12 - 19 GHz range, which
corresponds to the skyrmion internal modes. The frequency-dependent interaction originated from the robust
coupling of the SWs with the internal modes of the skyrmion, through the SWs’ linear momentum transfer torque

acting on the skyrmion.

4.7

In summary, we observed considerable forward skyrmion motions driven by SWs of specific frequencies. The
motion velocity varies with the incident SWs’ frequency andamplitude. This work provides for all-magnetic
control of skyrmion motions with outelectronic currents, and facilitates further understanding of the interactions

between magnonsand topological solitons in constricted geometries.
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Effect of Dresselhaus spin orbit interaction on
current-induced skyrmion dynamics

Seung-Jae Lee", Kyung-Jin Lee'?
'KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
2Department of Materials Science and Engineering, Korea University, Seoul, Korea

1. Introduction

In magnetic systems with an inversion asymmetry and large spin-orbit coupling, the anti-symmetric exchange
interaction called the Dzyaloshinskii-Moriya interaction (DMI) becomses non-negligible[1,2]. Recently magnetic
skyrmions stabilized by DMI are expected to have potential as information unit for storage and logic devices
[4,5]. There are two main spin orbit interaction in skyrmion studies. One is formed by interfacial DM interaction
induced by Rashba spin orbit interaction. The other is bulk DM interaction induced by Weyl spin orbit interaction.

But studies about skyrmion stabilized by Dresselhaus spin orbit interaction has lacked.

2. Simulation Scheme

We investigate skyrmion velocity using Landau-Lifshitz-Gilbert equation with an spin hall spin transfer torque
with two types spin orbit interaction (Rashba and Dresselhaus). We use following parameters; nanowire width is
40 nm, thickness is 1 nm, cell size is 1x1x1 nm’, saturation magnetization is 800 emu/cm’, damping constant
is 0.1, exchange stiffness constant is 1.2x106 erg/cm, DM constant is 2 erg/cm? spin hall angle is 0.1,

perpendicular magnetocrystalline anisotropy K, is 0.8x107 erg/cm’.

3. Result and Discussion
Figure 1 shows that both skyrmion velocity have linear dependence with current density, which is consistent

with the prediction based on collective coordinate approach. In contrast to interfacial DM interaction, the DM
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Fig. 1. Skyrmion velocity as a function of current density J for different current flow direction.

(a) DM induced by Dresselhaus spin orbit interaction, (b) DM induced by Rashba spin orbit interaction
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interaction induced by Dresselhaus spin orbit interaction case has different aspect for current flow direction, it

is because spin hall torque symmetry has 90° difference with spin orbit torque symmetry driven by Dresselhaus
spin orbit interaction.

5. Reference
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Magnetic and structural properties of hot deformed
Nd-Fe-B magnets diffusion processed with NdHx
compound in two-step die upset

Shu Liu™?, Nam-Hyun Kang?, Ji-Hun Yu', Hae-Woong Kwon®, Jung-Goo Lee""
'Powder & Ceramics Division, Korea Institute of Materials Science, 797 Changwondaero, Changwon 642-831, Korea
2Department of Materials Science and Engineering, Pusan National University,
Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735, Korea
3Department Materials Science and Engineering, Pukyong National University, Nam-gu, Busan 608-739, Korea
wLCorresponding author. Tel./fax: +82 55 280 3606/3392, E-mail address: jglee36@kims.re.kr

Nd-Fe-B magnets are known to exhibit a high maximum energy product and thus have attracted much
attention for motors in hybrid and electric vehicles. The anisotropic dense Nd-Fe-B magnets could be prepared
byhot pressing and die upsetting of rapidly solidified ribbons. During hot deformation, the plate-like grains of
main phase tended to rotate by grain boundary sliding so that the easy direction of magnetization is parallel to
the c-axes. This led to the highly anisotropic magnets. Moreover, the grain boundary sliding lead to stress
concentration was accommodated by the interface-controlled solution-precipitation reaction by the Nd-rich phase
along the grain boundaries. Therefore the grain refinement and grain rotation of a and ¢ axes are important factors
to influence the magnetic properties.

Dy or Dy compounds are known as the effective addition in increasing coercivity, howerver, Dy is a scarce
resource and tends to be relatively expensive. Recently extensive efforts have been devoted to develop Dy-free
high magnetic properties Nd-Fe-B magnets. Nd and its compound is also good candidate to increase coercivity.
Specially The spark plasma sintering (SPS) technique supply the pressure from initial stage to the end has been
widely concerned as a new pressure sintering process to consolidate Nd-Fe-B powders to full density at relatively
lower temperatures in a short period of time which generates plasma uniform heat the materials and inhibits the
grain growth.

In this work, two-step die upsetting process was carried out to realize grain refinement and sharp texture
formation of the main phase, HDedNd-Fe-B magnets were produced by SPS through the optimized method and
the NdHx compound was selected as the addition to increase the coercivity from diffusion process. The
microstructure evolution of two steps die upsetting process and magnetic properties after dipping with addition

were discussed in our work.
Keywords: NdFeB magnets, Hot deformation, Nd-Cu-Zn, microstructure, SPS

This research was supported by a grant from the Fundamental R&D Program for Core Technology of
Materials funded by the Ministry of Knowledge Economy, Republic of Korea.
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Synthesis and Magnetic Characterization of M-type
Sro 75.xLQ0 25C A Fe 1 8C0g 2079 hexaferrite by Salt-assisted
Ultrasonic Spray Pyrolysis (SA-USP)

Jimin Lee", Tae-Yeon Hwang', Jongryoul Kim?, JinBae Kim*, and Yong-Ho Choa'
1Department of Fusion Chemical Engineering, Hanyang University, Ansan, Gyeonggi 426-791, Korea
*Department of Metallurgy and Materials Engineering, Hanyang University, Ansan 426-791, South Korea
3 Advanced Research Institute, LG Electronics Inc., Seoul 137-724, South Korea
Fax: +82-(31)-400-5650 E-mail address: choal 5@hanyang.ac.kr

Strontium M-type hexaferrite has widely used in electronic industryas a permanent magnet due to its relatively
high intrinsic coercivity and chemical stability. Recently, many attemptssuch as cationic substitution have been
made to increase the magnetic performance of the ferrite. It has beeninvestigated that substituting La’*-Co”" with
Sr*"-Fe’" in hexaferrite can improve the magnetic properties resulting from the change of magnetic moments.

However, it isnecessary to reduce material cost because strontium and lanthanum are rare and these elements
cause the cost increase. Calcium, which has same oxidation state with strontium, is more abundant geochemically
and also cheaper than strontium. In addition, it was reported that partial Ca”" substitution with Sr** in the
strontium hexaferrite can increase the coercivity. Therefore substituting Ca” in La’-Co”" substituted strontium
ferrites is a great solution to both reduce the cost and enhance the magnetic properties.

In this study, Sro.7sxLaossCaxFer3C002019 (0<x <0.75) hexaferrites were synthesized by salt-assisted ultrasonic
spray pyrolysis (SA-USP) process. SA-USP was adopted to synthesize non-agglomerated hexaferrite particles with
high uniformity. Both the structural and magnetic properties of the particles with different molar concentration

of Ca”" have been investigated systematically.

Keywords: M-type Strontium hexaferrite, Calcium substitution, La-Co substitution, Salt assisted ultrasonic

spray pyrolysis (SA-USP), Magnetic properties
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Magnetic annealing effect of
Fe-based amorphous riblbon
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1. Introduction

There has been an increasing interest in Iron-based (Fe-based) ferromagnetic amorphous materials due to their
soft magnetic properties such as high saturation magnetization, low coercivity and high permeability. We studied
Fe-based materials, and published paper about Fe-Co-Ti-Zr-B alloys. The results of this paper are that Fe-based
amorphous ribbons exhibited soft magnetic properties with a low coercivity and a high saturation magnetization.

In this work, we investigated the magnetic annealing effect of Fe-based alloys.

2. Experiment

The ingots of a new collection of Fe-based soft magnetic alloy were prepared by arc-melting. By using a
melt-spinning technique, we fabricated thin ribbons of amorphous alloys. Also we used a x-ray diffraction to
characterize the glassy structure of our ribbons. The thermal characterization was carried out by using a
differential scanning calorimeter. The soft magnetic properties including the saturation magnetization and the

coercivity were measured by using a vibrating sample magnetometer.

3. Result and discussion
After annealing process, the amorphous phase of the melt-spun ribbons changed to a nanocomposite structure
consisting and residual amorphous phases. The nanocomposite alloys exhibited improved values of the saturation

magnetization.

4. Reference
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Seoul National University, Seoul 151-744, Korea

In recent years, the soft magnetic composites (SMC) have attracted great interest as the potential applications
in electromagnetic circuits, sensors, electromagnetic actuation devices, low frequency filters, induction field coils,
magnetic seal systems, and magnetic field shielding. Among AC losses of metal powder, the eddy current loss
could be reduced by an insulation coating to increase electrical resistivity. For the same purpose, we have tried
to fabricate a core and shell layer composed of a Fe alloy powder and layer of ALOs; by the sol-gel method.
In order to obtain a uniform coating of Al,Oslayer, we used sonication to avoid the agglomeration of Fe alloy
powder before the coating process. In this study, influences of the process conditions such as reaction time and
concentration of Aluminum isopropoxide (AIP) on the magnetic properties of the Fe alloypowder were
investigated. Also the effect of the dieing pressure during the fabrication of core using Al,Os-coated Fe alloy
powder was investigated. The analysis of Fe alloy metal powder coated with Al,O; was conducted using field
emission-scanning electron microscope (FE-SEM), transmission electron microscope (TEM), Inductance analysis
and B-H curve analyzer. The results showed that the Fe alloy powder was uniformly coated by a thin layer of

Titanium oxide. Details will be presented for a discussion.

This work was supported by a Grant from world class 300 (0417-20140105)
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Iron (Fe) metal powder shows soft magnetic properties such as high saturation magnetization and low
coercivity. For that reason, it has been used for inductors of high frequency applications. However, because of
its metallic property, eddy current is generated under AC field. The eddy current causes heat generation and
critical failure at high frequency region. Considering inter-particle eddy current loss, coating Fe based powder with
insulating materials has been researched to block the inter-particle current path. In this study, to reduce
inter-particle eddy current loss under AC magnetization, core-shell structure consisting of Fe alloy powder and
SiO, insulating coating layer was fabricated. SiO, coating was performed by sol-gel method using Tetraethyl
orthosilicate (TEOS) as a precursor of SiO,. The coating parameters, such as the coating time and the
concentration of TEOS were controlled. Magnetic properties of SiO,-coated Fe alloy powder, including

permeability and Q factor, will be presented for a discussion.

Keywords : Fe powder, SiO, coating, insulating coating, eddy current loss
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1. Introduction

Magnetic multilayers with perpendicular magnetic anisotropy are one of the most attractive systems for the
next-generation device applications such as high-density data storage and spin-transfer torque magnetic random
access memories [1-3]. Perpendicular magnetic anisotropy is the phenomenon of a magnetic multilayer that is
preferentially magnetized in a direction perpendicular to the film's surface. Perpendicular magnetic anisotropy
was suggested and investigated in 1975 and was first observed in Co/Cr films [4]. It has been established to
the importance of interfaces as the driving mechanism for Perpendicular magnetic anisotropy in the multilayers
[5].

For applications to high-density devices, magnetic multilayers with perpendicular magnetic anisotropy must
have a large magnetic anisotropy (K,) and a low saturation magnetization (Ms) [2, 6]. Therefore, multilayers with
PMA consist of ferromagnetic materials and non-magnetic materials have been studied for reducing M, and
enhancing K,. Moreover, a multilayer with PMA must have a large coercivity (Hc) because of the demagnetizing
field. The demagnetizing field increases with decreasing thickness of the ferromagnetic layer for the same width
and height [7]. In this study, we investigated M, and H. of CoSiB/Pd multilayer with various Pd-layer’s thickness.
We note the dependence of the M and H. of Pd-layer thickness in CoSiB/Pd multilayer.

2. Experiment

The chamber’s base pressure was up to 2.0 x 107 Torr, and the working pressure was 2 x 10~ Torr. All
films were uniformed in size, 1.4 cm % 1.4 cm, and were deposited by ultra high-vacuum system at room
temperature. The magnetic properties (Ms and H;) of all thin-films were measured by a vibrating sample

magnetometer.

3. Result and discussion

We investigated the PMA and the Hall effect of [CoSiB (7 A)/Pd (tpq)]s multilayers with various thicknesses
of the Pd layer. We found the dependences of M and H. on the thickness of the Pd layer. In the [CoSiB (7
A)/Pd (20 A)]s multilayer, the maximum value of H, and the minimum value of M, were measured as 195.9
Oe and 631.2 emu/cm’, respectively. We will show the multilayer including CoSiB and interpret the correlation

between magnetization and the Pd-layer thickness in the conference.
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In order to use magnetic materials for the electronic or electromagnetic systems in several gigahertz frequency
ranges, their magnetic properties such as saturation of magnetization, and relative permeability must be enhanced
further.

Among various soft magnetic materials, transition metals (Fe, Co, and Ni) have been conventionally used for
relatively high frequency system applications. However, these materials cause high energy losses in several
gigahertz frequency ranges, so limit their applications. In addition to energy loss problem, oxidation also degrade
magnetic properties. Therefore, effective insulation of the materials have become a solution in this situation. In
this study, we synthesized metal particles insulated with ceramics by following steps. First, we synthesized metal
oxide/ceramic nanocomposites powders through ultrasonic spray pyrolysis. Then the synthesized oxide powders
were reduced by hydrogen reduction. Consequently, metal nanocomposites insulated with ceramics are fabricated.

The effects synthesis parameters on magnetic properties of nanocomposites was also discussed.

Keywords: Soft magnetic material, Metal-Ceramic composite, Electrical insulation, Ultrasonic spray pyrolysis,

Gigahertz frequency.
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Recently, new type of transistor has been proposed in which electric switching function is manipulated by
magnetism instead of electricity. Non-volatile reconfigurable processor is a logic device based on this magnetic
switch, promising zero quiescent power and novel functions such as programmable logic operation and
non-volatile built-in memory [1].

A simple analytic expression describing operation of avalanche magneto-diode is proposed. The operating
mode is classified into high and low conducting states, and they are determined by electric and magnetic field.
The proposed expression provides a phase diagram distinguishing these two conducting states. In order to verify
our proposal, avalanche magneto-diodes were fabricated, and various experimental data were taken from these
devices. The theoretical results well simulate the measured data, which can be considered as successful
verification of our theoretical model. This model can work as a basic framework for engineering avalanche
magneto-diodes and for further fundamental research about magnetic-field-dependent impact ionization process. In
circuits composed of these switches, logical operations are programmed dynamically by magnetic signals, showing

magnetic-field-controlled semiconductor reconfigurable logic at room temperature.
[1] Sungjung Joo, Taeyueb Kim, Sang Hoon Shin, Ju Young Lim, Jinki Hong, Jin Dong Song, Joonyeon

Chang, Hyun-Woo Lee, Kungwon Rhie, Suk Hee Han, Kyung-Ho Shin & Mark Johnson, Nature 494,
72-76(2013).
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The spin field effect transistor (spin-FET), proposed by Datta and Das [1], is one of the fascinating concepts
for next generation devices due to low power consumption, high speed, and nonvolatility. For developing
Spin-FET, spin transport efficiency in a quantum well structure is crucial factors. Previous works [2, 3] have
reported spin injection into semiconductor quantum well, however, the spin injection efficiency is insufficient to
operate spin-FET at room temperature. In this research, we experimentally observed spin dependent
electrochemical potentials in the non-local geometry at room temperature.

We utilized the inverted High Electron Mobility Transistor (HEMT) with a 2 nm In As active layer. The
channel size of 8 um was defined by conventional Ar-dry etching. Previous works [2, 3] used etching process
for top contact between spin injector and the semiconductor channel. In this research, we deposited NigiFeio
magnetic electrodes (FM) at the side of the InAs quantum well channel. The junction area between FM1 (FM2)
and the InAs channel is only 0.5 pm % 2 nm (lpm x 2 nm) which is much smaller than that of conventional
contact.

The potential difference between parallel and antiparallel alignments of two ferromagnetic electrodes (FM1 and
FM2) was clearly detected in the non-local geometry up to room temperature. The detected signal is 1.2 Q which
is large enough to operate spin-based devices. Using the hysteresis behaviors of two ferromagnetic electrodes, we
also detected four different potential levels. From these four states, this device can be applied to spin logic and

multi-level memory devices.

References
[1] S. Datta et al., Appl. Phys. Lett. 56, 665 (1990).
[2] H. C. Koo et al., Science, 325, 1515 (2009).
[3] J. Wunderlich et al., Science. 78, 1335, (2010).
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The spin field effect transistor proposed by Datta and Das involves the spin injection, detection, and gate
modulation using a two-dimensional electron gas system[1]. On disadvantage in previous work [2, 3] was that
external magnetic fields should be applied to align the magnetization of ferromagnets transverse to the Rashba
field for spin precession.

In order to realize fully electrical spin transistor, we employ a perpendicular magnetization system which
enables us to operate the spin transistor without an external magnetic field. For the injection and detection of
perpendicular spins in the quantum well channel, we use TbaFes:Cois/CosFesoBaoelectrodes, where the
TbyoFes:Cois layer produces perpendicular magnetization and the CosFesB2o layer enhances the spin polarization
of the ferromagnetic source. In this spin transistor device, a gate-controlled spin signalas large as80m< is
observed at 10K without an external magnetic field. In order to confirm the spin injection and relaxation
independently, we measure the three-terminal Hanle effect with an in-plane magnetic field, and obtain a spin
signal of 1.7mQ at 10 K. These results clearly present that the electric field is an efficient way to modulate spin

orientation in a strong spin-orbit interaction system.

Reference
[1] S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990).
[3] H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, Science, 325, 1515 (2009).
[4] H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, J. Phys. D: Appl. Phys. 44,064006
(2011).
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1. INTRODUCTION

Spin-orbit-torque (SOT) effect, which arises from in-plane current, has recently garnered considerable attention
as a novel magnetization switching mechanism forlow power consumption, and new physical phenomenon [1,2].
The Rashba effect and the spin Hall effect have been considered to generate this kind of magnetic switching
operated by SOT [3]. However, X. Qiu [4] has reported that there may be a new mechanism of spin-orbit torque
associated with the oxidation states. Therefore, we examined the current-induced effective field related with SOT
in W/CoFeB/MgO stacks with various post-annealing temperatures. SOT property has been investigated as atomic

states and distribution at various annealing temperatures are changed.

2. EXPERIMENTAL DETAILS

MgO/CoxFesB20/W stacks were prepared on thermally oxidized Si substrates utilizing a radio-frequency (RF)
magnetron sputtering-system. Species were [Si/SiO,] Substrate/MgO (2)/CoxFesB2o (tcrs)/W (8), where numbers
in parenthesis refer to layer thickness in nanometers. To show post-annealing influence on magnetic and atomic
features, a post-annealing process was carried out at 325°C, 350°C, 375°C, and 400°C for 1 hour under vacuum
conditions below ~1 x 10 Torr, with a 3T perpendicular magnetic field. Finally, these stacks were patterned into
the width and length with 20 um and 120 pm Hall bar by standard photolithography and Ar ion-milling

techniques.
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The Rashba spin-orbit interaction (SOI) has been to the forefront as a core of spin-FET introduced by S. Datta
and B. Das. And recently, Rashba SOI at interface between heavy metal and ferromagnetis being actively
researched as a source of spin-orbit torque due to its applicability. On the other hand, Rashba SOI in 2DEG
channel is also able to act as an origin of spin polarization which affects transport property via SOI, so-called
anisotropic magnetoresistance (AMR). In our research, estimation of Rashba SOI in quantum well channel using
AMR will be discussed.

We used InAs quantum well structure with carrier density, n, = 2 X 1016m'2, and Rashba SOI field, Bz = 7.9T,
was evaluated by Shubnikov-de Haas (SdH) oscillation at 1.8 K. To observe AMR we applied in-plane magnetic
field because Rashba SOI induced spin polarization istransversal. Then sample was rotated to make total effective
field tilt from current direction and angle dependence of resistance was observed.

Measured AMR data is shown in Fig. 1. At angle 0°r 180°, total effective fieldisnormal to current direction,

so resistance is low. However external magnetic field is parallel (0°) or antiparallel (180°)to Rashba effective field,

so Rashba parallel state, 0°, has much lower resistance due , . — . , , ,

to greater total effective field. 24241 ]
Taking cubic symmetry and Rashba field into account, s |
AMR is described by [1] =
Ryx = ag + a;Borcos?(a + @) + ayBiorcos* (a + @), ;§ Hor i
where o is angle between Rashba and total effective field, ¢ 24121 1
is arbitrary phase shift. Solid line in Fig. 1 is fitting result SR |
using this equation and Rashba field was 7.7T which is .

1 1 1 L 1 1 1
50 0 50 100 150 200 250 300 350 400

comparable to the value from SdHoscillation. angle ()

Finally, spin polarization of 2DEG with Rashba SOI was
] . Fig. 1. AMR data of InAs channel
confirmed by measuring AMR and we could estimate the

Rashba effective magnetic field.
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1. &

Since the discovery, spin-orbit torque has been receiving a great deal of attention due to its possible
applications in non-volatile spin-orbit torque magnetic random access memory (SOT-MRAM) as well as in
reprogrammable magnetic switch which can be integrated in spin logic devices [1]. In heavy
metal/ferromagnet/oxide structures, in-plane current generates spin accumulation at the HM/FM interfaces with
spin Hall effect (SHE) and/or interfacial spin-orbit coupling (ISOC), which gives rise to a spin-orbit torque arising
from the spin orbit coupling to the FM layer. As of today, there are several reports on the contribution of the
ISOC, which was controlled by inserting Cu layer at the HM/FM interface or by oxygen manipulation [2]. On
the other hand, there is only a handful of study on the modulation of the SHE, which is considered to be
determined when the materials are chosen.

In this work, we report a systematic study on an effect of the underlayer Pt resistivity on the spin-orbit torque
in Pt/Co/AlOx structure, the well-studied structure that has a strong PMA, by means of Pt deposition pressure
manipulation. Our harmonic lock-in measurement results and the current induced magnetization switching results

both demonstrate that the SHE contribution to the SOT can be improved by the increase of the Pt resistivity.

2. MEHL A

The thickness of the Pt layer between Ta underlayer and Co layer was carefully controlled in order to obtain
5 nm thickness with thickness deviations of less than 2% for the entire set of samples using X-ray reflectivity
(XRR) analysis. Based on the XRR data, the deposition rates for the Pt layer were obtained and
Ta(3)/Pt(5)/Co(0.8)/Al0Ox(1.8) layers (numbers in nanometers) were deposited on Si/SiO, substrates by magnetron
sputtering with Pt deposition pressures of 3, 10, 20, 30, 40, 50mTorr accordingly. Here, only the Pt deposition
pressures were varied and all the other layers were deposited at 3mTorr.

All samples were patterned into 5pm-width hall cross bar using photolithography and ion milling. The SOTs
were measured using harmonic lock-in technique with polar angle of 4° with in-plane fields applied parallel (DLT)
and perpendicular (FLT) to the current flow direction. Finally, the current-induced magnetization switching
characteristics were studied by applying longitudinal current pulses with fixed magnetic field along the current
flow direction.

In this study, the resistivity of the Pt was tuned up to around 60% with control of the deposition condition.
As can be seen in the harmonic signals, the slope of the second harmonic signal increased as the Pt deposition
pressure increased. This increase in the slope of the harmonic signals suggest that the effective fields which reflect
SOT also increased with increase in Pt resistivities. Moreover, the current-induced magnetization switching results
show decreased critical current with increased Pt deposition pressures which show good agreement with the

harmonic lock-in measurements.
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3.2

We have studied the effect of Pt resistivity on the spin-orbit torque in Pt/Co/AlOx structure by controlling
Pt deposition pressures from 3 to 50mTorr. Increase in the slope of the second harmonic signal was observed
with increase in the Pt deposition pressures. Moreover, switching results show decrease in switching current with

increase in Pt deposition pressures both of which suggest the increase of SOT with increase of Pt resistivities.
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Magnetostatic interaction of magnetic domain walls (DWs) is investigated by using magnetic force microscope
(MFM) techniques at the remanent state in closely placed Co dual rings with 10 and 20 nm in thickness and
different spacing between Co rings. In an array of dual rings in 10°step against an applied field direction, the
angular dependence of DW interaction shows an obvious change from coupling of DWs to decoupling of DWs
in the MFM measurements, ass hown in Fig.1. It is found that strong interaction between DWs at the lower angles
and the smaller spacing is owing to the surface magnetic charge attraction. On the other hand, the volume
magnetic charge attraction accounts for week DW interaction at the higher angles and the larger spacing[1]. In
addition, the dependence of the Co thickness on the magnetostatic DW interaction can be explained by the

magnetic volume effects[2].

200 nm 300 nm

400

50°

60°

70°

80°

Fig. 1. AFM and MFM images of dual rings in terms of the gap spacing and the angle
between the magnetic field direction and the coupling axis, where the white dotted box

in the MFM images corresponds to the de-coupled remanent state of rings.
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A novel sonochemical approach was developed for the synthesis of different core/shell structures of
Fe;04/Si0,/Ag nanocubes and SiO,/Ag nanospheres. The total reaction time of the three sonochemical steps for
the synthesis of Fe304/SiO2/Ag nanocubes is shorter than the previously reported methods. A proposed reaction
mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic
nanocubes was discussed in details. Transmission electron microscopy revealed that small Ag nanoparticles of
approximately 10-20 nm in size decorated on the surface of Fe304/SiO, nanocubes, and the energy dispersive
spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data
were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe;O4 and bec structures
for Ag in the core/shell structure of the Fe;04/SiO»/Ag nanocubes. The as-synthesized Fe;04/SiO2/Ag nanocubes
displayed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phynylenediamine, and with
better performance than both Ag and SiO»/Ag nanoparticles. The grafted silver catalyst was recycled and reused

at least fifteen times without a significant loss of catalytic efficiency.
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1. Introduction

In present day research, diluted magnetic oxide (DMO) system are one of the promising candidates for
potential spintronics application, because they display room temperature ferromagnetisml. The development of
today’s spintronics research has provided many possibilities of revolutionizing semiconductor technology2. There
are so many previous researches till date focusing on ZnO, TiO,, SnO, systems of a low band gap around 3.0
eV, but here we have focused our research on DMO of nearly insulating system with a medium band gap ~ 5.0
eV doped with transition metal ions. For the hybrid device application in the present day research, high «
dielectric systems like HfO, and Y,O; are of great interest. Recently, few researchers have reported the existence
of room temperature ferromagnetism in transition metal ion doped HfO, and Y,O; thin films and nanocrystals’,
but little attention has been given to one dimension (1D) nanostructures of it. Studies on 1D semiconductor
nanostructures has given huge interest form the last one decade, because they have extraordinary lengths,
flexibility, shape anisotropy and unique electronic features due to their 1D quantum confinement effect. Here, we
have synthesized Y»+CoxOs; (x = 0.00, 0.04, 0.08) nanorods by a cheap and easy hydrothermal method and
studied the room temperature magnetic property for pure and transition metal ion Co”" doped Y05 nanorods for
the first time. The hydrothermal method is used for the preparation of 1D nanostructure because; it requires
neither templates nor catalysts to yield the product continuously. The details of synthesis mechanism, structural
and microstructural analysis along with the explanation of the existence of room temperature ferromagnetism
(RTFM) in our studied materials have been discussed here. The combination of ferromagnetism with high «
dielectric characteristics of Y,Os doped with Co”" jons will enhance the integration of complementary metal-oxide

semiconductor with spintronic technology.

2. Experiment method, results and discussion

For the synthesis of Y»..CoxOs3; (x = 0.00, 0.04, 0.08)nanorods using hydrothermal method, 10% NH4OH
solution was added to the appropriate amount of stock solution of the metal ions to get the hydroxide precipitate
of it. The white slurry was placed in a stainless steel Teflon-lined autoclave for hydrothermal treatment at 190°C
for 20 h. The autoclaved product was then washed several times with water and calcined at 550°C for 4hto get
the final product. X-ray diffraction, Raman spectra and X-ray photoelectron spectroscopy were carried out which
indicated the formation of pure cubic phase structure of Y>Os; doped with Co”" jons without any secondary phase

formation. The growth mechanism of the synthesized nanorods has been proposed and it grew along [100]
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directions.” The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images support
the growth mechanism of the nanorods with average diameters of 100 nm and length of 2 pum. Magnetic property
of all the samples are studied by vibrating sample magnetometer (VSM) analysis. The M-H curve of pure Y,Os3
nanorods shows almost linear diamagnetic curve whereas Co™' doped Y»0; exhibits clear signature of
ferromagnetism. The existence of room ferromagnetic behavior in Co™" doped Y:0s is mainly due to the existence
of oxygen vacancies originated after the doping of transition metal ion in the host lattice. Oxygen vacancies are
acting as defect centers in the bound magnetic polaron modelto account for this dilute magnetic oxide of medium
band gap with low carrier concentration.” The existence of intrinsic defects such as oxygen vacancies in our
studied materials Y».xCoxO3; nanorods has been further supported by the analysis of room temperature

photoluminescence spectra.

3. Conclusion

In conclusion, we have synthesized pure and Co doped Y»Os; nanorods using a simple and inexpensive
hydrothermal process. Pure Y>Os3 nanorods exhibit linear diamagnetism whereas Co doped Y,O; nanorods show
room temperature ferromagnetism. The existence of ferromagnetism is due to the incorporation of transition metal
ion in Y,0s3 nanorods which is again due to the creation of oxygen vacancy during defect formation in the host
lattice. The ferromagnetic behavior is mainly due to the defect mediated mechanism in the framework of bound
magnetic polarons. The presence of defect related oxygen vacancy is confirmed by photoluminescence
measurements. The observation of room temperature ferromagnetic behavior in our studied materials suggests a
generic feature of Co doped high « oxides as a good candidate for DMO. Such modulation in the magnetic
behavior of DMO via oxygen vacancy by means of doping transition metal ion can be exploited for potential

applications in spintronics.
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1. Introduction

Diluted magnetic semiconductors (DMSs) have attracted a considerable amount of attention owing to their
promising applications in spintronics and magneto-optics [1,2]. Over the past decades, the enhancement of DMS
magnetic properties such as Curie temperature has been the focus of intense research. Curiously, in this context,
TM-ion-doped rare-earth (R™) oxides have yet to be given significant consideration. Binary rare-earth oxides are
the most stable rare-earth compounds, in which rare-earth ions typically hold the trivalent state. In TM ions,
magnetic moment arises from the partially filled outermost 3d electrons, whereas in R*" ions, magnetic moment
arises from the inner 4f incomplete sub-shell. Considering the importance of R’ rare-earth oxides, particularly
the broad interest in Gd-based oxides, Gd>Os may be an advanced potential DMS candidate after doping with

Co”" ions. The ferromagnetism of the Gd atom below 289 K drives the study of Gd,Os;’s magnetic properties.

2. Experimental method and Results

We synthesized Gd,.«CoxO3 (x = 0, 0.02, 0.04, 0.06) nanorods via the following hydrothermal procedure. First,
Gd,O3 powders and stoichiometric amounts of Co(NOs), *+ 6H,O were dissolved in diluted nitric acid solution.
Then, 25% NH4OH solution was slowly added to the above solution under vigorous stirring, adjusting the pH
value of the new colloidal solution between 10 and 12. The hydrothermal reaction was conducted at 190°C for
20 h in a Teflon-lined autoclave. The solid products were collected by filtration and washed with distilled water.
Subsequent 3 h heat treatment at 550°C inducedthe formation of Co-doped Gd,O; nanorods. From FESEM and
TEM images, the morphology is rod-shaped with less than 100 nm diameter and 200 nm-2 pm long. With

increasing Co-doping concentration, the length and diameter of the nanorods decreases. EDS elemental mappings

shows the uniform distribution of the Gd, Co, and O elements in the crystal.

3. Discussion and Conclusions

XRD, Raman, XPS, and TEM measurements showed the samples to have a single cubic phase structure of
Gd,O3 doped with Co”" cations, without any cobalt clusters. The XPS spectra revealed the Co ions to be in
divalent Co’" states and in octahedral symmetry. All the samples exhibited mostly paramagnetism along with very
weak antiferromagnetism; this was due to the non-interacting nature of the Gd*" ions which, incapable of
undergoingstrong ferromagnetic interaction with the neighboring ions. The samples also exhibited negative Curie—
Weiss temperature due to the super-exchange interaction of Gd** and Co”" ions via O” ions and coupling between
Co™—Co™" pairs, indicating the presence of very weak antiferromagnetism in the Gd,<xCoxOs; (x = 0, 0.02, 0.04,
0.06) nanorods.
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1.2

Recently, perpendicular magnetic anisotropy based spin-transfer torque magnetic random access memory
(STT-MRAM) is drawing a great attention to researchers studying MRAM due to its advantages of having the
density of DRAM, fast response time of SRAM and the non-volatility of flash memory. [1]

Moreover, recent studies has shown that the spin orbit coupling, which results in the interfacial perpendicular
magnetic anisotropy, and the inversion symmetry breaking at the interface between free layer and heavy metal
of magnetic tunnel junction (MTJ) results in antisymmetric exchange interaction named as Dzyaloshinskii-Moriya
interaction (DMI).[2]

We numerically studied the effect of DMI and size of the cell on switching current density at room
temperature and thermal stability at OK which are the important factors for commercialization of STT-MRAM.
[3] We used for exchange stiffness constant, for anisotropy constant, for saturation magnetization and for DMI

constant for cells with diameter of.

2. MW} 2}
First, we studied the effects of DMI and cell diameter on the thermal stability that is a good parameter for
determining the retention time of the data. According to our study with String method [4], the larger DMI

constant lead to the smaller thermal stability as shown on Figure 1(a).
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Fig. 1. (a) Normalized thermal stability as a function of DMI constant.
(b) Switching current density as a function of DMI constant. Both thermal stability and switching current density

is less effected by DMI constant as the diameter of the cell is decreased.
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Next, we calculated the switching current density at room temperature as a function of DMI constant. We
found that the current density increased as DMI constant got larger due to its tendency to keep its skyrmion

number maintained. [5]

3. 0% Y 22

In conclusion, we showed that DMI deteriorates both the switching current and the thermal stability of the
device. Hopefully, the DMI effect vanished as the device diameter, as required in the commercialization of
STT-MRAM, got smaller.
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Fig. 1. (a) TEM image of iron oxide nanoparticles and
(b) AC susceptibility spectrum of iron oxide nanoparticles
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Fabrication and characterization of
magnetic particles via hydrothermal synthesis

Sung Myung Ryu*, Ki Bum Lee and Chung Hee Nam

Department of Physics &photonics and sensors, Hannam University, Daejeon 306-791, Republic of Korea

1. Introduction

Ironoxide(Fe;O4) have attracted considerable attention due to their potential applications in the field of drug
delivery carrier[1], lithium-ion batteries[2] and catalysis[3]. Magnetite Fe;O4 has become a particularly interesting
research target due to it slow cost, good biocompatibility, as well as outstanding stability in physiological
conditions.

Up to now, a variety of methods have been developed to prepare Fes;Os, including sol-gel method,
co-precipitation. Compared with the abovemethods, hydrothermal method hasinterest owing to low cost, good
biocompatibility and outstanding stability in physiological conditions.

This paper reports the growth of magnetic Fe;O4 particles from iron powder (spherical, <10 micron) through
a alkaline hydrothermal process. We observed an interesting role of KOH on the formation of magnetite
octahedron[4].

2. Method
Both Fe powder (99% purity, <10 micron) and potassium hydroxide KOH (85% purity) used in this

experiment were of analytical grade without further purification. Typically, Fe powder(1.4g), 1-10 um in diameter,
were dispersed in separate 100mL KOH aqueous solutions of three concentrations: (1) 0.125 (2) 0.625 (3) 1
mol/100mL. The solutionwas then sealed into a Teflon-lined stainless-steel autoclave and kept at 180C for 24
h(with different times). Then, the autoclave was allowed to cool at room temperature naturally. The productwas
washed with deionized water several times until the filtrate pH 7. The obtained particles were then driedunder

vacuum at 50Cfor 12 h.

3. Results and discussion

Fig. 1 shows the XRD patterns of both raw iron powder and as-grown products prepared under different KOH
concentrations at 180°C for 24 h, illustrating the diffraction peak intensities of the Fe;O4 and iron. The peak
intensities of Fe;O4 remarkably increased while that of iron decreased with increasing KOH concentration.

Fig. 2 shows SEM images of raw iron powder and as grown products prepared under different KOH
concentrations. Fig. 2(a), the morphology of raw iron powders does not appear so uniform. The as-obtained
products were spherical in morphology. Fig. 2(c), shows the representative morphology of Fe;O4 octahedrons
prepared under KOH concentration of 0.625mol/100mL, revealing their smooth surfaces.

Fig. 3 shows the magnetic curves of the Fe powder and magnetite Fe;Os. Fig. 1(a) show the values of
saturations magnetization is 204.87 emu/g. As shown in Fig. 3 (b), (c), (d), the values of saturations magnetization

decrease to 109.23, 97.12 and 90.97 emu/g, respectively.
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Fig. 1. XRD patterns of (a) Iron powder and Fig. 2. SEM images of (a) Iron powder and Fe;O4

Fe;04 powder grown in KOH of concentrations:  grown in KOH solutions of different concentrations:
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Fig. 3. Magnetic hysteresis loops of (a) Iron powder and Fe;O, grown in
KOH solutions of different concentrations:(b) 0.125 (c¢) 0.625 (d) 1 mol/100mL

4. Conclusions

Micrometer-scale octahedral FesOs4 crystals were grown directly from iron powder via a hydrothermal
process.(1) we were experimented with different KOH Molar concentration at the same hydrothermal time and
(2) different KOH Molar concentration at the different hydrothermal time. It was found that KOH concentration
plays an important role in the formation of magnetite octahedrons. The as-prepared particles(good crystalline,

0.625mol/100mL) exhibited a relatively high saturation magnetization of bulk magnetite(Ms:96.7emu/g).
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Table 1. The values of perpendicular magnetic field(B.) at the position of
z = 0, 10 um in the multi turn coils according to the applied AC and DC currents(I) of 0.1 mA~10 mA.

Perpendicular magnetic field(B_L) of multi turn coils

Applied current(I) DC ACY
z =0 pum z = 10 um z =0 um z = 10 um
0.1 mA 31 pT® 6 uT 30 uT 59 uT
0.2 mA 61 uT 12 uT 60 uT 11 uT
1.0 mA 307 uT 56 uT 306 uT 51 uT
10.0 mA 3090 uT 570 uT 3060 uT 510 uT

@The frequency of AC current is 20 kHz.
®The value of 1.0 uT equals to 0.01 Oe.
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Spontaneous Hall effect in
Amorphous CoSiB/Pt/CoSiB structure

Y.K. Kim", S.Y. Kim", H.N. Lee', TW. Kim'
1Department of Advanced Materials Engineering, Sejong University, Seoul, 143-747, Korea

Magnetic multilayer films with perpendicular magnetic anisotropy have been extensively studied for the
application of magnetic recording media and magnetic sensor. The spontaneous Hall effect (Extraordinary Hall
effect) in magnetic metals and alloys which is caused by spin-orbit interaction is substantially larger than the
ordinary Hall effect due to Lontz force. Some materials exhibit quite large spontanecous Hall effect suitable for
Hall sensor. These materials include amorphous rare earth (RE)-transition metal (TM) alloy and Pt-based magnetic
multilayer.

In this study, we have quantitatively investigated the Spontancous Hall effect (SHE) in amorphous
CoSiB/Pt/CoSiB sandwich structure. The amorphous CoSiB/Pt/CoSiB sandwich structure were prepared by
changing Pt thickness. The thickness of Pt were varied in the range of from 11 to 42A. The amorphous
CoSiB/Pt/CoSiB sandwich structure exhibited moderate spontaneous Hall resistivity (pu, 0.016x10°Q -
cm~0.39x10°Q - cm) and large Hall angle(pu/p, 2.5~9.5%), which was larger than those of amorphous

rare-transition metal alloys(pu/p, 3%) and normal transition metal alloys(pu/p, 6~8%).
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Analyses of Mdssbauer spectra for ferrous
and ferric state in Dynabigp

Young Rang Uhm’, Jae Cheong Lim, and Sang Mu Choi
Radioisotope Research Division, Korea Atomic Energy Research institute (KAERI)

Antianemic medicament ferrous gluconate, ferrous fumarate, and a Dynabi tablet with basic iron bearing
ingredients were studied using Mdssbauer spectroscopy. Room-temperature spectra of ferrous gluconate provided
clear evidence that the two phases of iron present were ferrous (Fe™) as the majo rphase with a contribution
of 91%, and ferric (Fe’"), whose contribution was found to be 9%. In the case of ferrous fumarate, a single phase
was detected corresponding to ferrous (Fe®"). The Dynabi tablet consists of ferrous gluconate (91%) and ferrous
fumarate (9%). However, the actual values of the contributions of the iron ions in Dynabirs, were shown to
depend on the storage temperature of the sample. The ferric phase was increase data high storage temperature
of 50 C.
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A mechanism for orbital angular momentum and
giant spin-splitting in solids and nanostructures

Sehoon Oh and Hyoung Joon Choi’
Department of Physics and IPAP, Yonsei University, Seoul 03722, Korea

Giant spin-splitting of electronic bands, which is several orders of magnitude greater than Rashba splitting,
has been observed in noble-metal surfaces, thin films of transition-metal dichalcogenides, etc. Here, we study
structural and orbital conditions for emergence of a giant spin-splitting by using tight-binding and first-principles
calculations. We find that broken mirror symmetry of local atomic structure around an atom can produce non-zero
orbital angular momentum (OAM) at the atom. This OAM results in a giant spin-splitting if the atom is a
high-atomic number element. We demonstrate these structural and orbital conditions in the cases of simple atomic
chains, WSe; monolayer, Au(111) surface, and bulk HgTe. Based on this mechanism of the spin-splitting, we
suggest methods to control the magnitude and direction of spins, which can be used in applications such as
spintronic devices. This work was supported by NRF of KOREA (Grant No. 2011-0018306) and KISTI
supercomputing center (Project No. KSC-2015-C3-039).
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First-principles studies on the metal contact with
carbon-based nanomaterials

Seunghun Jang, Jino Im, Min Choi, Jeong-O Lee, and Hyunju Chang’
'Korea Research Institute of Chemical Technology Daejeon, 305-600, Korea
*Presenting author’s email: hjchang@krict.re.kr

For the experimental realization of the device using carbon-based nanomaterials (CNMs), such as graphene
(GR) or carbon nanotubes(CNTs), it is important to understand the properties of the interfaces with metal
electrodes. Even there have been extensive studies on the metal-GR (or CNT) interfaces with various metal
elements, there are some missing metal elements, such as indium. In this paper, we present the first-principles
calculations based on density functional theory on the metal-GR (or CNT) interfaces, including indium and other
metal elements. We will discuss the metal-CNMs interface properties with respect to the chemical properties of

metal elements, themselves.
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Computational design high-performance rare-earth-free
permanent magnet based on hard-soft hybrid structures

Joo-Hyoung Lee’
School of Materials Science and Engineering, GIST

Permanent magnets (PMs) are playing a key role in modern industry, particularly in energy conversion
applications, mostly mechanical to electrical or vice versa, which includes automobiles, electronics and power
generators. The conversion efficiency of such devices critically depends on the magnets’ performance, which
makes it a first-priority task to develop PMs with higher strength. Today, most high-performance magnets are
based on rare-earth elements such as Nd, Sm or Dy. Going through the so-called “Rare-earth crisis” around 2010,
many countries initiated interdisciplinary research programs to design novel PMs without containing rare-earth
elements. In this talk, we will present our recent results along this direction using the exchange spring magnet.
By employing first-principles density functional theory, we compute important magnetic properties for strong PMs,
saturation magnetization (M), energy product ((BH)max) and coercivity (Hc), of hard-soft hybrid structures which
consist of periodic arrangement of MnBi and Fe layers. Through calculating the magnetic properties by varying
the thickness of each phase, we demonstrate that Ms, (BH)max and He of MnBi/Fe all show large improvement
over MnBi; Compared to MnBi, M, (BH)max and Hc of the hybrid structure are increased by 20%, a factor of
two and three, respectively. These findings indicate that MnBi/Fe holds a great potential for high-performance,

rare-earth-free permanent magnet for next-generation applications.
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Orbital Selective Fermi Surface Shifts in
Correlated AFeAs (A = Li, Nq)

Geunsik Lee®, Hyo Seok Ji', Yeongkwan Kim?, Changyoung Kim?,
Kristjan Haule®, Gabriel Kotliar®, Bumsung Lee*, Seunghyun Khim®,
Kee Hoon Kim*, Kwang S. Kim"®, Ki-Seok Kim®, Ji Hoon Shim'*®
'Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*Institute of Physics and Applied Physics, Yonsei University, Seoul, Republic of Korea
3Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
*Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea
*Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
6Deparcment of Chemistry, School of Natural Sciences UNIST (Ulsan National Institute of Science and Technology), Korea
E-mail: gslee@unist.ac.kr

Based on the dynamical mean field theory and angle resolved photoemission spectroscopy, we have
investigated the mechanism of high Tc superconductivity in stoichiometric LiFeAs. The calculated spectrum is in
excellent agreement with the observed angle resolved photoemission spectroscopy measurement. The Fermi
surface (FS) nesting, which is predicted in the conventional density functional theory method, is suppressed due
to the orbital-dependent correlation effect within the dynamical mean field theory method. We have shown that
such marginal breakdown of the FS nesting is an essential condition to the spin-fluctuation mediated
superconductivity, while the good FS nesting in NaFeAs induces a spin density wave ground state. Our results
indicate that a fully charge self-consistent description of the correlation effect is crucial in the description of the

FS nesting-driven instabilities.

This work was supported by the National Research Foundation of Korea (Grant No. 2011-0010186).
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Invited S-VI-1

TM-doped ZnO DMS synthesized by
hydrothermal method under high magnetic field

Min Zhong1, Muhammad Tariq1, Zihao Zhang1, Chunli Liu?, Yemin Hu1, Wenxian Li1, Ying Li"
1Laboratory for Microstructures/School of Materials Science and Engineering,
Shanghai University 149 Yanchang Road, 200072 Shanghai, P.R. China
*Department of Physics and Oxide Research Center,
Hankuk University of Foreign Studies, Yongin, 449-471, Korea
*liying62@shu.edu.cn

Transition metal(TM)-doped ZnO has emerged as an attractive candidate in the quest for High Tc diluted
magnetic semiconductors(DMS) which have both semiconductor and magnetic properties[1]. In our study[2,6],
room-temperature ferromagnetic TM(Cr, Mn, Co, Ni,...... ) doped ZnO diluted magnetic semiconductors were
synthesized by hydrothermal method with 4 T pulse magnetic field-assisted. X-ray Diffraction (XRD) and
Scanning Electron Microscopy (SEM) were used to characterize the microstructure. And the HRTEM, EDS and
XPS measurements ensured how many the dopant ions had incorporated into the ZnO host matrix and their states.
The effects of the magnetic field on the microstructure and the magnetic properties of TM doped ZnO were
studied. The experimental results show that the magnetic field could change the morphology of the crystalline
ZnO and improve the amount of the dopants in ZnO DMS, curie temperature and ferromagnetism of the samples.
Figure 1 is the results of magnetization dependent on the temperature under the magnetic field of H=1.5x10" Oe
for 2 % Cr doped ZnO. It shows that the curie temperature increases 15 K (from 284.02 K to 299.15 K) for
4T processing sample. Figure 2 gives the M-H curves for Cr-Mn codoped ZnO which reveals the appearance

of ferromagnetism resulted from the magnetic field processing.
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Fig. 1. Temperature-dependent magnetization of 2% 0T and 2%-4T samples under 1.5x10* Oe.
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Fig. 2. M-H curves of ZnO-Cr-Mn-0T and ZnO-Cr-Mn-4T samples detected at 290 K. The inset shows the

paramagnetic and ferromagnetic contributions obtained by fitting of ZnO-Cr-Mn-4T sample.
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Influence of magnetic field on the critical behavior of
La; xCaxMnO; (x= 0.2, 0.3, 0.4)
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The properties of the ferromagnetic to paramagnetic transition in polycrystalline manganites La;..Ca,MnO; (x=
0.2, 0.3, 0.4) is presented in detail. The first order transition in Lag7Cao3MnOs is bordered by second order
transitions in the neighboring LagsCag>MnO; and LagsCag4sMnO; compositions. Analysis of the Landau—Lifshitz
coefficients obtained from Arrott plots showed that while b(T) is uniformly negative in Lag;Cao3sMnQOs, it changes
from positive to negative values in different magnetic field ranges for LaggCaooMnOs; and LagsCaosMnOs,
indicating that the behavior cannot be described within a single model under the application of a strong field.
The Kouvel-Fisher procedure performed on the samples with continuous transitions over different ranges of fitting
field confirmed tricritical exponents in LagpsCaosMnO; but revealed that the critical exponents obtained for
LagsCap,MnO; depend strongly on the choice of field range, shifting from values consistent with short range (3D
Heisenberg/3D Ising) interactions to those approaching the tricritical mean field model. This observation is
attributed to the influence of magnetic field on the coexistence of energetically close double-exchange and

super-exchange ferromagnetic interactions in LagsCagoMnOs.
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Fig. 1. a and b parameters in the Landau-Lifshitz equation of state obtained by fitting in
different field ranges as a function of temperature in La;.Ca,MnOs.

The shadowed areas represent the temperature zone of 7c¢ shifting with the applied field.
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Looking for alterable metamaterials, whose electromagnetic properties can be dynamically and real-time
controlled, has attracted a great attention recently. In this report, we firstly investigated theoretically and
numerically the tunability of the magnetic property of metamaterial in the THz region via thermal control. Then
the thermo-tunable polarization-insensitive of the left-handed metamaterials was studied. The conventionally used
metal is replaced by InSb in which the temperature-dependent conductivity plays a key role in tuning the magnetic
and also the left-handed frequencies. It was found that when the temperature of the InSb stack increases from
300 to 350 K, the resonance peak of the transmission spectra shows a shift from 0.6 to 0.85 THz accompanied
by a stronger magnetic behavior. While the left-handed transmission peak shifts from 0.8 to 1.1 THz and
fractional bandwidth of the negative refractive index goes from 14% to 22%. Thermally increased carrier density
of InSb is found to be the reason for the enhanced magnetic resonance and stronger left-handed behavior in
addition to the tunability. The equivalent LC circuit model and standard retrieval method are performed to

elaborate our proposed idea.
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FesoCoso nanocrystals were prepared by mechanical alloying in air, used Fe and Co powders (3N). The
variations of crystal structure, morphology, and magnetic property were investigated as a function of milling time
(in the range between 0.5 and 32 h) by using an X-ray diffractometer, field-emission scanning electron
microscopy, and vibrating sample magnetometer. The complete formation of bcc FesoCoso solid solution was
observed after 10 h of alloying in dependence on the milling conditions. At this time, the alloy powders with
average crystallite size of about 8 nm and a maximum saturation magnetization of 200 emu/g were obtained. For
longer milling times, both the crystallite size and the magnetization decreased, while the coercive increased
rapidly. The saturation magnetization of as-milled powders remained almost unchanged for a long time of their

keeping in air, which suggests a due to a formation of thin oxide layer on the particles.

Keywords: FeCo nanoparticles, Mechanical alloying, Magnetic properties
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We have prepared polycrystalline samples Lag;Cag3.Ba,MnOs; (x = 0, 0.025, 0.05, 0.075 and 0.1) by
solid-state reaction, and then studied their magnetic properties and magnetocaloric (MC) effect based on
magnetization versus temperature and magnetic-field (M-H-T) measurements. Experimental results reveal the
easiness in tuning the Curie temperature (7¢) from 260 to about 300 K by increasing Ba-doping concentration
(x) from 0 to 0.1. Under an applied field H = 50 kOe, maximum magnetic-entropy changes around 7c of the
samples can tuned in the range between 6 and 11 J-kg’l-K'l, corresponding to refrigerant-capacity values ranging
from 190 to 250 J'kg'. These values are comparable to those of some conventional MC materials, and reveal
the applicability of Lag7Cag3..BaxMnO; materials in magnetic refrigeration. Analyses of the critical behavior based
on the Banerjee criteria, Arrott plots and scaling hypothesis for M-H-T data, and scaling laws for the MC effect
prove a magnetic-phase separation when Ba-doping concentration increases. In the doping region x = 0.05-0.075,
the samples exhibits the crossover of first- and second-order phase transitions with the values of critical exponents
B and ~ close to those expected for the tricritical mean-field theory. The samples with x < 0.05 and x > 0.075
exhibit first- and second-order transitions, respectively. More detailed analyses related to the Griffiths singularity,
the critical behavior for different magnetic-field intervals started from 10 kOe, and the magnetic-ordering
parameter n = dLn|ASn|/dLnH (where ASy is the magnetic-entropy change) demonstrate magnetic inhomogeneities

and multicritical phenomena existing in the samples.

Keywords: Perovskite manganites, Magnetic properties, Magnetocaloric effect
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Ab inifio study on metal-insulator and magnetic transitions
in correlated hollandites: KaCrsO16 and K2VsOqe
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1. Introduction

Hollandite-type TM oxides 4>M3016 (A=alkali metal, M=TM element) have drawn recent attention due to their
quasi-one-dimensional column structure made of four double MO chains. Despite the similarity in the crystal
structures, these materials have different physical properties depending on the TM element. K,CrzOj6 and K>VsO16
exhibit the metal-insulator transition (MIT) and the structural transition concomitantly upon cooling [1,2].

In order to explore the driving mechanism of the concomitant metal-insulator and structural transitions in
quasi-one-dimensional hollandite K,CrsO1s and K;VsOje, electronic structures and phonon properties are
investigated by employing the ab initio density functional theory (DFT) calculations. We have also investigated

magnetic properties of KyCrsOis and KyVgOis.

2. Results and Discussions

For K»CrgOi6, we have found that the Coulomb correlation plays an essential role in MIT and the structural
transition. Above the MIT temperature, K,CrgOis has ferromagnetism and a half-metallic nature. After MIT,
KoCrgOi6 goes ferromagnetic insulator. U effect facilitates the MIT and structural transition by increasing the
hybridization between Cr dy,.x and O p,. Thus we proposed the Mott-Peierls transition as the driving mechanism
of the concomitant MIT and the structure transition in K,CrsOj6. The unique feature of K,CrgOi is that the
Mott-Peierls transition occurs in the fully spin-polarized band.[3]

For K»Vs016, we have obtained the insulating electronic structures with charge ordering (CO) and orbital ordering
(O0). The optical conductivity and magnetic exchange interaction were calculated to investigate the ground state
of K,VgOis. The CO of V?* and V** occurs in separate chains, preserving the inversion symmetry of the crystal.
Thus, K>VgOi6 is to be a model system for investigating a spin-orbital-lattice coupled Mott system. The MIT of
the system occurs via the orbital-selective Mott transition. The insulating ground state of K,V3Oje arises from
the interplay of on-site Coulomb interaction, the magnetic-exchange interaction, and tetragonal distortion, causing
the CO of V*" and V*" and the OO of dyy and dy,+,x. We have separated the physics of MIT and Peierls-like
distortions in K,VsOj6, whereby demonstrated that the Peierls physics is not essential in driving the MIT.

3. References
[1] T. Toriyama, A. Nakao, Y. Yamaki, H. Nakao, Y. Murakami, K. Hasegawa, M. Isobe, Y. Ueda, A.V.
Ushakov, D. 1. Khomskii, S. V. Streltsov, T. Konishi, and Y. Ohta, Phys. Rev. Lett. 107, 266402 (2011).
[2] M. Isobe, S. Koishi, N. Kouno, J.-I. Yamaura, T. Yamauchi, H. Ueda, H. Gotou, T. Yagi, and Y. Ueda,
J. Phys. Soc. Jpn. 75, 073801 (2006).
[3] S. Kim, K. Kim, and B. I. Min, Phys. Rev. B 90, 045124 (2014)

- 153 -



= S-VII-2

Lanthanide-like localization of 4d-derived spins
in a columnar itinerant niobium oxide lattice
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Local moments embedded in conducting media form a rich platform for unusual phases, with phenomena
including Kondo systems, heavy fermion metals and superconductors, and still unexplained non-Fermi liquid
behavior. Two decades ago it becameclear that the suboxide Nb;>O»9 displayed local spins in a conducting
background, but the origin has remained a conundrum and its low temperature behavior has not beenstudied
extensively. Using first principles based methods and the refined crystal structure based on columns of 3%4 planar
blocks of NbOg octahedra, we find that orthorhombic (0)-Nbj2O29 introduces a new class of transition metal oxide.
The electronic system consists of aNb dimer spin-orbital comparable in size to those in metallo-organic
compounds, yet is tightly bound and weakly interacting with itinerant electronic bands. These local moments -
a rare occurrence for Nb - form one-dimensional spin chains that criss-cross perpendicularly oriented conducting
“nanowires.” The local moment bandwidth is comparable to what is seen in rare earth compounds with extremely
localized orbitals. The microscopic origin is elucidated based on the local structure of the NbOs octahedra and
orbital+spin ordering. The resulting anisotropic two-dimensional Heisenberg-Kondo lattice model provides a new

and distinctive spin-fermion lattice system for further study.

4
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Quasiparticle self-consistent GW study of cuprates:
electronic structure, model parameters, and the
two-band theory for Tc

Myoug Joon Han’
Department of Physics, KAIST

An important open question for high-Tc cuprates is about the material dependence of the superconducting
properties. Using the quasiparticle self-consistent GW (QSGW) method, we re-examine the electronic structure
of the parent compounds of copper oxide high-Tc materials. We show that QSGW captures several important
features, distinctive from the conventional LDA results. The energy level splitting between dx2-y2 and d3z2-r2
is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than
LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission
experiments. This agreement with the experiments supports the previously suggested two-band theory for the

material dependence of the superconducting transition temperature, Tc.
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Full ab initio calculations of non-adiabatic
electron-atom coupled dynamics
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Since the Schrodinger’s and Dirac’s formulation of quantum mechanics at the beginning 20th century, diverse
branches of theories have developed to deal with quantum mechanics of condensed matters in a way of as
ab-initio as possible. The most widely used method is the density functional theory in which the one body
Hamiltonian is solved self-consistently, and atomic degrees of freedoms are singled out through the
Born-Oppenheimer approximation. Various hierarchical and complementary treatments have been introduced to
overcome limitations of such an effective one-body theory. Now the community in this field is ready to include
perturbations, such as photons or electrons colliding with condensed matters, to study sub-femto second
phenomena beyond Born-Oppenheimer approximation. As a practical implementation in this direction, we
developed the package of real-time time-dependent density functional theory, in which the Kohn-Sham orbitals
evolve along with the self-consistent evolution of density and Hamiltonian. We present our results for electron
tunneling across an oxide insulator and collision of an electron wave packet in a material system. We particularly
put emphasis on the fact that, because of the over-delocalization error of the conventional local density
functionals, an explicit control parameter for the electrons correlation, such as Hubbard U term, is necessary in
the time-dependent equation. We show that the non-local Hubbard potential can be implemented in, line with other
non-local components, in the Suzuki-Trotter’s splitting scheme as well as in Crank-Nicolson form of propagator.
As example studies, we calculated the high speed motion of alkali atoms on metal surface and the exchange of

electron between localized defects and metallic bath, as sketched in the Anderson model.
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In materials with perpendicular magnetic anisotropy, current-induced domain-wall (DW) motion has been
attracted a great attention for its technological application toward spintronic devices such as Magnetic magnetic
Racetrack racetrack Memory memory [1]. Recently, the efficiency of the current-induced DW motion is found
to depend on its DW type sensitively [2]. Since the DW type is determined by the Dzyaloshinskii-Moriya
interaction (DMI) [3], here, we report that the DMI-induced asymmetric domain expansion pattern provides the
information of the DW type: either Néel or Bloch. For this study, Pt/Co/Pt (Sample I), Pt/Co/Pd (Sample II),
and Pd/Co/Pd (Sample III) films are were deposited on Si substrates with 100-nm SiO2 layer by use of dc
magnetron sputtering. The DW expansion images are were then observed by use of a magneto-optical Kerr effect
microscope and the DW speed is was measured from the sequential domain images. As shown in Fig. (a)-(c),

the DW speed vpw shows an inversion symmetry with respect to an offset, which is known to be a direct measure
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of HDMI [3, 4]. It is clear from the figure that the samples exhibit distinct signs and magnitudes of HDMI, which
finally induces different DW type: the right-handed-Néel-type (Hpmi = +85 mT) for Sample I, left-handed-
Néel-type (Hpmi< -200 mT) for Sample II, and Bloch-type for Sample III (Hpmi ~ 0 mT), respectively.
Interestingly, these samples also exhibit distinct domain expansion patterns as seen in Fig. (d)-(f): elongation to
+x direction for Sample I, -x direction for Sample II, and y direction for Sample III, respectively. Such distinct
domain expansion patterns is indicated to be accounted for that the spatial distribution of the DW energy on the
circular domains under an external magnetic field H, depends is related to the DW type. Detailed analysis will

be discussed.
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1. Introduction

Antiferromagnetic spintronics is attracting considerable interest nowadays as the antiferromagnet is immune
to external magnetic fields [1] and compatible with metal or semiconductor electronic structure [2]. To be used
as functional devices, one has to find an efficient driving force to manipulate antiferromagnet spins. The effect
of spin transfer torque (STT) on antiferromagnetic spins has been identified [3]. Recently, Hals et al. [4] reported
a theory of STT-induced dynamics of antiferromagnetic domain wall (AF-DW) and found that the DW velocity
is proportional to the ratio between the dissipative torque and the damping, as for ferromagnet (FM) DWs.

2. Experiment

In this talk, we report theoretical and numerical results of current-induced AF-DW motion in
antiferromagnet/heavy metal bilayers where the injection of in-plane current generates spin-orbit torque (SOT) as
well as conventional STT (i.e. adiabatic and nonadiabatic STTs). Based on the nonlinear sigma model for the
Néel vector [5], we derive analytical solution of steady-state domain wall velocity. We also perform numerical

computation based on atomistic spin model [6].

3. Result and discussion

Figure 1 shows the DW velocity vpw as a function of current density for 3/« = 1 where « is the Gilbert
damping and ( is the non-adiabaticity of spin current. When only STT is present (i.e., the effective spin Hall
angle, 6sy = 0), vpw is linearly proportional to the current density. On the other hand, when both STT and SOT
are present, vpw deviates largely from the linear relation. For a specific sign of #suy (or current direction
equivalently), vpw increases rapidly with current magnitude. This rapid increase of vpw (i.e., fsy = -0.2 in Fig.
1) assisted by SOT is similar to the case of FM-DW [7]. However, we observe an important difference between
FM-DW and AF-DW; a current range for very high vpw is quite narrow for FM-DW due to the Walker
breakdown [7], whereas such a very high vpw is obtained for the current above a certain threshold for AF-DW
because the Walker breakdown of AF-DW occurs at a much higher current density (> 10° A/em’). We also
observe a large deviation between analytic solution and modeling results at high current regime, caused by the
breakdown of continuum approximation used for the nonlinear sigma model. In the talk, we will discuss spin

wave generation from AF-DW at high current regime in detail.
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Fig. 1. Steady-state velocity of antiferromagnetic domain wall

by STT and SOT. Symbols are numerical results.
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GMR sensors have been studied and intergrated into a sensitive system for detecting and quantifying
biomedical molecule concentration. The targets of the detection and the measurement are prostate cancer antigens
(PSAs) to which antibody-magnetic nanoparticles (MNPs) complexes made a specific binding. To employ a GMR
sensor for the measurement, a process of linking between anti-PSA (antibody specific for PSAs) with MNPs has
been developed. Owning to these bindings, the induced magnetic field from MNPs in a sample well was the
primary measure of the biological molecule concentration. In this configuration, the sample well containing MNPs
was non-contact and moving relatively to the immobile GMR sensor in a magnetizing field. The sensor system

could detect a wide range of PSA antigen concentration, from 4 ng/mL to 1 pg/mL.
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Fig. 1. Non-contact GMR sensor in measurements of magneto-biological sample.
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1.2

Magnetic domain-wall (DW) motions have attracted growing interest for potential future magnetic applications
such as race-track memory [1] and magnetic logical devices [2]. However, a drawback of electric-currentdriven
DW motions is the Joule heating [3] due to the extremely high current density. Recently, micromagnetic
simulations [4] have shown that spin waves (SWs) propagating along ferromagnetic nanowires allow for DW
motions without Joule heating. More recently, fundamental understanding of DW motions in three-dimensional
(3D) magnetic nanotubes has been obtained from theoretical studies, numerical simulations, and several
experiments. [5] As a consequence of the tubular topology and superior stability of the nanotubes, a much higher
threshold field is needed to destroy the DW structures. Since fast and precisely controlled DW motion is a
prerequisite for operations performed by such devices, herein we present the results of a study on the interaction
of SWs and DWs in nanotubes.

2. eI A

We here report a micromagnetic simulation study on interactions between propagating SWs and a vortex DW
in cylindrical magnetic nanotubes[6]. In such cylindrical nanotubes, we found that DW propagation speed is
sensitive to both SW amplitude and its frequency. From a fast Fourier transformation analysis of SWs, we found
that DW speed is quantitatively correlated with SW amplitude change. We also determined that the DW moves
away from the SW source over a wide frequency range, ata velocity that is an order of magnitude faster than
in flat nanostrips. Partial or complete reflection of spin wave salso occurs at complex vortex DWs in cylindrical
nanotubes, in which momentum transfers between the SW and DWs give rise to specific torques acting on the
DW that allow for DW movement in the same direction as that of the incident SWs. Overall, this work provides
a fundamental understanding of SW and DW interactions in magnetic nanotubes and shows the way to potential

applications in future all-magnonic spin-wave devices.

3. 1%

The transmittance in the fy = 13 — 18 GHz range is extremely small, as low as ~ 10", This almost zero
transmittance of SWs across the DW represents almost complete reflection of incident SWs from the DW placed
in the SW guide. This observation is consistent with the fact that propagating SWs can be totally reflected from
a DW in cases where SW’s wavelengths are larger than the width of a DW. Thereby, the magnonic linear
momentum is transferred completely to the DW, so that the DW can move forward at a remarkably high speed

on the order of a few hundreds of m/s or higher. Such strong SW reflection from DWs is a unique behavior
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in the nanotube geometry, because the lack of a lateral boundary makes the DW stable, subsequently yielding
a stronger interaction with incident SWs. Accordingly, the strong SW reflection by the stray fields arising from
the vortex-type DW can impart magnonic linear momentum transfer torques to the DW. Moreover, the internal
normal oscillation modes of the DW also influence DW motions, resulting in an additional reflection of incident
SWs. As reported earlier, magnonic linear momentum transfer torques from SWs’ reflection is an order of
magnitude more effective than spin angular momentum transfer torques arising from. Such reflection of SWs from
a DW plays a key role in magnonic linear momentum transfer to the DW. Our simulation results and
interpretations unambiguously reveal that the DW speed is enhanced just by manipulating the frequency and

amplitude of SWs excited in nanotube geometries.

4.8

In summary, we studied the interaction between propagating SWs and a vortex-like DW in a specific nanotube
geometry, and found SW-driven, fast DW motions. The DW speed is determined by the SW amplitude and
frequency in a nanotube of given dimensions, and was as high as ~660 m/s in this study. Based on the data
of the amplitude and transmission coefficient of SWs passing across the DW, we found that magnonic linear
momentum transfer torques, arising from the strong reflection of SWs from the DW in a specific nanotube
geometry, allow for fast DW motion in the same direction as that of the incident SWs of a specific frequency
band, here fo = 13 — 18 GHz. This work constitutes an important step toward the achievement of all-magnetic-

based DW memory and logic devices based on fast DW motion.
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RE-TM based compounds have been a subject of interest for many researchers due to their potential for
magnetic application such as permanent magnets and magnetic-recording media. In particular they show a strong
magnetocrystalline anisotropy which is mainly produced by RE ions as a consequence of the crystal field acting
on the 4f electrons, and hence high coercivity (H.). In addition the TM sublattice is responsible for the large
magnetic moment and high Curie temperatures characteristic of RE-TM compounds, also supplies a relevant
contribution to the anisotropy, which is dominant at high temperatures. Recently, it has also shown the additives
can enhance the coercivity effectively by refining the microstructure and modifying the grain boundary structure.
In order to do this, many elements have been added to these alloys. In the present work, as far as 2:17 type
rhomboedral (R/3m) SmCo sintered permanent magnets was concerned, the influence of Lu, Pr, Gd and Ga
addition on crystal structure and magnetic properties of SmxCoi; compounds were investigated by using X-ray
diffraction, transmission electron microscopy, and magnetic measurements, respectively. The result shows that both
Lu and Gd additions have proved to result in relevant improvements in the microstructure and magnetic
properties. The Lu addition has a greater effect on the coercivity H.j, but Gd especially on (BH)max, respectively.
It is shown that the H; of SmyCoi7 magnet is improved by an additional 6wt% Lu from 2067.2 up to 2832.2
kA/m, and the (BH)ma is improved by an additional 5wt% Gd from 202.9 up to 217.3kJ/m’. The enhanced
mechanism for the excellent magnetic properties, especially for high coercivity, in the SmyCo;7 sintered magnets

was analyzed by their microstructure.

Keywords: 2:17 type SmCo; Sintered permanent magnets; Coercivity
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Rare-Earth-Free Permanent Magnets :
MnBi Bulks and Thin Films

Hyun-Sook Lee", Sumin Kim', Hongjae Moon', Hwaebong Jung',
Sumin Kim?, Haein Yim? and Wooyoung Lee"
1Department of Materials Science and Engineering, Yonsei University,

262 Seongsanno, Seodaemun-gu, Seoul 120-749, Korea
*Department of Physics, Sookmyung Women’s University, Seoul, Korea
"E-mail: wooyoung@yonsei.ac.kr

Low-temperature phase (LTP) of MnBi has attracted much attention due to its larger coercivity than that of
Nd-Fe-B at high temperature. Moreover, according to the theory of exchange-coupled core-shell magnet, when
the LTP-MnBi is used as a hard magnetic core and combined with soft magnetic shell, the maximum energy
product (BH)max is estimated to overcome that of Nd-Fe-B. In this regards, there have been many efforts to obtain
the LTP-MnBi bulks and thin films for the exchange-coupled magnets. We report on the magnetic properties of
low-temperature-phased (LTP) MnBi bulks synthesized by arc-melting and melt-spinning, and LTP-MnBi thin
films grown by a UHV sputtering system. First of all, we found that MnBi bulks shows ;H. = 5.60 kOe, B; =
6.00 kG, and (BH)max = 7.27 MGOe for 1 h milling (low-energy planetary ball milling) in the synthesis process,
indicating that anisotropic precursor powders are crucial in achieving high-performance MnBi bulk magnets. On
the other hand, we found that the ratio of Bi/Mn strongly has an effect on the magnetic properties of LTP-MnBi
films. The highest value of (BH)max of LTP film was obtained to be ~ 8.6 MGOe at room temperature when
the thicknesses of Bi and Mn were adjusted in 36nm and 14nm, respectively. The magnetic properties of

exchange-coupled MnBi with various soft layers such as FeCo and Fe will be discussed in detail.

- 178 -



ZS-X-4

Coercivity Enhancement by RF3;-Doping in
Hot-Pressed and Die-Upset Nd-Fe-B-type Magnet

J. Y. Kim"¥, K. M. Kim', H. W. Kwon', J. G. Lee” and J. H. Yu?

1Pukyong National University, Busan, Republic of Korea
*Korea Institute of Materials Science, Changwon, Republic of Korea
*Pacific Metals, Gumi, Republic of Korea

Nd-Fe-B-type magnets with excellent room temperature properties have been expanding their use in rather
harsh condition of high operating temperature (= 200 C) such as the magnets in the traction motor and generator
of the HEV, EV and wind turbine. Due to high temperature coefficients («, 3) of remanence and coercivity the
ordinary grade Nd-Fe-B-type magnet cannot function properly at the elevated operating temperature unless it
possesses sufficiently high room temperature magnetic properties. In particular, sufficiently high room temperature
coercivity is definitely needed in those applications because the magnet can be readily demagnetized by the
reverse applied magnetic field during operation. Current technology for enhancing the coercivity in the
Nd-Fe-B-type magnet is an alloying technique or grain boundary diffusion (GBD) process by using heavy
rare-carth, such as Tb, Dy. In this study, diffusion of rare earths in the Nd-Fe-B-type hot-pressed and die-upset
magnets using various RF3; as a diffusion source of rare-earth, which are chemically more stable and less
expensive, was attempted, and its effect on the coercivity were investigated. Commercial melt-spun flakes
(MQU-F : Nd36Fers6Co66GaosBss) were mixed with 1.6 wt% RF3; (R = La, Ce, Pr, Nd, Dy) and then hot-pressed
and die-upset. RF; (R = Pr, Nd, Dy)-doping led to an overall coercivity enhancement with respect to the un-doped
magnet. In the hot-pressed magnet, the most profound coercivity enhancement (5.0 kOe) was achieved in the
DyFs-doped magnet. NdFs- and PrFs-doping was also beneficial for enhancing coercivity (3.5, 3.5 kOe). In the
die-upset magnets, RF; (R = Pr, Nd, Dy)-doping was still beneficial for enhancing coercivity (4.0 kOe, 2.0 kOe,
and 2.0 kOe for RF; (R = Pr, Nd, Dy)-doping, respectively). The coercivity enhancement was attributed mostly
to the substitution of Nd in Nd,Fe4sB matrix grains and the modification of Nd-rich grain boundary in the flake
by the dopant.
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Fig. 1. Demagnetisation curves of the hot-pressed (a) and die-upset (b) Nd-Fe-B-type magnets doped with RFs.
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The development of ultra-fine anisotropic magnetic
material by HDDR process

H.R.Cha"¥, J. H. Yu', H. W. Kwon?, Y. D. Kim® and J. G. Lee'

'Korea Institute of Materials Science, Changwon, Republic of Korea
2Pukyong National University, Busan, Republic of Korea
*Pusan National University, Busan, Republic of Korea

Recently, Dy-free high coercivity Nd-Fe-B permanent magnets have drawn a great attention for hybrid electric
vehicles (HEVs) or electric vehicles (EVs). To achieve high coercivity without heavy rare earth elements, the
control of microstructures such as grain size and grain boundary is of significant importance. Hydrogenation-
disproportionation-desorption-recombination (HDDR) process is one of the simple methods to obtain Nd-Fe-B
magnetic powders with single domain-sized grains. Furthermore, the powders show anisotropic magnetic
properties under optimal conditions, which have been focused on hydrogenation-disproportionation (HD) stage
although desorption-recombination (DR) stage is also thought to be important for improvement of magnetic
properties. In the present study, effect of master alloy and DR condition on the microstructure and magnetic
properties of Nd-Fe-B powders prepared by HDDR process has been studied.

The strip (Ndi25Bs4Gag3NbooFepa) and mold [NdxBe4GagsNbo Fena (x=12.5-13.5, at.%)] cast alloys were
subjected to HDDR process after homogenization heat treatment. During desorption-recombination stage,
dehydrogenation speed and time were systematically changed to control the speed of the desorption-recombination
reaction. In the result, it was confirmed that the texture and Nd-rich distribution of HDDR powder was related
to master alloy powder. Therefore the master alloy powders must have a single crystalline and uniform distribution
of Nd-rich phase for higher magnetic properties of HDDR powder. Furthermore the higher Nd content resulted
in higher coercivity of the HDDR powder due to the thicker and more uniform Nd-rich phase at grain boundaries.
And it was also confirmed that the slow dehydrogenation speed could maximize the effect of high Nd content
on the magnetic properties of HDDR powder. At the optimized dehydrogenation speed, the coercivity and
remanence was 15.3 kOe and 13.0 kG, respectively, at 12.9 at.% Nd content, which resulted in a (BH)max of
36.8 MGOe.
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Fig. 1. Dependence of magnetic properties of HDDR powders processed by
(a) fast-DR, (b) slow-DR process on the Nd content.
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Site preferences for La and Dy in Nd;Fe14B
Permanent magnet: A first principles study

Imran Khan and Jisang Hong
Department of Physics, Pukyong National University, Busan 608-737, Korea

We studied the electronic structure and magnetic properties of pure, La and Dy substituted Nd,Fe;4sB by using
the full potential linearized augmented plane wave method. A DFT+U scheme was applied to treat the localized
4f electrons of Nd and Dy. To explore the magnetic ground state, we considered both ferromagnetic (FM) and
antiferromagnetic (AFM) spin interaction between Fe and R (rare-earth) sub-lattice. The total energy calculation
predicts that both La and Dy prefer 4f-site in Nd>FesB on lower substitution, along with a negative value of
substitution energy (-3.04 eV/atom) and (-4.04 eV/atom) respectively. The negative value of substitution energy
shows that both La and Dy prefer to enter the Nd,FesB phase on lower substitution. On increasing the
substitution level La prefer g-site according to the total energy calculation but its substitution energy is positive
(0.13 eV/atom), which shows that La don’t prefer to enter Nd,FesB phase rather it will be segregated at the
grain boundaries. The calculated spin magnetic moments for different Fe and R sites were in good agreement
with previously reported value. We found that for light rare-earth elements like Nd and La the spin and orbital
magnetic moment was always anti-parallel. Overall, these findings will help for enhancing the magnetic properties

of Nd,Fe;4sB permanent magnet.
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Design and Analysis of Permanent Magnet Array for
Development of Large Area Magnetron Sputtering Sources

Ye-Lim Lee', Rambabu Kuchi', Srivathsava Surabhi', Shin-Jae You?, Jong-Ryul Jeong"
1Department of Materials Science and Engineering, Graduate School of Energy Science and Technology,
Chungnam National University, Daejeon 305-764, South Korea
*Department of Physics, Chungnam National University, Daejeon 305-764, South Korea

Recently, large area magnetron sputtering sources have become one of the most important methods in thin
film fabrication area. Therefore, development of novel sputtering source available for large area process with high
sputtering efficiency is highly demanded. In general, the permanent magnets utilized in the sputtering source affect
plasma density, plasma uniformity, target voltage, and directionality of the ions and electrons and eventually affect
to the sputtering performance such as deposition uniformity, sputtering yield, target efficiency etc. In this study,
we have investigated the analysis method for designing the high-efficiency large area sputtering source. Especially,
various kinds of sputtering parameters including plasma uniformity and sputtering yield were systematically

studied by varying the permanent magnet configuration and source design.
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Determination of the Dzyaloshinskii-Moriya Interaction
Energy density in the heavy metal/ferromagnetic
layer/insulator structure

Chun-Yeol You", Jaehun Cho', Nam-Hui Kim', June-Seo Kim?, Reinoud Lavrijsen?, Aurelie Solignac?,
Yuxiang Yin?, Dong-Soo Han?, Niels J. J. van Hoof'?, Henk J. M. Swagten®, and Bert Koopmans®

1Depar‘cment of Physics, Inha University, Incheon 402-751, Republic of Korea
2Department of Applied Physics, Center for Nano Materials, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands

We determined the interfacial Dzyaloshinskii-Moriya (iDM) energy density by using Brillouin Light Scattering
(BLS). Since BLS measurement provides Stokes and anti-Stokes spin waves, corresponding to + propagation spin
wave vectors, simultaneously, the frequency difference, Af = f(+k:) - f(-k:), can be obtained, where finite Af is
a finger point of the iDM [2]. We performed three different measurements (1) Af as a function of the external
field, (2) Af as a function of the angle between spin wave propagation direction, and (3) spin wave dispersion
relations as shown in Fig. 1 (a)~(c). Based those three independent measurements, we can successfully rule out
other possible sources of Af in our experiments, and determine iDM energy density precisely. By virtue of local
probing nature of BLS, we investigated the thickness dependent iDM in Pt/Co(#c,)/AlOx and Pt/CoFeB(fcores)/

s

physical quantity is the saturation magnetization M,, and it can be determined in the BLS measurement, which

AlO,wedge samples. In order to extract iDM energy density from the Af = the only additional necessary

is one of the strong advantages of the BLS measurement compared to other methods. The maximum iDM energy
densities are 1.2 mJ/m’ for 1-nm thick Co and 0.7 mJ/m’ for 1.6-nm thick CoFeB samples. Furthermore, we found
the inverse proportionality of iDM energy density to the #c, and fcore, it implies the measured iDM in our system

is true interfacial term.
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Fig. 1 (a) Af as a function of the external field. Inset: Stokes and anti-Stokes spin wave frequencies as a function
of the external field. (b) Af as a function of the anglea between spin wave propagation direction and the
magnetization direction. (¢) Spin wave dispersion relations as a function of wave vector kp. Inset: Theoretical spin
wave dispersion relation with wider range of wave vector, and green box indicates the experimental range.
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Direct observation of spin current based on XFMR

C. Hwang*

Center for Nanometrology Korea Research Institute of Standards and Science

Spin-current based on spintronics has drawn a lot of attention due to its simple structure compared with other
spin technology. Although this field has drawn a lot of attention for the last ten years, the observation of spin
current has remained indirect, being measured through the effect of the spin current on other physical entities.
We will show a new method of direct observation of spin currents by synchronizing a microwave waveform with
the synchrotron x-ray pulses. Ferromagnetic resonance of the magnetic layer is used to pump a pure spin current
into the spacer layer, and then directly probe the spin current in this spacer layer by a time-resolved x-ray

magnetic circular dichroism (XMCD).
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Manipulation of single spin of NV center in diamond

Norikazu MIZUOCHI"*
'Graduate School of Engineering Science, Osaka University 1-3, Machikane-yama,
Toyonaka-city, Osaka, 560-8531, JAPAN
*JST-CREST

NV center in diamond has been extensively interested because the single spin of it can be manipulated and
detected at room temperature (RT). Furthermore, coherence time (T,) of the NV center is very long. T, is the
time to retain coherence (superposition state) and directly relates to the sensitivity of magnetic sensor. Therefore,
the unique and excellent properties are expected to be applied for quantum computing, quantum communication
and high-sensitive magnetic sensor with nano-scale resolution. By using the NV center, we previously investigated
the quantum entanglement generation [1], spin coherence properties [2], and quantum coupling with a flux-qubit
[3], and electrically driven single photon source at RT [4].

Recently, we realized deterministic electrical charge-state control of single NV center [5] by using a p-i-n
diode that facilitates the delivery of charge carriers to the defect for charge state switching. A homebuilt confocal
microscope was used to observe the single NV centers. By developing this technique for the decoupling of nuclear
spins from the NV electron spin, realization of quantum memory of nuclear spin with very long T, can be
expected. In addition, we also realized nearly perfect alignment (more than 99 %) of the NV axis along the
[111]-axis [6]. This result enables a fourfold improvement of optical detection efficiency for spin information in
quantum device and a fourfold improvement in magnetic-field sensitivity. These achievements are considered to
be a crucial step towards elaborated diamond-based quantum spintronics devices.

These researches are supported INPACT Program of Council for Science, Technology and Innovation (Cabinet
Office, Government of Japan), SCOPE program, and JST CREST program. The p-i-n diode was produced by
AIST in Japan.
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Efficient spin injection and absorption
using CoFe-based alloys

Takashi Kimura’
1Department of Physics, Kyushu University, Fukuoka, Japan

Generation, manipulation and detection of spin currents are important issues in the operation spintronic devices
because a spin current plays an important role in spin-dependent transport and spin-transfer switching. Especially,
pure spin current which is the spin current without accompanying the charge current is an attractive quantity for
utilizing the spin current efficiently. Nonlocal spin valve measurementsin laterally configured ferromagnetic
metal(FM)/nonmagnetic metal (NM) hybrid nanostructures is a powerful means for evaluating the intriguing
properties of pure spin current precisely. In this talk, I will introduce materials for the efficient generation and
detection of the pure spin current and a structure for efficient control of the absorption property of the pure spin
current.

In the first part, I will introduce the results on the efficient generation of pure spin current using CoFeAl.
We show that CoFeAl alloy is an excellent material not only for the electrical spin injection but also thermal
spin injection because of its favorable band structure as schematically shown in Fig. 1.[1]

In the second part, I will introduce an unconventional lateral spin valve structure, in which the pure spin
current flows in a FM/NM bilayer shown in Fig. 2. We show that the effective spin diffusion length can be

modulated by the direction of the magnetization of the FM layer in the spin-current channel.
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Fig. 1 Schematic illustration of the efficient spin injection Fig. 2 Conceptual image of modulation

together with a SEM image of lateral spin valve of the spin absorption.
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Thermal spin generation
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The coupling of spin and heat gives rise to new physical phenomena in nanoscale spin devices. In particular,
spin transfer torque (STT) driven by passing heat currents through magnetic layers provides a new way to
manipulate local magnetization. Hatami et al. theoretically predicted thermally-driven STT in metallic spin valves
[1]; Slonczewski suggested the initiation of thermally-driven STT in ferrite/metal structures and predicted a greatly
enhanced quantum efficiency compared to charge-current-driven STT [2]. These new phenomena, namely,
“thermal STT” rely on the transport of thermal energy, in contrast to the transport of electrical charge, and provide
a new way to manipulate magnetization [1, 2]. To fully realize the envisioned advantages of thermal STT, it is
important to observe thermal STT directly and quantify its sign and magnitude. Although thermal spin injections
in ferromagnetic metal (FM)/normal metal (NM) [3], ferrite/NM [4], and FM/semiconductor [5] have been
achieved, direct and conclusive evidence of thermal STT has remained elusive.

Here 1 provide direct evidence of thermal STT in metallic spin valves with the structure Pt/FM1/Cu/FM2.
Heating by the ultra-fast pump optical pulse generates spin currents in the structure by two distinct mechanisms:
i) volume spin generation in the FM1 layer by ultrafast heating and associated ultrafast demagnetization of FM1
[6]; ii) interfacial spin generation at the Pt/FM1 and FM1/Cu interfaces by heat current passing through the FM1
layer [7]. The spin-dependent Seebeck effect (SDSE) of FM1 converts the heat current into spin current. Both
demagnetization-driven and SDSE-driven spin generation on FMI1 can diffuse to FM2 and exert STT on FM2
magnetization.

The demagnetization-driven spin generation is due to thermal transport between electrons and magnons of
FM1 and angular momentum conservation of electron-magnon coupling of FM1 [6]. The demagnetization-driven
spin generation is significant for only the first ~3 ps after the pump optical pulse; 3 ps is approximately the time
required for electrons, magnons, and phonons of FMI to equilibrate.

The SDSE-driven spin generation is due to thermal transport between FM and NM at FM/NM interface. In
contrast to ultrafast demagnetization, the heat current passing through FM1 persists for a much longer time, ~100
ps, the time required for the various layers in the structure (Pt, FMI1, Cu, and FM2) to equilibrate. The amount
of SDSE can be controlled by the composition of FM1, which is a spin source layer, and thickness of Cu, which

is a heat sink layer.
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