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Chemical Synthesis of Magnetic Nanomaterials

Yanglong Hou
Department of Materials Science and Engineering College of Engineering, Peking University, China
E-mail: hou@pku.edu.cn

Magnetic naonmaterials have attracted intensive interests due to their great applications in data storage and
biomedical fields, including MRI, drug delivery and magnetic hyperthermia. It is a prerequisite to these kind of
applications that these nanomaterials possess controlled size, shape and magnetic properties. It is worth noting
that chemical methods offer an effective route to precisely control both phases at the nanoscale, and help
understand magnetic interactions and develop advanced magnetic materials for various applications. In this talk,
we will introduce our recent work on controlled synthesis of magnetic nanomaterials. We will first present a
general protocol of chemical synthesis to monodisperse NPs, such as 0D Fe;O4, FePt, FesC, nanoparticles, 1D
FePt nanorods, 2D Fe;O4 nanoprisms, and nanocomposite magnets. And then, we willmove to exchange-coupled
nanoparticles with magnetically hard L1o-FePt as core and magnetically soft Co (or Ni, or Fe,C) as shell. Finally,
a facile chemical route to prepare 200 nm single domain SmCos@Co core/shell magnets with coercivity of 20.7
kOe and saturation magnetization of 82 emu/g. The single domain SmCos core contributes to the large coercivity
of the magnets and the exchange-coupled Co shell enhances the magnetization. This method can be further

utilized in the synthesis other NdFeB based exchange-coupled magnets.
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Preparation of bulk anisotropic nanocrystalline RCos
(R=Sm, Pr) permanent magnets

Ming Yue
College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China

Bulk nanocrystalline RCos (R=Sm, Pr) permanent magnets with high coercivity and Tc are promising
candidates for practical application at elevated temperature. Recently, strong c-axis crystallographic texture and
magnetic anisotropy have been successfully developed in such kind of magnet (SmCos for example) by severe
hot deformation method. Up to now, however, mechanism of crystallographic texture development in
nanocrystalline RCos permanent magnet during hot deformation process is still unknown. In present study, the
electron backscattered diffraction (EBSD) has been applied to study the microstructure and crystallographic texture
evolution in hot deformed RCos permanent magnets. Increase of height reduction rate of deformed RCos magnets
lead to the formation of platelet shape grains perpendicular to the press direction; correspondingly c-axis
crystallographic texture were gradually enhanced. As a result, the remanence of the magnets increases
substantially. For the first time, it is observed that the grain boundary planes are also textured in the magnet.
Therefore, it is expected that the grain boundary (GB) sliding and grain rotation are responsible for the plastic

deformation, namely the GB mediated plasticity.

References
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Eng. Comm., 2014, 16(9), 1669-1674.
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Adv., 2015, 5(110): 90976-90982.
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Preparation of Nd based nano composite by
reduction-diffusion process

Chul-Jin Choi and D. Kim

Powder & Ceramic Division, Korea Institute of Materials Science, Changwon 642-831, Korea

Rare earth (RE) - transition metal based high energy density magnets are of immense significance in various
engineering applications. Nd based magnets possess the highest energy product and are widely used in whole
industries. Simultaneously, composite alloys that are cheap, cost effective and strong commercially available have
drawn great attention, because rare-carth metals are costly, less abundant and strategic shortage.

We designed rare-earth free alloys and fabrication process and developed novel route to prepare Nd based
nanocomposite powders by wet process employing spray drying and reduction-diffusion (R-D) without the use
of high purity metals as raw material. The novel route to prepare Nd-based nanocomposite powders by utilizing
both spray drying and reduction-diffusion processes was designed and investigated in this study. Precursors were
prepared by spray drying method using the aqueous solutions containing Nd salt, Fe salt and boric acid with
stoichiometric ratios. Desalting of the precursors, milling and reduction in H, atmosphere were performed,
followed by R-D process. It was revealed that the amount of Calcium (Ca) as reducing agent added in R-D step
played an important role in the formation of Nd,FeisB phase, because vigorous H, evolution and dissociated
hydrogen might be diffused into the lattice of Nd,Fe 4B interstitially to form Nd>FeisBHy (x=1-5) during washing
of powders in water obtained after R-D with excessive amount of Ca. In order to make the powders smaller and
homogeneous size, we carried out ball milling in ethanol before washing with water. Finally, Nd>Fe4B powders
with high coercivity of more than 10 kOe were produced by adjusting the amount of Ca in reduction-diffusion
(R-D) process. They showed spherical in shape with a mean size of 1/m and maximum energy product (BH)max
was attained 17.8 MGOe. It is considered that this process can be applied for the recycling of RE-elements

extracted from waste magnets including motors.

References
[1] M. Sagawa, S. Fujimura, M. Togawa, H. Yamamoto, Y. Matsuura (1984) New material for permanent
magnets on a base of Nd and Fe, J. Appl. Physics, 55, 2083-2087.
[2] C.Q. Chen, D. Kim, C.J. Choi (2014) Influence of Ca amount on the synthesis of Nd,Fe ;4B particles in
reduction-diffusion process, J. Magn. Magn. Mater., 355, 180-183.



Magnetic properties of MnBi/SmzFe1;7N3 hybrid sintered
magnets using hot compaction process

Kiwoong Moon, Kwangwoon Jeon, Jongryoul Kim’
Department of Materials Engineering, Hanyang University, Ansan, 15588, Korea

Permanent magnets (PM), the material for energy storage, have been used for a wide range of applications
(consumer electronics, automotive, factory automation etc.). Among commercial PM products, NdFeB magnets
have been widely used because they have the highest value of the maximum energy product at room temperature.
However, NdFeB magnets have some problems, such as the limited resources of raw materials, and the
degradation of magnetic properties in the high-temperature environment. In this respect, the development of new
PM with excellent magnetic properties and thermal stability has attracted much attention due to a strong need
in hybrid and electric vehicles.

There have been several efforts to develop sintered magnets using MnBi and Sm,Fe;7N3 compounds because
a LTP (low temperature phase) MnBi compound possess a high anisotropy field and a positive temperature
coefficient from -123 ~ 277°C" and a SmyFe;sN; compound an excellent maximum energy product. However, the
LTP MnBi has a relatively low saturation magnetization (80 emu/g) and changes into HTP (high temperature
phase) MnBi at 355°C. On the other hand, the SmyFe;7N; compound is decomposed at the elevated temperature,
which makes it difficult to develop sintering processes. In this study, MnBi/SmyFe;7Ns hybrid magnets were
fabricated to utilize the complementary relation in terms of magnetic properties and sintering processes.

In order to fabricate LTP MnBi ribbons, a single-roller melt-spinning method has been used and subsequent
annealing carried out. Sm;Fe;7N; powders were synthesized by reduction-diffusion and nitrogenation process2.
These MnBi and SmyFe ;N3 powders were mixed in proper weight ratios using surfactant assisted ball milling
process. These mixed MnBi/SmyFe;7;N3; powders were aligned under an applied field of 16 kOe and then
compacted with a pressure of 300 MPa for 3 min at 260 C.

The microstructure of synthesis ribbons and powders was investigated by a x-ray diffractometer and electron
microscopes. The magnetic properties were measured under a maximum applied field of 25 kOe by a vibrating
sample magnetometer and the thermal analysis was characterized by a thermogravimetry-differential thermal

analyzer.

References
[1] S. Saha, M. Q. Huang, C. Thong, B. Zande, V. Chandhok, S. Simizu, R. Obermyer and S. Sankar,
Mangetic properties of MnBi;«Ry (R=rare earth) systems, J. Appl. Phys. 2000, 87, 9, 6040
[2] T. Ishikawa, K. Yokosawa, K. Watanabe and K. Ohmori, Modified Process for High-Performance
Anisotropic SmyFe;;N; Magnet Powder, J. Phys.: Conf. Ser. 2011, 266, 012033



Fabrication of Hard/Soft Magnetic Nanoparticle
Nanocomposite Magnet

Young Soo Kang'
Department of Chemistry, Sogang University, Seoul 121-742, Korea

Soft and hard magnetic nanoparticles were prepared by hydrothermal methods. Soft phase magnetic
nanoparticles such as a-Fe, Fe;04, FeCo and Co were synthesized and characterized on the structure and magnetic
property with XRD, TEM and VSM. The homogeneous dispersion of them in the solution could be accomplished
by coating dispersing surfactant on their surface and sonication with ultra-sonicator. On the other hand, hard phase
magnetic nanoparticles such as Nd,Fei4sB, SmCos and Sm,Fe;7N3 nanoparticles were synthesized by hydrothermal
method and annealing and reduction process. The size, morphology, structure and magnetic property were
characterized with SEM, TEM, XRD and VSM. The dispersing ability in the solution was characterized by
checking SEM and TEM images after coating dispersing surfactants on their surface. The soft phase magnetic
nanoparticles were coated with cationic surfactant and hard phase magnetic nanoparticles were coated with anionic
surfactant and mixed in the organic solvent to get neutral charge by the equi-molar ratio between soft and hard
phase magnetic nanoparticles. The mixed solution of hard and soft phase magnetic nanoparticles was sonicated
for 30 min at room temperature under the argon gas to suppress the oxidation of magnetic nanoparticles. A 30
min sonication resulted in the neutrally charged particle solution by the electrostatic interaction and neutralization
of the surface charges of hard and soft phase magnetic nanoparticles. Then, the solvent was evaporated in a short
period under the reduced pressure to suppress oxidation of the magnetic particles. The solid mixture of the
magnetic particles was transferred into the glove box of nitrogen gas and pressed as a pellet. A mixture pellet
of magnetic particles was reduced at 600 — 900 °C with Ar/H, (v/v%, 95/5) gas flowing for 5 hrs. The prepared
hard/soft nanocomposite magnetic material was characterized with VSM on the magnetic property. Nd>Fe4B alloy
has been successfully synthesized by the nitrate-citrate auto-combustion followed by reduction and diffusion
process with low energy consumption. H;BOs, Fe(NOs); + 9H,0, Nd(NO3); -+ 6H,O were used as precursors and
citric acid is used as chelating ligands of metal ions. The ammonia water was used to adjust pH to 7. CaH, is
used as reducing agent for reduction and diffusion process. NdFeOs; and Fe,Os; were produced during
auto-combustion of gels. The combustion process of gel has been investigated by TGA/DTA curve measurements.
The phase compositions are studied by XRD measurement. The difference of overall morphology and magnetic
property are measured by SEM, TEM and room temperature (300 K) vibrating sample magnetometer (VSM). The
comparison on the magnetic property of the reduced samples between pellet type and random powder type has
been studied with VSM and showed the better magnetic property of pellet type Nd,FesB. Making a compact

pellet type sample for reduction is more efficient for solid reduction and phase transition for the higher coercivity.

References
[1] Hao Xuan and Young Soo Kang, Preparation of Nd,Fe;4sB by Nitrate-citrate Auto-combustion Followed
by Reduction-diffusion Process, Nanoscale 2015, 7, 8016.
[2] Chang Woo Kim, Young Hwan Kim and Young Soo Kang, Facile Synthesis and Magnetic Phase
Transformation of Ln-TM-B Nanoclusters by Oxygen Bridging J. Material Chemistry C 2013, 1, 275
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X-ray Magnetic Circular Dichroism and its applications

J.-Y. Kim’
Pohang Accelerator Laboratory, Pohang, Korea

X-ray Magnetic Circular Dichroism (XMCD) is the difference of two absorption spectra taken with left and
right circularly polarized X-rays. Basically, the phenomenon signifies the occupation difference in the spin up and
spin down bands of ferromagnetic materials and it is expected to be the next order of absorption intensity.
However, in the L absorption edges of 3d transition metals it is amplified by the spin-orbit splitting of core levels
and it has the same order of magnitude with the absorption itself. When compared with the other magnetics tools,
it has two advantages: Firstly, it is elemental and chemical specific. It is very advantageous when we are going
to study the element by element magnetic properties of chemical compounds and magnetic artificial structures
composed of different elements. Secondly, by applying the sum rule to XMCD spectrum we can obtain the orbital
and the spin magnetic moments separately. It is very useful to investigate the microscopic origin of the

ferromagnetic properties.

In this talk, I would like to present the principle of XMCD and give a few research examples, where the

XMCD analysis were critically used.
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Magneto-Optical Kerr/Faraday Microscopy for Magnetic
Domain Observation and Spin Dynamics Study

Dong-Hyun Kim’
Department of Physics, Chungbuk National University, Cheongju 362-763, Chungbuk, South Korea

Magnetic imaging technique based on magneto-optical Kerr/Faraday microscopy will be introduced.
Magneto-optical Kerr/Faraday effect (MOKE/MOFE) has been long utilized as a surface-sensitive detection of
magnetic properties both on macro- and micro-scale. Instrumentation examples for Kerr/Faraday microscopy using
MOKE/MOFE will be shown with various optical configurations. Typical examples of magnetic domain
visualization will be presented with quantitative image analysis, allowing us to determine magnetization reversal,
magnetic relaxation, and magnetic hysteresis curve. Spin dynamics observation over wide range of time scales
will be discussed. Finally, recent development combined with ultrafast pump-probe stroboscopy technique will be

also discussed.
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Probing of nhanoscale magnetic properties
using advanced magnetic force microscopy

Yunseok Kim"

'School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU),
Suwon 440-746, Republic of Korea
"Address correspondence to yunseokkim@skku.edu

Magnetic materials have been of great interest due to their multiple applications including magnetic storages
and power inductors. The performance of these applications is strongly underpinned by the magnetic properties
including magnetic domains and the eddy current loss which originates from periodic change in the magnetic
field. In particular, nanoscale magnetic features become more important due to the downsized devices. However,
probing of nanoscale magnetic properties beyond magnetic domains has been relatively less explored compared
to its significance on the applications. Here, we summarize our recent effort to develop a new approach for
probing various magnetic properties associated with eddy current and magnetic domains in magnetic devices using
advanced magnetic force microscopy at the nanoscale. The obtained results by the proposed approach show
spatially varied nanoscale information on the magnetic properties such as magnetic domains and eddy current.
This approach allows exploring simultaneous measurements of various magnetic properties at the nanoscale and

can be further extended to the analysis of local physical features.
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Probing the magnetic states of centrocymmetric
magnetic materials by magnetic force microscopy

Jeehoon Kim’
POSTECH

Recently, skyrmions have drawn much attention for physics and applied science since they provide a venue
for domain manipulation with an wultra low current density. Skyrmions, originally, were found at the
non-centrosymmetric crystals, such as MnSi and FeGe, originating from competition between ferromagnetic
exchange and Dzyaloshinskii-Moriya interactions. However, a couple of recent results show skyrmion behavior
in highly anisotropic magnetic materials with inversion symmetry, which opens a wide span of practical
applications.

In this talk we will show skyrmion-like domains in centrosymmetric crystals, probed by magnetic force
microscopy. We employ a home-built MFM operating at ultra-low, He-3 temperatures within a vector magnet with
2-2-9 T maximum fields in x-y-z direction. We highlight the evolution of tree-like domains into skyrmion-like

bubbles with a variety of fields and temperature in the bilayer LSMO and CeRu2Ga2Bsingle crystals.

- 29 -






a
o

KMS 2016 Summer Conference

special Session IV
‘MRI 2 SAKA 20} (CIL1StI D)






ZS-IV-1

HH 24 5}
15/\11:HSL57_ Ao A d WAL &}t

o
ox
Y
fu
N
:_

2
i
m rt
i
0 T

z

_L4
Ay
o
o
e
N
N
o
=2
%
ol
)

£

= Sk

t<=(random number) S A}%—?ﬂ- —‘?X_}Hxﬂ. 9l E,_—‘T—%% o]-g-3}
olgto] A2z} A|AI ol A AAER S =
AHESER AL FAAAES] FAHY] S B d4o] THb vlE)|

kA “ﬂw‘ﬂ‘”‘:} —Jf% 2] ool = 77 AutriEte]

N
f rig
o

T o

é
l'ﬂ I
=
1o 2
mlm rlr o
o
my IE S
o 2
o

Q) g

N>~ rld
N oo T
o
2 M2
£ o
al ]
X
o
FPU
ﬁ
s
l-ﬂJ
5
r{o
o
4
2

il
i
ko ol

oo Hu 1o
ey des
I‘II‘ -

=
WE
ﬁm
e
=2,
=
_l
4o
5 P
° ol
)
oo
o
s}
K
o
rf
L
e
=2
>
Ir
1o
u
of
2
e
)
)
lo
rtd
i)
iy
f
t
>

ule o) AgAENA 4 Hse BejRE 2
a2 =

£ AlTHoEZN AREEA duk2 2

)
<
>

)
5
ox
H

N
o
2

of

o

lo
il
of,
ox
re
i
o
[-v |

} WA= GATE(Geant4 Application for Tomographic Emission) HALEE
HAFSEZ] 2001 o] OpenGATE collaborationoﬂl\i 7Hetsta . GATE HA}
ol s @2 2okl 24 AFHL FA % A= 7] w2l Al
Qltl. GATE HAIZE+= *lﬂ/‘h_]— Q2 7|7ke] X Yo] REE HEFT o 7]

Aglo] Mgstel mREE] HUS BRT o] o] Hu|E nuY o 4
He AT G AR 2 AEE AHEA BelHoln] i} £417) o 87155}T). GATE B

]_
27] A AT, YA A 52 TP B4R P AT, FYRE 9% By Wy a7
S

Ir
s

N
i
Lo
ey
_|>i
4>
£
T
S
~
BT
r
rir

]

(e}
O:
J
fto

=
_a

)
o
op
L)
i)
52

o ©
>
op
_|>i

l

4
ES

2,
fot
_OrL
kl
>
i)
o
I
Ju 50

ol
g2 M so o
Mo e rir R N &

3. 1%z
AE719 A4 4 JAES 2282 A3, A ZREFO| PA 2, AT Fergo Frl, FFe 24
o) Ao FE AT BAYH A7 5 9= 9 BokollA ZHZER ZAREY O Age A} el gl
= of gk Fdels H Aag e Add W A= W B AAE = glol 2 7L
o =oh HI HFE sl wE BEZE 2559 VA BAE ot H8fofe] sl AAet
IWhe Exst glo  A=2IA EokellA

2]
B2 st AZE Yol A & 4= QA =T} GATE BALRE
A BRA, Ao st wrE T3] ol8E Ao

I

- 33 -



=ZS-IV-2

—

-ME

O] THNR(NEAAA D 22 PSRN P FALE T B Foo] WA
9ol A ATIBko] PAKS 2ASH Hek HT THARAA YAYENALS o
FAE BEe] 2718 AW A7 Aan FHob AwEo] 488 Fol ek AR A4S
S48 BRNES o] §8 AAPFEYAOR 1000°C ol 2] 12 Ho A3} 1
YA MEA MR YA Ago] BRsH Hek WA heidE o] g3 AALEY

1
Aol ANBOR AR A2H R A

>N ol oo o

3. HYYH Y Z
HAstE gl AT AAH FE OFHY AFREE =AY 918 MCNPX 2.8.0 (Monte Carlo
N-Particle eXtended) HATHAF =5 AMEEFACE A4t AREE AAFE] o 2= 30-70 keV G o diste]
LE FoE A O 4 At Ao EAYEE AA0] FeE FS tllys o]8ste] A4bstgitt 2t
Aol A = AAade] WA E= B FAS Friete] 2 sk el FAE 24k 223k A
TR FHE 27 AAM A FHO FIAFEEE F6 tally o]-8-5to] Al4lslltt. 000l 4] WA == A
&2 71eor AR #EAS Bk
3 B FRoA Ao A2 WA s B2 F7= 30 keVollA] 0.5-0.6 um, 40 keVojlA]

0.9-1.0 um, 50 keVolA] 1.2-1.3 pm, 60 keVollA] 1.6-1.7 pm 121 70 keVollA] 2.1-2.2 pmo| Atk AAHE Az}
oA G W 90°0 4 AT = A B 0004 AR A FEo oF 94% ol gleh At
] oA F7HAlEke] F A4S 30 keVolA] 0.29, 40 keVollA] 0.53, 50 keVollA] 0.53, 60 keVollA] 0.62 1]
70 keVo A 0.730.2 AXH] ofUx|7} 271842 FAdAJo] R AL Wyt

bd

19

koo
jn

- 34 -



=xS-IV-3

MARICHS SO0 M BRIMRIXIQ| Bed|
YARIKIZ ™| OIXI= B

oo

I'II'

A2 oA MMt MalA® i ME° QM
T e w9 AR E St} 23 ) St Tk B o) 5 )83}
3l st AR S, 49 ) St WAL Bt

SZdThsPy Y el sta, S st AR 8t
TS B4l st

1. Mz
et 2484 W Ul A7 B AR, Az e dEE B & 5 Q7] wiZel 32k
PA=FYAA R ) A7 2@ AR 2ol 22 AR AR R 7L 7hsste] AR A 2ol 3 ¢
St A-gE oA AL ik 2y AakshdSE oA B (kVp), WA FH(mAs) T 2 =24 A= 7t
AL Qo ot 9 miRlth 53] FAdKkVp)2 Aol FFe vIA FHEI AR HATE 37
mj = HU(Hounsfield Unit) & HepAE o= 9low, o|23 Mola2 WrtdA A g d&e v -+ = Q)
2|2 QA= 9] 7T HUR JAMA 2| 2 A 2o ofwet Jof& vA=

2 Zolth. uebA] HAkBhGE YA
A etobiiz] 93] & ATLE A

2. BAY Al 2 WAL RALY WL

A Wslo] B2 WAL RA Y AE 207 Poto] AARY WES VA Walo] ne} Hais)
LA RAGAAE R A F 270 AaboA WA AL S Seste] st
3. 2%

1. T H3tol] T2 HULS W= 0.2~1.0glem’ o A& 2lo]7h g1glou, W= 1.0glem’ o]4to A Bt
H At om, 1.82g/cm’ol| A 71 & 2po]E HYIT) (70kVp : 1792, 140kVp :
Bzt w2 HUQ Wsh= zto]7l gl9lct
2. TAS Wstol| 2 9132y WEO] HUMSH= RMI CT density phantom} - #3}7} Z4 = glon),
BALA R B A ATl 1.0%0]8k2 2 gk x| ootk

of wistol ute O] HU W8tE st
L BAYo] F71R5E HUL AR ﬁzi 4ot
3 = HHy gk olefd 9xbe WAL

€ oA HSRE PRI dgerh GARY AR oIST & AT xg 7§J—’r 1%o] 32
4 QAL B R 7] SO sto] ARG BE

=
l‘_l- _|
E
i)
_a
=2
of



wrhES 2 ot WA 4 o] mEe] YO He Be A7V Wad ow wpuHn, dRdow
AT HUOJ Wisto] ofake x4 Qorot gte] 7h148 HU7L dashs 2 o 4 9lelth HU
Wsto] ThE WAAXRA L] oAl Ao CT d

= S| =2 ensity tableS &
2 Agots 9 =yvtog® FE5] AAZF 7Fsshr] "ol A71AQ] AT E T3 WAMIA =AY
© %

5. kl- 6-]

[1] Schneider, Uwe, Eros Pedroni, and Antony Lomax. “The calibration of CT Hounsfield units for
radiotherapy treatment planning.” Physics in medicine and biology 41.1 (1996): 111.

[2] Guan, Huaiqun, Fang-Fang Yin, and Jae Ho Kim. “Accuracy of inhomogeneity correction in photon
radiotherapy from CT scans with different settings.” Physics in medicine and biology 47.17 (2002): N223.

[3] Johnson, Thorsten RC, et al. “Material differentiation by dual energy CT: initial experience.” European
radiology 17.6 (2007): 1510-1517.
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[5] Coolens, C., and P. J. Childs. “Calibration of CT Hounsfield units for radiotherapy treatment planning of
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Study on electrical resistivity enhacement in die-upset
Nd-Fe-B magnet by addition of fluoride salt

K. M. Kim", H. W. Kwon', J. Y. Kim?, D. H. Kim®, J. G. Lee* and J. H. Yu*

1Pukyong National University, Busan, Republic of Korea 48513
*Pacific Metals Co., Gumi, Republic of Korea 39382
3S‘[argroup Ind. Co., Daegu City, Republic of Korea 42714
*Korea Institute of Materials Science, Changwon, Republic of Korea 51508

Nd-Fe-B-type magnet used in the traction motor of HEV, EV and wind turbine generator is heated up to
around 200 °C on service. Due to its high operating temperature, the Nd-Fe-B-type magnet is required to have
high room temperature magnetic properties, in particular, high coercivity. Excessive heating of the magnet is due
largely to eddy current, which is caused in the magnet by alternating slot field exposing to the magnet during
operation. It would be useful if generation of the eddy current could be effectively suppressed by proper
technological means. As eddy current is inversely proportional to the electrical resistivity of a material, enhancing
the electrical resistivity of magnet can be an effective way for suppressing the eddy current generation, thus
preventing excessive heating of the magnet. In this study, enhancement of electrical resistivity of Nd-Fe-B-type
die-upset magnet was attempted by addition of fluoride salt using eutectic DyFs—LiF mixture (eutectic temperature
» 700 °C). Commercial melt-spun flakes of Nd-Fe-B-type alloy were mixed with the 76 wt% DyF; — 24 wt

% LiF salt mixture. The mixture of flake and salt was hot-pressed and then die-upset. The addition of eutectic
DyFs-LiF salt mixture was found to remarkably enhance the electrical resistivity of Nd-Fe-B-type die-upset
magnet without severely sacrificing magnetic properties. Enhancement of electrical resistivity by the addition of
eutectic DyFs—LiF salt mixture was more profound with respect to the addition of DyF;. By adding 5 wt% of
DyFs-LiF salt mixture the electrical resistivity of Nd-Fe-B-type die-upset magnet was enhanced up to ca. 1100
mW.cm compared to ca. 180 mW.cm of the magnet without addition of the eutectic salt mixture. Unlike the single
salt of DyFs, the added DyFs;—LiF salt mixture was liquid during both the hot-pressing and die-upsetting, thus
it distributed more uniformly along the interface between the flakes (Fig. 1). The remarkably enhanced electrical
resistivity in the die-upset magnet added with DyFs;—LiF salt mixture was attributed to the uniformly distributed
insulating salt mixture. Magnetic property of the die-upset magnet added with DyFs;-LiF salt mixture was
compared to that of die-upset magnet without salt addition or with addition of single salt of DyFs, which was

solid during whole processing.

Fig. 1. BSE image of the Nd-Fe-B-type die-upset magnet with addition of
(a) DyF; single salt and (b) eutectic DyFs - LiF salt mixture.
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Fe-Co alloy powders prepared by mechanical milling:
The effect of milling time and annealing temperature on
the structural and magnetic properties

D. H. Manh", D. K. Tung', N. X. Phuc’ T. L. Phan? and B. W. Lee?
'Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
*Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies,
Yongin 449-791, South Korea
*Corresponding author: manhdh@ims.vast.ac.vn

Nanosized Fe-Co alloy powders were prepared by high-energy mechanical ball milling in air with different
times, and then annealed at different temperatures. The structural and magnetic characteristics of the powders were
studied in detail by using X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) techniques, and a
field-emission scanning electron microscope (FE-SEM), a vibrating sample magnetometer (VSM), and a physical
property measurement system (PPMS). XRD analyses pointed out the evolution of the bce phase of Fe-Co alloy
and a secondary phase of Fe3O4. Meanwhile, XAS spectra data clearly showed the oxidation state of +0 as well
as ratio of bcc and hcp phases of the alloyed Fe-Co samples. We showed that the temperature dependence of
the saturation magnetization of the samples after annealing could be well described by Bloch’s law. Besides, we
also observed an upward tendency of coercivity with the annealing temperatures or the grain size. Finally, the

effect of the oxidation on the magnetic properties and magnetization stability of the samples will be discussed.
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The grain boundary diffusion process with
Nd-Cu-Zn alloy on Nd-Fe-B magnets hot deformed
by Spark Plasma Sintering

Shu Liu™?, Nam-Hyun Kang?, Ji-Hun Yu', Hae-Woong Kwon®, Jung-Goo Lee""

'Powder & Ceramics Division, Korea Institute of Materials Science, 797 Changwondaero, Changwon 642-831, Korea
2Department of Materials Science and Engineering, Pusan National University, Busandachak-ro 63 beon-gil,
Geumjeong-gu, Busan 609-735, Korea
3Department Materials Science and Engineering, Pukyong National University, Nam-gu, Busan 608-739, Korea
wLCorresponding author. Tel./fax: +82 55 280 3606/3392, E-mail address: jglee36@kims.re.kr

NdFeB permanent magnets are well known as the highest energy product magnets, so widely adopted to the
motors of electric or hybrid vehicles and wind turbines. Hot-deformed Nd-Fe-B magnets can be produced
relatively less complicated process and smaller grain size and smaller temperature coefficient value of coercivity
compared with sintered Nd-Fe-B magnet. Hot-deformed Nd-Fe-B magnets can be produced from pulverized melt
spun ribbons by hot pressing and die upsetting process. After hot pressing process, the isotropic full density
compact is obtained and which is used as a precursor for die upsetting process. The anisotropic ultrafine platelet
shaped grains can be aligned to c-axis along the press direction by mass transport and grain boundary sliding
during die upsetting process. However, the magnetic properties are much lower than the desired value in despite
of the nearly single domain grain size. The relatively low coercivity is attributed to excessive grain growth and

insufficient magnetic isolation among the hard phases.
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Fig.1 (a) coercivity and (b) remanence vs. temperature plot

of the hot deformed and annealing processed magnets with Nd-Cu-Zn alloy diffusion.
Low melting point eutectic alloy (Nd-Cu alloy, Pr-Cu alloy) or Dy compounds (Dy, DyFs; and DyHy) has been

selected as effective additive applied to grain boundary diffusion process, through isolating the Nd,FesB grains

with non-magnetic intergranular phase or substitute parts of Nd to Dy,Fei4sB with high anisotropy field to improve
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coercivity. However, the non-magnetic phase and the antiferromagnetic effect of Dy and Fe lead to the decrease
of remanence after grain boundary diffusion process. Moreover, as the heavy rare earth element, the cost of Dy
source is staying at a high level. Therefore, enormous efforts have been focused to develop high coercivity
Dy-free Nd-Fe-B. Zn with low melting point (420 °C) has been found to increase the wettability of grain
boundary and enhances the texture formation during die upsetting process, further lead the increase of remanence
and coercivity.

In this work, Nd-Cu-Zn alloy was mixed with the initial MQU-F ribbons. Hot deformed Nd-Fe-B magnets
were produced by SPS through the optimized method, followed by annealing process. The effects and
microstructure evolution with addition on the magnetic properties of hot deformed and annealed magnets were

discussed in our work.

Keywords : Nd-Fe-B magnets; Hot deformation; Nd-Cu-Zn; Mechanism; SPS
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Manufacturing Technologies for
Magnetic Tunnel Junction PVD Materials
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Ab Initio Studies of Structure, Electronic and Optical
Properties of Sn-doped Hematite

Taewon MIN*, Jaekwang LEE
Department of Physics, Pusan National University, Busan 46241

a-Fe,Os(Hematite) has been spotlighted as one of the very promising solar cell materials since it is very stable
and environment-friendly. Furthermore, iron is the cheapest and one of the most abundant of all metals in the
earth. Even though hematite is capable of absorbing roughly 40% of the solar spectrum, but its practical use has
been limited due to the low conductivity, weak optical absorption and rapid carrier recombination. Recently, it
has been reported that the substitutional Sn doping significantly increases and improves the solar cell efficiency
of hematite. Here, using density functional theory, we study the change in electronic and optical properties of
hematite due to the Sn doping, and elucidate the underlying mechanism related to the efficiency increase. We
expect that our study can provide key parameters for developing novel hematite-based solar cell device with

maximal efficiency.
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A 2 Aol e THAle 2d2 LR ARAYEMAE S & kAl dEA QU & A
ol M= HlaLa 7k o] A7t 3d Hoj54Q] Fe, Ni faatto = A%k 2] Ao S A8 5= eAE

AL AL v o &2 eRAEL TR} QT ALY AL HHOZE Vienna Ab-initio Simulation Package
(VASP)2- ]85} 1L generalized gradient approximation (GGA)S. 2 n3-AT A S YEMUT k-Haes
12X12X1 AAE ARESE e T o] k-5 ARESHA = 0.001 eV o]stofl A Fof| | Z] 2to] 7} Egl7]of

= 12X12X1Z gatieh Huh2 F 7502 o]FoA Ql=tl, Ni 559 FHe| Fe ©50]

491 A 913
BabE PaE o1 Itk ARARe] ThE Folu X AXATENE HAE AASE 178 A Al
AbE 7 58 A7 EHEL E Lo Uehfelth Fe BRI 2747 o2 @3] Feo 27| mulESl 220 py
w4 B2k AL & 4 ek Nio) A9 WX Nie] A7|EuE 0.7 peld 2 Aol7h glglovt Awe
A uhure] 408 THA A7) RUE go] STk AS B 4 lvk 713 2ol A4 T A7lo] A6l T
A= Qg =olg AFoltt

E 1. Fe/Ni(001)9] 7+ 21 zp7|mue

Magnetic moment(|ig)

Fe (S) 2.747
Ni (S-1) 0.587
Ni (S-2) 0.594
Ni (C) 0.635
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£ =EoAe= Adde] ALPHE o]-gsto] A4k L1, £2 CrP6o] A4S Kl sharx} gk AAP
© &2 += Vienna Ab-initio Simulation Package (VASP)Z ©|83}l4 1 w3-AMRY A= Autsh-Eu]ZAHGGA:
generalized gradient approximation)® Z &3} TE @ X CrPt; 29 oA ALt ZRE Fot A A=
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o} UX|F3ITk Table 12 7} Apdof o] Cr UAF F FAURE A AEHE 7|eo = Hof 3=t A-AF,
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Table 1. PR A 2] 2] 2}o] Eap-Eru(eV/Atom)

A-AF C-AF G-AF
Bulk 0.128 eV 0.147 eV 0.045 eV

Table 2. CrPt= A|Z}oh= FH Hato A Q] o 2] 20| Eap-Erm(eV/Atom)

A-AF C-AF G-AF
9ML 0.092 eV 0.155 eV 0.021 eV
7ML 0.076 eV 0.064 eV 0.010 eV
SML 0.074 eV 0.045 eV 0.007 eV
3ML 0.085 eV -0.008 eV -0.006 eV

Table 3. Pt= A|Ztsh= W Bfdto] A 2] oY X] Zpo] Eap-Erv(eV/Atom)

A-AF C-AF G-AF
9ML 0.056 eV 0.612 eV 0.614 eV
7ML 0.033 eV 0.031 eV 0.031 eV
SML -0.004 eV -0.007 eV -0.009 eV
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Heavy metal capping and strain effects on
magnetocrystalline anisotropy of 5d transition
metal/Fe/MgO: A-first principles study

P. Taivansaikhan*, S. H. Rhimand S. C. HongT

Department of Physics and Energy Harvest Storage Research Center, University of Ulsan,
Ulsan 680-749, Republic of Korea
TCorresponding author e-mail: schong@ulsan.ac.kr

Adding heavy metals to 3d TMs is one of ways to enhance MCA, utilizing the strong SOC of heavy metals.
In this presentation, we report capping effect on magnetocrystalline anisotropy (MCA) of 5d transition metal
(TM)/Fe/MgO (TMs= Hf, Ta, W, Re, Os, Ir, Pt, and Au) using a first-principles study. All TM/Fe/MgO except
the cases of W and Pt retain the perpendicular MCA (PMCA) of Fe/MgO without the TM capping. In particular
the late elements of Ir and Os show giant PMCA.

We will also report effect of lattice mismatch coming from different substrates by calculating MCA as a
function of 2D lattice constant. The MCAs of TM/Fe/MgO are not so sensitive to compressive strain except W
and Pt, as shown in Figure 1. However, compressive strain (up to 4 %) on W/Fe/MgO and Pt/Fe/MgO yields
meaningful changes on their MCAs, even switching of in-plane MCA into PMCA for Pt/Fe/MgO. We will further
elucidate physical origin of capping and strain effects on MCAs of TM/Fe/MgO.

Q.

(a)® (b)® —
—_ —_ e 9
36 Se6 8 3o
L o .
° - ? ?
E 3 e —9 8 E 3 4 .
— B _— B B ~— — ﬂ* . o
=) § & 8 5 & S o 8 ¥V
© 9 [ .
LlCJ —Q : LE 9.
< 3 9 < 3 °
= > = 9o
-e T T T T T _6 T T T T T
4 -3 2 -1 0] 4 -3 2 -1 0]
Compressive strain (%) Compressive strain (%)

Fig. 1. MCA energy of 5d TM/Fe/MgO under strain. (a) The early TMs on Fe/MgO and (b) the late TMs
on Fe/MgO. Black, red, green, and blue-balls denote Hf (Os), Ta (Ir), W (Pt), and Re (Au) on Fe/MgO,
respectively, while grey-square represents Fe/MgO.
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Magnetism of Ag.Se: a first principles study

Do Duc Cuong’, S. H. Rhim and Soon Cheol Hong

Department of Physics and Energy Harvest Storage Research Center University of Ulsan,
Ulsan 44610, South Korea

Silver chalcogenide Ag,Se is well-known to exhibit unusual magnetoresistance: large and linear
magnetoresistance for a magnetic field up to 6 Tesla in temperature range from 5 to 500 K [1]. Origin of this
behavior is still unclear. Ferromagnetism of Ag,Se is observed in a recent SQUID measurement at room
temperature. In this study, by using the density functional theory, we investigate effects of intrinsic defects on
the magnetic properties of Ag,Se. It is found that the intrinsic defects such as silver (Va,) and selenium (Vsc)
vacancy do not show any magnetism both in bulk and thin films. However, with a certain combination of intrinsic
defects in the thin film, magnetism was observed, which suggests that a defect cluster may induce the magnetism.

Detailed electronic structure of the system is provided to discuss the magnetism.

Reference
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Tuning the Schottky barrier of two-dimensional lateral
heterostructure by strain engineering

Hwihyeon Hwang"’, Jaekwang Lee
Department of Physics, Pusan National University, Busan 46241

It has been know that Schottky barrier (SB) formed at Metal-semiconductor junction is one of the very
important key parameters determining modern electronic device performance and efficiency. Recently,
two-dimensional (2D) transition metal dichalcogenides have emerged among the hottest classes of materials owing
to their promising properties for future applications. Compared with their bulk counterparts, 2D materials can
sustain much higher elastic strain up to 10%. Here, using density functional theory, we find that the SB height
(formed at semiconducting MoS, and ferromagnetic metal VS2) is spin dependent and tunable by about 0.1 eV
due to the uniaxial strain. We expect these strained lateral heterostructures can be a promising 2D-based rectifying

device such as transistor, diode and spintronics.

Keywords : Density functional theory, spin-dependent Schottky barrier, uniaxial strain, MoS,, VS,
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Fast current-induced motion of a tfransverse domain wall
induced by interfacial Dzyaloshinshkii-Moriya interaction
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1Department of Materials & Engineering, Korea University, Seoul 136-713, Korea
*Materials Science and Engineering and KI for Nanocentury, KAIST, Daejeon 305-701, Korea
*KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-713, Korea

Recently, ferromagnet/heavy metal bilayers attract considerable attention because they allow us to investigate
various spin-orbit coupling effects combined with spin transport and magnetization dynamics. A representative
example is the spin-orbit spin transfer torque (SOT) [1] that enables very fast current-induced magnetization
switching even without the second ferromagnetic layer [2]. Another interesting magnetic property is the
Dzyaloshinskii-Moriya interaction (DMI), emerging when all of spin-orbit coupling, exchange interaction, and
inversion asymmetry are present. The DMI is the antisymmetric component of the exchange interaction [3,4],
which favors non-collinear magnetic textures. Effects of the interfacial DMI on the domain wall motion in
perpendicularly magnetized nanowires have been extensively studied [5]. However, the effect of the interfacial
DMI on transverse domain wall motion has not been studied yet. In this work, we investigate the effect of the
interfacial DMI on static and dynamic properties of a transverse domain wall.

Based on the Euler-Lagrange equation, the equilibrium profile of a transverse domain wall is determined as,

0(x) E2tan‘[exp x;q} M

_ (x-9)
@(x) =@, — x sec h—/1 ) @)

where m = (cos6,cos @sin @,sinpsind) , @ is the polar angle from x-axis and ¢ is the azimuthal angle from
y-axis, g is the domain wall center, ¢, is the domain wall tilt angle, A is the domain wall width, x = /4, ¢
= D/K,, and K; is the hard-axis anisotropy energy density. From above equations, one can find that the domain
wall distortion appears in cases with finite D. We found that the numerically calculated ones are in good
agreement with the theoretically predicted ones.

By using the procedure developed by Thiele [6], we derive the equations of motion for the two collective

coordinates of a transverse domain wall as following.

0(—. +(0. —ﬂ—'l + yc —sin(p —— XY COS®

A 0 A ¥ 2 3 « °y 3)
—. - 0(¢. ——L 4+ —CosQ, +— sin ®, |+ 4| sin 2(’p —— Y COS 2(p
A 0 A 7ﬂMS 2 0 3Z 0 yMS 0 2;{ °r (4)

where O=dO/dt | y is the gyromagnetic ratio, « is the damping constant, £ is the nonadiabaticity, b, is the
magnitude of spin-transfer torque, ¢, is the magnitude of SOT and My is the saturation magnetization. Using the

small angle approximation, we obtain the domain wall velocity vpy at the steady state, given as
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_ b, (e, = 2H,) + 8/ 3)ypie, H,

e, —20H (5)

d

where H; = 2K/ Ms.

We perform semi two-dimensional micromagnetic simulation for confirming a validity of Eq. (5). As shown
in the figure 1, when D = 0, vpy is small, but it increases rapidly with D. With reasonable material parameters,
the vpy reaches 400 m/s at the current density of 9 x 10° A/em® which has never been achieved for a transverse
domain wall without DMI [7]. This high vpy can be explained by a DMI-induced domain wall distortion. It

generates non-zero SOT in the z-direction, which tilts the domain wall and enhances the domain wall motion.
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Fig. 1. (a) Effect of the interfacial DMI (D) on the domain wall velocity for 1-D micromagnetic simulation results

(dots) and theoretical prediction (line). (b) vpw as a function of the current density at various DMI values.
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Current induced skyrmion dynamics via spin orbit
coupling types

Seung-Jae Lee", Kyung-Jin Lee'?
'KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
2Department of Materials Science and Engineering, Korea University, Seoul, Korea

1. Introduction

Inversion asymmetry existed in magnetic system, the system have specific exchange interaction which called
Dzyaloshinskii-Moriya interaction(DM interaction) [1, 2].

Recently magnetic skyrmions stabilized by DMI are expected to have potential as information unit for storage
and logic devices [3]. There are two main streams of SOCs in skyrmion studies. One is for Rashba SOC induced
by structural inversion asymmetry. The other is Weyl SOC induced by bulk inversion asymmetry, typically
observed in B20 structures. However, studies on magnetic skyrmion stabilized by Dresselhaus SOC have lacked.
In this work, we investigate current-induced skyrmion dynamics in ferromagnet nanowire with three types of
SOCs. We consider DMI and spin orbit spin transfer torque(SOT) having the symmetry of respective SOCs.

2. Simulation Scheme

We investigate skyrmion velocity using Landau-Lifshitz-Gilbert equation with a SOT corresponding SOC with
following parameter. nanowire width is 40nm, thickness is Inm, cell size is 1x1x1nm?, saturation magnetization
is 800 emu/cm’, exchange stiffness constant is 1.2x106 erg/cm, DM constant is —2 erg/cm? perpendicular

magnetocrystalline anisotropy K, is 0.8x107 erg/cm?.

3. Result and Discussion

Figure 1 shows that all skyrmion velocity have linear dependence with current density, which are consistent
with the prediction based on collective coordinate approach. For all SOCs, skyrmion velocity are given by v, ~— F%/aD
(current flow in x-axis) and v, ~— F%%/ G (current flow in y-axis) [6]. Where a is the damping constant, D is
the factor of disspation matrix, G is the magnitude of gyrovector and — F97=—hf 5. \/4re is the force originating

from spin orbit spin transfer torques. It is because spin orbit torques symmetry have same with DMI symmetry

driven by each SOCs. Figure 1 shows the velocity of skyrmion is linearly increase about current density and 1/«
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Fig. 1 Skyrmion velocity as a function of current density J for different current flow direction.
(a) DM induced by Dresselhaus SOC, (b) Rashba SOC, (c) Weyl SOC
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1. Introduction

Antiferromagnets are ordered spin systems in which the magnetic moments are compensated on an atomic
scale. The antiferromagnetic order and consequent zero net magnetic moment are maintained by antiferromagnetic
exchange coupling of neighboring spins. Any external disturbance competes directly with the large
antiferromagnetic exchange, which results in magnetic excitations in terahertz frequency ranges [1]. Furthermore,
an antiferromagnet has no magnetic stray field, which is beneficial for integrated circuits because the stray field
is a primary source of detrimental magnetic perturbations [2, 3]. These attractive features of antiferromagnets have
led to the recent development of antiferromagnetic spintronics, an emerging research field which pursues the use

of antiferromagnets as active elements in spintronic based devices [4].

2. Experiment
We investigate SOT-driven antiferromagnetic domain wall motion in antiferromagnet/heavy metal bilayers in
the presence of interfacial DMI, based on the collective coordinate approach [5] and atomistic spin model

simulations [6].

3. Result and discussion

In order to study AF-DW motion driven by SOT, we derive analytical solution with staggered

\BD
2a

Landau-Lifshitz-Gilbert equation and collective-coordinate method. We obtain DW velocity vpw=— u cos®

(1), where vy is the gyromagnetic ratio, A is the DW width, Bp is effective field corresponding to damping-like
component of SOT, a is Gilbert damping, and ¢ is the DW angle. Figure 1 (a) shows numerical results of the
steady-state velocity vpw as a function of the current density. Since Bloch DW has initial ¢=n/2 or 3m/2, it does
not move. Neel DW velocity, however, increases linearly in low current regime, but it saturates and Neel DW
emits spin wave in high current regime. We interpret these behaviors to relativistic kinematics. Figure 2 (b) is
the snap shot of Neel DW configuration at high current region (J:2X1011 A/mz) which shows spin wave emission.
We find that the spin-wave emission from the antiferromagnetic domain wall is the origin of the vpw saturation.
The reason for spin-wave emission is as follows: The damping-like SOT asymmetrically tilts the domains on the

right and the left of wall and raises the energy of domain wall. As the wall moves faster, the domain wall is

- 71 -



unstable to sustain its energy and starts to emit spin-waves towards its rear (where the gradient is steeper) to
release the energy. Therefore, the spin-wave emission serves as an additional energy dissipation channel and slows
down the wall motion. In special relativity, as the velocity of a massive particle approaches the speed of light
c, it shrinks via Lorentz contraction and its velocity saturates to c. For the dynamics of antiferromagnets, the
speed of light is replaced by the maximum spin-wave group velocity because the antiferromagnetic domain wall
can be decomposed into spin-waves and has a finite inertial mass [7]. The relativistically corrected vpw is given

~yald
2

as vpw = V1N Aeq)z (2), where a is the homogeneous exchange constant, I=2ms, ms is the magnetic moment

density of sublattice, d is the lattice constant, and A¢q is the equilibrium DW width. In the poster, we will discuss

relativistic kinematics of AF-DW at high current regime in detail.

—
Q

~—

»

(b)

_______________________________________ 1.0
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Fig. 1. (a) Steady-state velocity of antiferromagnetic domain wall by SOT. Symbols are numerical results, and
lines are analytic solution. (b) Snap shot of Neel DW configuration at high current density (J=2x10" A/m’). DW

moves with spin wave emission which propagates to opposite direction of DW motion.
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l. Introduction

The interfacial Dzyaloshinskii-Moriya interaction (iDMI)I is known to arise at the interface due to inversion
symmetry breaking and large SOC in heavy metals (HM). The iDMI manifests itself by forming spiral spin
configurations with a preferred chirality. Therefore, it plays an important role in the dynamics of the chiral domain
wall (DW), and the skyrmion formation. Brillouin light scattering (BLS) measurement is powerful tool to
investigate the iDMI and magnetic anisotropy related with SOC phenomena. In this study, we experimentally
investigate the iDMI energy (D), surface anisotropy(Ks), and Gilbert damping linked a spin-pumping effect at the
spin-orbit coupled Ir/Co interface by employing BLS.

Il. Experiment

We prepared a Ta(4 nm)/Ir(4 nm)/Co(tc,)/AlOx(2 nm) sample was deposited on a thermally-oxidized Si wafer.
The Co layer was deposited wedged shape in the range of 1 to 3 nm. In order to break the inversion symmetry,
a 2-nmAIlOx capping was used on the top of the Co layer. The magnetic properties of the samples were studied
by Brillouin light scattering(BLS) with a Sandercock (3+3) type Fabry-Perot interferometer. The light source is
a single frequency 532 nm a DPSS laser with output power of about 300 mW. Back scattering geometry used
to observe the light scattered by thermal excitations with an in-plane wavenumber ¢ | =0.0167 nm’ with the angle
of incident as 45°. Magnetic field of up to 0.98 T were applied parallel to the film plane and perpendicular to

the scattering plane.

lll. Results and Discussion

From the systematic BLS measurement, we obtained the frequency difference (£ f) due to the non-reciprocal
spin wave propagation, which can directly determine the iDMI energy density. The correlation between Af and
the D is given by

_ 29D

A=t

where v, D, k«, and M, are gyromagnetic ratio, the iDMI energy density, propagating spin wave vector, and
saturation magnetization. Figure 1(a) indicates a result of the iDMI energy density as a function of inverse Co
thickness. As a result, the iDMI energy at the Ir/Co interface is relatively smaller than the case of at the Pt/Co

and the sign of iDMI is the same with our previous reports. Whereas, surface anisotropy and saturation
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magnetization are significantly improvement (not shown). Figure 1(b) shows the Gilbert damping constant
extracted from linewidth of BLS spectra as a function of inversr Co thickness. The measured o versus t, and
a linear dependency with a finite y-intercept is seen. The physical meaning of the damping at (fco — ) is the

damping constant (awuk) of bulk cobalt. In these measurements, we determined that apux ~ 0.012, which is in

good agreement with the magnetic damping constant for bulk Co (= 0.011).
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Fig. 1. (a) The iDM energy density as a function of .. (b) The Gilbert damping parameters as
function of t,.. The extrapolated o for infinitely thick Co is approximately 0.012
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In a system with inversion broken symmetry such as Oxide layer/Ferro-magnet or Heavy metal/Ferro-magnet
structures [1,2], spin-orbit coupling brings some new term on the interfacial Dzyaloshinskii-Moriya interaction
(iDMI) at their interfaces. Recently, the iDMI has caught much attention as it could open new paths to manipulate
information based on spintronic devices. Furthermore, Brillouin light scattering system is powerful tool which can
directly determine the iDMI energy density [3,4]. However, measured the BLS signal is not large enough due
to its physical origin, and the small signal to nose ratio make it difficult to determine iDMI in the moderate
interface quality samples. In order to obtain the iDMI energy density more exactly and reliably, the better BLS
signal is required. Since the BLS is based on magneto-optical Kerr effect (MOKE), we introduce optical
anti-reflection (AR) layer. It is well-known that the MOKE signal is improved with AR layer [5,6,7]. Due to the
multiple reflections, the incident beam has more chances to interact with the magnetic layer, which enhanced
magneto-optical effect.

In this study, we investigate the intensity of spin-wave resonance frequency signal with additional MgO-AR
coating layer. To observation of iDMI, we fabricated Ta(4 nm)/Pt(4 nm)/Co(2 nm)/MgO(tmeo nm)/Ta(4 nm)
structures on Si/SiO, substrate using DC magnetron sputtering system. Here, thickness of MgO layer are 5, 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100 nm, respectively. The deposition was carried out a base pressure of 3x10™
Torr or lower. From the MgO thickness dependence measurement, we found the changes of BLS signal strength
as a function of MgO layer thickness. Fig. 1 shows BLS intensity as a function of MgO thickness. When we
used the 80 nm of MgO thickness, BLS and MOKE intensity have a maximum value, and we confirmed that
the BLS and MOKE signals are strongly correlated as we expected.
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Fig. 1. BLS and MOKE signal as a function of MgO thickness.
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In this report, we present a detailed studies on the magnetic properties and MCE of La;xNdxFei05Sizs (x=
0.2, 0.4, 0.6) alloys. The samples were prepared from pure (99.9%) La, Nd, Fe and Si metals by an arc-melting
method in a high purity argon atmosphere. And then, the products were sealed in a fused-silica jacket under
vacuum and annealed at 1323 K for two weeks. According to the powder X-ray diffraction patterns, the crystal
structure of an as-cast sample displayed the elemental Fe-type structure, but after the annealing process, they were
transformed into the NaZnjs-type structure.

Magnetic measurements versus temperature (7 = 70-300 K) and magnetic field (H = 0-3T) were performed
on a vibrating sample magnetometer (VSM). The M(T) curves for samples, all the samples exhibiting a
ferromagnetic-paramagnetic (FM-PM) phase transition at Curie temperature 7¢ = 252, 250, and 246 K for x =
0.2, 0.4, and 0.6, respectively. This FM-PM phase transition can be seen more clearly if H/M is plotted versus
M [1]. The nonlinear parts in the low field region at temperatures below and above 7c are driven toward two
opposite directions, revealing the FM-PM phase separation. A negative slope corresponding to a first-order phase
transition according to Banerjeer's criteria [2] has been observed in H/M versus M’ curves. Based on isothermal
magnetization data, M(H, T), we have calculated ASm(7) data for samples under an applied magnetic field change
H =3 T. As a function of temperature, the ASm(7) curves show a maximum (denote as |[ASwmax|) at around their
Te. With H = 3 T, the values of [ASwma| are found to be 3.8, 3.6, and 3.4 Jxkg" - K for x = 0.2, 0.4, 0.6
samples, respectively. The nature of magnetic properties and MCE in the La;NdiFeiosSi»s alloys will be

discussed thoroughly by mean of the effect of Ce-doping concentration.
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1. Introduction

Since the discovery of metallic glasses by Duwez et al. [1] in 1960, the metallic glasses have become new
materials. Co-based and Fe-based alloys have a good possibility in various applications, for instance power devices,
sensors, motors, transformers, and energy converting supplies [2,3]. Also, Fe-Co alloys system have been researched
that the alloys have a good glass-forming ability (GFA). Furthermore, adding Ta to alloys is important to enhance
GFA and thermal stability by increasing negative bonding between elements. Also, adding Ta improves the soft
magnetic properties [4].

We studied on magnetic and thermal properties of (Coi.<Fex)72B192SiagTas (0<x<1) alloys which are Co-based
or Fe-based amorphous ribbons. In previous studies, we examined the thermal and magnetic properties by making

a small quantity of Cr and Ta addition to Co-Fe alloys [5].

2. Experiment

(CoixFex)72B192SissTas (0<x<1) alloys were made by vacuum arc melting furnace under argon atmosphere and
re-melted four times for homogeneity of alloys. Then, the result of arc melting, i.e. ingot re-melted and rapidly cooled
by melt spinning machine in 39.27m/s. As a result, those alloys are transformed into 2mm ribbons. After processing
of ribbons, we identified ribbons' magnetic and thermal property by various measuring equipment. The structure of
amorphous is confirmed by X-ray diffraction (XRD). Magnetic properties are established by vibrating sample magnetometer
(VSM) and thermal properties, such as the crystallization temperature (Ty), the glass transition temperature (Tg),

and the supercooled liquid region (ATx = Tx — Tg) are measured by using differential scanning calorimeter (DSC).

3. Result and discussion

In this examination, we conducted more study on Co-Fe-B-Si-Ta system than earlier research in order to study
deep into the thermal and the magnetic properties for Co-Fe based amorphous alloys. (CoixFex)72B192SisgTas (0<x<1)
amorphous ribbons showed good soft magnetic properties. That amorphous ribbons had high saturation magnetization
and had no crystal anisotropy. So those ribbons are suitable for amorphous applications which require good soft

magnetic properties.
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1. Introduction

Metallic glasses composed of transition metals (such as Fe, Co, and Ni) and of metalloids (such as B and
Si) have good soft magnetic properties. Especially, the synthesis of iron- and cobalt-based magnetic amorphous
alloys has attracted attention due to their enormous potential in magnetic applications [1]. Amorphous
ferromagnetic alloys are being developed for motor, electrical transformers, switching power supplies, sensors, and
other electrical energy conversion devices [2, 3].

Fe-Co system exhibits the high saturation magnetization and the permeability in comparison to Fe-only and
Co-only cases. Furthermore, the substitution of Co for Fe enhances glass-forming ability (GFA) [4]. Fe-Co-B-Si
alloys were reported to exhibit good soft magnetic properties in 1974 [S]. The melt-spun (Fe, Co)-B-Si amorphous
alloys have been used as soft magnetic materials in pole and switching transformers named by METGLAS [6].
However, these amorphous alloys do not have high GFA. Cr is a key to solving this problem. It is well known
that small additions of Cr lead to an increase in GFA together with an enhancement of their soft magnetic
properties of Fe-Si-B ternary amorphous alloys [7].

In this study, we research (CoixFex)72B192SissCrs (0 < x < 1) in order to investigate the effect of Fe on the

magnetic properties for Co-based amorphous alloys.

2. Experiment

Alloy of the composition (Coj.x<Fex)72B192Si45Crs (0< x < 1) were prepared by melting high purity constituent
elements in arc-melting under a Ti-gettered argon atmosphere. Each ingot was re-melted at least four times to
maximize compositional homogeneity. Amorphous ribbons were produced by melt spinning using a wheel speed
of 39.27 m/s in an argon atmosphere. The ribbons were typically 2 mm in wide and 30 pm in thick. The
composition and structure of ribbons identified by X-ray diffraction (XRD) with Cu-Ka radiation. Thermal
stability associate with the crystallization temperature (Tx) was measured using a differential scanning calorimeter
(DSC). About 20 mg of the sample was placed in a crucible and heated from room temperature to 1100 K
(826.85 C) in an argon atmosphere at a rate of 0.34 K/s. The saturation magnetization (Ms) at room temperature

was measured in a maximum applied field of 800 kA/m with a vibrating sample magnetometer (VSM).

3. Result and discussion

The effect of variable Fe and Co content on the thermal and magnetic properties for (Coi.xFex)72B192SissCrs
(0< x < 1) amorphous ribbons has been established. The Co-Fe-B-Si-Cr glassy ribbons exhibited soft magnetic
properties with a high saturation magnetization. Also, these amorphous materials had no crystal anisotropy. It was
found that the crystallization temperature of the alloy with 50.4 at.% Fe (x = 0.7) has a maximum value. It was

also found that the saturation magnetization of the alloy with 64.8 at.% F (x = 0.9) was superior compared with
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the others.
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*Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet,
Cau Giay, Hanoi, Vietnam
"Electronic mail: bwlee@hufs.ac.kr

In recent years, spinel-ferrite nanoparticles have attracted much interest of the scientific community due to
their potential applications in many magnetic and electronic devices, particularly microwave absorbers, active
components of ferrofluids and photocatalysis. Among spinel ferrites, it has been focused on two material systems
ZnFe,O4 and CoFe,O4 nanoparticles because they have high chemical stability and corrosion resistance, and
excellent magneto-optical properties. To further understand these materials, we prepared Zn;xCoxFe,O4 (x = 0-1)
nanoparticles (NPs) by using a hydrothermal method, and then investigated in detail their structural
characterization and magnetic properties. The analyses of X-ray diffraction (XRD) patterns and Raman scattering
spectra indicated all the samples crystallized in a cubic-spinel structure (the space group Fd3m) with the lattice
parameter a =~ 8.4 A. Average crystallite sizes obtained from the XRD linewith by using the Scherrer equation
are about 16-22 nm, which are close to the particle sizes of ~20 nm determined from scanning-electron-
microscopy images. Magnetization measurements versus temperature, M(7), in the magnetic filed H = 100 Oe
indicate the ferromagnetic-to-paramagnetic phase transition temperate (7c, the Curie temperature) Zn;xCoxFe O4
NPs increases from ~600 K for x = 0 to ~815 K for x = 1. The features of the M(T) curves also indicate
inhomogeneities in magnetization of the samples in the FM region. At room temperature, we found that both the
saturation magnetization (M;) and coercive force (H.) increase with increasing Co content in Zn;<CoxFe,O4, in
which M; = 60~72 emu/g, and H. = 100~500 Oe. These results reflect that the Co doping into zinc-ferrite NPs
improve remarkably the magnetic property, making them more helpful for practical applications. In this work,
additionally, based on analyzing the initial magnetization curves, M(H), recorded around the 7c, we also assess
the magnetic-entropy change and critical behaviors in order to figure out magnetic-interaction mechanisms taking

place in the samples.
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The 5% Fe doped ZnO (ZnO:Fe) thin films were deposited on Pt/TiO,/SiO,/Si substrates by a spin coating
method. The films were annealed without (ZnO:Fe-0T) and with (ZnO:Fe-4T) a pulsed magnetic field of 4 T
to investigate the magnetic annealing effect on the resistance switching (RS) behavior of Pt/ZnO:Fe/Pt structures.
As compared to the ZnO:Fe-0T film, the ZnO:Fe-4T film showed improved RS performance regarding the stability
of the set voltage and the resistance of the high resistance state (HRS). TEM image showed that the crystalline
grains of the ZnO:Fe-4T film was more uniform and XPS spectrum of the Ols peak suggested that there were
more oxygen vacancies in ZnO:Fe-4T film, which promoted forming free switching with a quite narrow distribution
in the set voltage and HRS resistance. These results suggest that application of external magnetic fields during

the process of ZnO:Fe film synthesis can improve the RS characteristics of ZnO thin films for stable and low

power consuming memory devices.
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1. Introduction

Magnetic materials have been investigated in order to apply for high-density spin-transfer-torque magnetic
random access memory (STT-MRAM) device and other next-generation magnetic recoding media [1, 2]. In order
to realize high-density, perpendicular magnetic anisotropy (PMA) and high coercivity are required [3, 4]. In 1975,
the phenomenon of PMA had been first investigated by Iwasaki and Takemura in the Co/Cr films. And then
Carcia, Meinhaldt and Suna established the importance of interfaces in the multilayer as the driving mechanism
for PMA in 1985 [5, 7]. In particular, magnetic tunnel juctions (MTJs) with PMA have attracted great research
interest for the high-density device (such as STT-MRAM)’s realization. Because the phenomenon of STT causes
the current-induced magnetization. This current-induced magnetization switching (CIMS) occurs at a smaller
critical current density in perpendicular MTJ (pMTJ) than that in in-plane MTJ [6-11]. PMA has two strong
advantages for the next-generation devices (such as STT-MRAM): low J. (current density) and high thermal
stability. Both the low J. and the high thermal stability are important issues for application of STT-MRAM.
Moreover, amorphous materials has higher saturation magnetization than crystalline materials. This chracterization
is particularly usuful for improving of capavility of devices. Therefore, we studied magnetic and thermal
properties of multilayers consisting of amorphous Co75SiisBig with PMA. In this study, we prepared CoSiB/Pd

multilayers and investigated their magnetic property and the annealing temperature dependence of the magnetic

property.

2. Experiment

The chamber’s base pressure was up to 2.0 x 107 Torr, and the working pressure was 2 X 10 Torr. All
films were uniformed in size, 1.4 cm % 1.4 cm, and were deposited by ultra high-vacuum system at room
temperature. The magnetic properties (M; and Hc) of all thin-films were measured by a vibrating sample
magnetometer. For studying the thermal property of multilayers, we annealed the multilayers with various
temperatures (300, 400, and 500°C) for 1 hour.

3. Result and discussion

In this study, we investigated the magentic properties (the coercivity and saturation magnetization) of the
CoSiB/Pd multilayers and found the annealing temperature dependecne of the magnetic properties in these
multilayers. When the thickness of CoSiB is 3A, the coercivity has sevenfold increase at 300°C and this
multilayer has no PMA after 400°C. In the [CoSiB (5 A)/Pd (14 A)]s multilayers, the coervivity shows the highest
value at 300C. Both two saturation magnetizations of two multilayer systems have the highest values at 300C.

Finally, we note that the coercivity and the saturation magnetization of the CoSiB/Pd multilayer system have a
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close association with the annealing temperature. Moreover, the coercivity especially shows a sudden increasing

at the specific annealing temperature.

4. References

[1] S. S. P. Parkin, M. Hayashi and L. Thomas, Science 320, 190 (2008).

[2] M. Nakayama, T. Kai, N. Shimomura, M. Amano, E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S.
Ikegawa and H. Yoda, J. Appl. Phys. 103, 07A720 (2008).

[3] J. W. Cai, S. Okamoto, O. Kitakami and Y. Shimada, Phys. Rev. B 63, 104418 (2001).

[4] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F.
Matsudura and H. Ohno, Nat. Mater. 9, 721 (2010).

[5] S. Ikeda and K. Takemura, IEEE T. Magn. 11, 1173 (1975).

[6] N. Nishiura, T. Hirai, A. Koganei, T. Ikeda, K. Okant, Y. Sekiguchi and Y. Osada, J. Appl. Phys. 91,
5246 (2002).

[7] F. Garcia-Sanchez, O. Chubykalo-Fesenko, O. Mryasov, R. W. Chantrll and K. Guslienko, Appl. Phys.
Lett. 87, 122501 (2005).

[8] S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris and E. E. Fullerton, Nat. Mater. 5,
210 (20006).

[9] H. Meng and J-P. Wang, Appl. Phys. Lett. 88, 172506 (2006).

[10] K. Yagami, A. A. Tulapurkar, A. Fukushima and Y. Suzuki, Appl. Phys. Lett. 85, 5634 (2002).

[11] F. J. Albert, N. C. Emley, E. B. Myers, D. C. Ralph and R. A. Buhrman, Phys. Rev. Lett. 89, 226802
(2002).

- 96 -



SSO01

Evaluation of spin orbit interactions and its application for
complementary spin logic devices

Youn Ho Park™?, Hyun-jun Kim', Joonyeon Chang1, Heon-Jin Choi?,
Suk Hee Han' and Hyun Cheol Koo'

'Spin Convergence Research Center, Korea Institute of Science and Technology (KIST),

Seoul 136-791, Republic of Korea

*Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea

*KU-KIST Graduate School of Converging Science and Technology, Korea University,

Seoul 136-701, Republic of Korea

TCorrespondence to: hckoo@kist.re.kr

The spin-orbit interaction (SOI) is one of the major concerns in the field of spin transistor devices because
spin precession can be controlled by SOI parameter [1]. In a semiconductor channel SOI is divided into two
terms, Rashba and Dresselhaus terms. The Rashba spin-orbit interaction (RSOI) is induced by the structural
inversion symmetry and the Dresselhaus spin-orbit interaction (DSOI) is resulted from bulk inversion asymmetry.
Detection and application of RSOI has been researched, however, DSOI has not because these two effects are
phenomenologically inseparable so extraction of individual field is not simple. The Rashba field is always
perpendicular to the wavevector but the orientation of the Dresselhaus field depends on the crystal orientation
of channel [2]. Thus, for the various crystalline orientations we measured the Shubnikov-de Haas oscillations in
an InAs quantum well system. Values for the Rashba parameter of 6.73 X 10" eVm and for the Dresselhaus
parameter of 0.57 % 10 eVm were sequentially extracted and also the gate dependences of the two parameters
were determined. Using InAs quantum well system, gate control of conductance oscillation was experimentally
presented [1]. Due to the different alignment between Rashba and Dresselhaus fields (Br and Bp), the spin
precession behavior depends on the crystal direction in a spin-FET structure. For example, the total field can be
expressed as Br + Bp for the [110] direction and as Br — Bp for the [1-10] direction. When the channel length
is 1 um, the precession angle is 550° for the [110] direction and 460° for the [1-10] direction, respectively [3].
Using the two spin transistors with different crystal directions, which play roles of n- and p-type transistors in

conventional charge transistors, we propose a complementary logic device.
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Chiral magnetic orders such as helical spin textutres and skyrmions have attracted extensive attention because
of their potential applications in magnetic data strorage and spintronic devices. The helical ground state comes
from the combination of the ferromagnetic exchange and Dzyaloshinskii-Moriya interaction (DMI). The
representative materials with such properties are non-centrosymmetric crystals with magnetic order such as Si-
and Ge-based alloys with the B20 crystal symmetry (MnSi, Fe;xCoxSi, FeGe, and MnGe). Especially, FeGe bulk
crystal exhibits a relatively high helical transition temperature (~280 K) and long helix period (~ 70 nm). It is
very interesting to see the influence of crystal size comparable to the helix period on the helimagnetic order. Here
we study the helimagnetic order in the cubic FeGe nanowires with varying the diameter of nanowires.

The FeGe nanowires are synthesized by vapor-solid (VS) mechanism with GeCls gas and Fel, powders in
chemical vapor deposition (CVD) system. We investigate the temperature dependence of the magnetoresistance
in the cubic FeGe nanowires with applying external magnetic fields longitudinal to the growth axis of the
nanowire ([001]rege direction). We observe a distinct response of magnetoresistance as a function of magnetic
field, which indicates the presence of helimagnetism in the FeGe nanowire. We find that the helimagnetic and/or
concial state in the FeGe nanowire is stable up to room temperature and maintained to higher fields in comparison
with the bulk FeGe. At near room temperature (240 - 280 K), we observe that the resistance of the FeGe
nanowire fluctuates in a narrow temperature range which is presumed as a consequence of the skyrmion state.
This temperature range has been shifted toward a higher temperature as the diameter of the nanowires decreases,

demonstrating the effect of low-dimensional confinement on the chiral magnetic orders.
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There are many interests to achieve long-range magnetic order in topological insulators of BiSes or Bi,Te;
by doping magnetic transition metals such as Fe and Mn. The transition metals act as not only magnetic dopants
but also electric dopants because they are usually divalent. However, if the doping elements are rare-earth metals
such as Ce and Gd, which are trivalent, only magnetic moments can be introduced. We fabricated single crystals
of Ce- and Gd- doped Bi:Ses; and Bi,Te; with various doping contents [1-3]. We observed magnetic phase change
from paramagnetic (PM) to antiferromagnetic (AFM) phase by doping. This PM to AFM phase transition agreed
with the density functional theory calculations showing a weak and short-ranged AFM coupling via the
intervening Te ions. At a critical point corresponding to the magnetic phase transition, exotic two-dimensional
properties arising from topological surface state electrons were observed such as non-metallic behavior, large

linear magnetoresistance, and quantum oscillations.
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Materials with perpendicular magnetic anisotropy (PMA) accelerates the developments of spintronics devices
due to their low threshold current density, simple domain wall (DW) structure, and high spin-transfer-torque (STT)
efficiency, compared with in-plane magnetic anisotropy (IMA) materials. They can be used as one of magnetic
components in magnetic memory and logic devices by manipulating the magnetic domain wall (DW) motion.
Thus, it is important to understand the DW dynamics in PMA materials.

We investigated the DW motion in two extreme regimes of DW flow and creep motions for the amorphous
PMA multilayer with heavy metals, Ta/Pt/[CoSiB/Pt]N nanowire structure, for different N and w [1]. The
field-driven DW velocity in the flow regime was found to increase with &, which is ascribed to the enhancement
of DW anisotropy energy with N. The DW motion under a constant bias current reveals that the DW motion
prefers the current flow direction in thinner layer whereas the DW motion prefers the electron flow direction in
thicker layer, implying that the SHE gradually decreases with increasing the layer thickness while the STT is
constant. We also found that the relative strength of two torques is different depending on the dynamic regime
of DW

Reference
[17 Y. H. Choi, Y. Yoshimura, K.-J. Kim, K. Lee, T. W. Kim, T. Ono, C.-Y. You, and M. H. Jung, Sci. Rep.
Accepted (2016).
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Mn3;Ga has received renewed attention in recent years because of the variation of magnetic properties
depending on the crystal structure. One is a triangular antiferromagnet for the hexagonal (D0i9) phase, which is
casily obtained by arc melting. The other is a ferrimagnet for the tetragonal (DO0y) phase, which is achieved by
annealing the hexagonal material at high temperatures. Another is an antiferromagnet for the cubic Heusler (DO3)
phase, which is synthesized using a nonequilibrium technique, but has not been studied in experiments. The cubic
phase has been predicted to exhibit completely compensated ferrimagnetic spin order with a half metallic band
structure.

This report focuses on the tetragonal and cubic Mn3Ga thin films grown on MgO(100) substrates without any
buffer layer by DC/RF magnetron sputtering method. The optimal deposition conditions for tetragonal phase were
found to be 400°C of deposition temperature, 35 W of RF power, and 5 mTorr of Ar gas pressure in our
sputtering system. The tetragonal Mn3Ga films exhibit high perpendicular magnetic anisotropy, low saturation
magnetization, and high spin polarization. Importantly, we first succeeded to fabricate the cubic Mn3Ga films as
varying the RF power. The cubic Mn3Ga is an antiferromagnet with the Neel temperature 7n = 420 K, while
the tetragonal Mn3Ga is a ferromagnet with 7c = 830 K. Under certain conditions between two phases, there is
a mixed phase of tetragonal and cubic structures, where we found a shift of hysteresis loop due to the exchange

bias effect between the ferromagnetic/tetragonal and antiferromagnetic/cubic Mn3Ga phases.
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The Rashba spin-orbit interaction (SOI) in quantum well channel has great functional potential due to
controllability by gate voltage, so it is discriminated from other systems. To quantify spin related phenomena in
such a system, it is important to know exact strength of Rashba SOI. Usually Shubnikov-de Haas (SdH)
oscillation is measured or potentiometric measurement using ferromagnetic contact at the center of channel is used
to estimate the Rashba SOI parameter. In this research, we considered interaction between Rashba SOI field and
in-plane magnetic field to observe strength of Rashba SOI. Measuring magnetoresistance induced by the

interaction, we could obtain Rashba SOI parameters depending on gate voltage considerable to other methods.
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1. Introduction

To date, most magnetic nanoparticle applications have focused on spherical primary nanoparticles or
nanoparticle assemblies with aspect ratios close to 1, while utilization of magnetic nanowires and linear-chain
assemblies of magnetic nanoparticles has been very much limited. However, 1D magnetic structures have the
potential to open up new applications in biomedicine, as their high aspect ratio results in a much larger dipole
moment, allowing their manipulation with lower magnetic field strengths. Flexible long chains of magnetic
particles could also be of importance across a wide range of applied materials technologies. Additionally, it is
important to achieve structural precision for optimization of properties and functions. Electronic and plasmonic
coupling between metallic nanoparticles has been known to yield novel electronic and optical properties. Such
coupling is critically dependent on structural parameters such as inter-particle spacing and the spatial organization
of individual nanoparticles. In comparison with higher-order nanostructures, 1D nanoparticle chains are more
expedient building blocks for circuits in nanoelectronics, optoelectronics, and biosensors. Minimizing structural
irregularity is essential: a large gap can break the coupling along a chain, and branching can cause a short circuit.
Therefore, the investigation of magnetic particle assembly in linear chain-like structures is of great interest among
concerned researchers.

Several methods, often utilizing polymer templates to direct the assembly, have been employed to form
nanoparticle chains [1, 2]. For example, there have been many studies on nanoparticle self-assembly at interfaces
within and on the surfaces of block co-polymers. Our current focus is template-free self-assembly of magnetic
nanoparticles, which approach offers the potential for control and tunability of the self-assembly process without

the use of templates.

2. Results

In this study, we successfully synthesized high-uniformity 200 nm monodisperse iron oxide nanoparticles and
discovered interesting linear-chain self-assemblies that can be enforced from the vortex state of each iron oxide

nanosphere.

3. Discussion

One of our recent investigation showed that the exchange binding interaction is the dominant factor in the
assembly of nanoparticles with a 3D magnetic vortex, and that the dipolar binding interaction inhibits increasing
numbers of particles in the linear configuration [20]. Also, it was interesting to observe that the value increases
with increasing numbers of magnetic nanoparticles participating in the linear-chain formation. This observation
could be explained by the fact that there exist four easy axes energetically equivalent to each other in the Fe304
nanosphere, which implies that there are three other easy axes also in the linear-chain direction.

Magneto-crystalline anisotropy binding interaction hinders the formation of the linear chain in a specific easy axis,
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due to the existence of freedom at the other three binding sites.

4. Conclusion

We demonstrated the linear assembly of 200 nm iron oxide nanoparticles and the relation to the 3D magnetic
vortex structure and binding energy. From the micromagnetic simulation analysis, it is clear that the
intra-exchange interaction has an important role in modifying the internal spin configuration of the core of an
iron oxide nanosphere. In this regard, it is helpful to reduce the magnetic binding energy necessary for magnetic
nanoparticle assembly. We believe that this study provides valuable insights into the interplay between particles’

assembly patterns and their spin-vortex magnetic properties.
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1. M&

Recently, perpendicular magnetic anisotropy based spin-transfer torque magnetic random access memory
(STT-MRAM) is drawing a great attention to researchers studying MRAM due to its advantages of having the
density of DRAM, fast response time of SRAM and the non-volatility of flash memory. [1]

Moreover, recent studies has shown that the spin orbit coupling, which results in the interfacial perpendicular
magnetic anisotropy, and the inversion symmetry breaking at the interface between free layer and heavy metal
of magnetic tunnel junction (MTJ) results in antisymmetric exchange interaction named as Dzyaloshinskii-Moriya
interaction (DMI).[2]

We numerically studied the effect of DMI and size of the cell on switching current density at room
temperature and thermal stability at OK which are the important factors for commercialization of STT-MRAM.
[3] We used for exchange stiffness constant, for anisotropy constant, for saturation magnetization and for DMI

constant for cells with diameter of.

2. M A
First, we studied the effects of DMI and cell diameter on the thermal stability that is a good parameter for
determining the retention time of the data. According to our study with String method [4], the larger DMI

constant lead to the smaller thermal stability as shown on Figure 1(a).
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Fig. 1. (a) Normalized thermal stability as a function of DMI constant.
(b) Switching current density as a function of DMI constant. Both thermal stability and

switching current density is less effected by DMI constant as the diameter of the cell is decreased.
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Next, we calculated the switching current density at room temperature as a function of DMI constant. We
found that the current density increased as DMI constant got larger due to its tendency to keep its skyrmion

number maintained. [5]

3. 0% Y 22

In conclusion, we showed that DMI deteriorates both the switching current and the thermal stability of the
device. Hopefully, the DMI effect vanished as the device diameter, as required in the commercialization of
STT-MRAM, got smaller.

4. g1z
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[3] J. Z. Sun et al., Phys. Rev. B 88, 104426 (2013).
[4] Weinan E, Weiqing Ren, Eric Vanden-Eijnden, J. Chem. Phys., 126, 164103.
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Spintronics is being developed to overcome the limitation of conventional technology. One of the key
applications of Spintronics is the spin-torque nano-oscillator (STNO) based on the transfer of spin angular
momentum from spin-polarized current to the local magnetization of nano-magnetic structures. The spin-transfer
torque can be used to generate a microwave signal under certain condition of external magnetic field and DC
current [1, 2]. The STNOs have a great potential for a microwave generator [3], but have critical disadvantages
such as lower power and broad linewidth which hinder the realization of STNO-based wireless communication
[4].

In order to overcome these disadvantages, we have studied the synchronization of serially-connected STNOs
consisting of two nano-scale magnetic tunnel junctions with elliptical shape. The samples are deposited using both
DC and RF sputtering on the oxidized Si substrate. The samples are thereafter annealed at a temperature of 350
in a magnetic field of 4 kOe. A microwave signal was measured using spectrum analyzer. We observe two
distinguished peaks with a small power (1.2 nW) at a low bias current (/pc) which implies the microwave peaks
originate from two individual junctions. As the current increases, the two distinguished peaks are merged at Ipc
1.6 mA, and the microwave power is increased to 4.8 nW. The broad linewidth of the merged peak indicates

the frequency fulling or partial synchronization of two oscillation peaks with power enhancement.

References
[1] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[2] L. Berger, Phys. Rev. B 54, 9353 (1996).
[3] S. L. Kiselev et al., Nature 425, 380 (2003).
[4] H. S. Choi et al., Sci. Rep. 4, 5486 (2014).
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l. Introduction

In recent years, the ferrimagnet insulator-YsFesO1, (YIG) has been attracted much attention due to its
outstanding spin-caloritronic effects which can be applicable to a future green energy source [1, 2]. Subsequently,
many researchers have been focused on the way to enhanced magnetic properties of YIG by finding optimized
annealing temperature [3], doping rare-earth materials [4], developing novel fabrication methods such as a pulsed
laser deposition [5], an RF/DC sputtering [6], a spin coating [7], and a sol-gel method [8]. Here, we develop
the novel process in the sol-gel method for high saturation magnetization (M) value and homogeneous texture
by using the external mechanical pressing during sintering process. In this presentation, we report that the
temperature of heat treatment and the external mechanical pressure can play a critical role for the magnetic

properties of YIG.

Il. Experiments

We prepared raw materials of the yttrium nitrate (Y(NO3)3.6H,O, 99.99%), iron nitrate (Fe(NOs);.9H,O,
99.99%), citric acid (CsHgO7.H,O). The solution of the citric acid was dissolved into 100mL of distilled water
at room temperature for 18 hours with stirring speed of 300-rpm. The solution of the citric acid was maintained
at 1pH. 100 mL of citric acid was added to the yttrium nitrate (Y(NO3);.6H,0, 99.99%) and the iron nitrate
(Fe(NO3)3.9H20, 99.99%)in regular sequence. The resulting solution was followed by stirring for 24 hours at 80
C to obtain a homogenous gel. And then the powder YIG was obtained from the grinding the completelydried
solution. The calcination process was carried out at 850 ‘C in air for 2 hours at a heating rate of the 7.7 C/min
to get rid of residual impurities and the crystallization. After calcined process, we did the pressing process. Lastly,
sintering has been done for 4 hours. X-ray Diffractometer (XRD; Bruker AXS, D8 ADVANCE) was used for
finding phase identifications of the composite. In addition to, the elemental composition of sample surface was
carried out to measure the kinetic energy of each material with a beam of the X-ray photoelectron spectroscopy
(XPS; Thermo Fisher, K-alpha). Moreover, bubble shaped microstructures of the pressed YIG were obtained by
Field Emission Scanning Electron Microscope (FESEM; Hitachi, S-4800). The high magnetic properties of YIG;
before and after pressing process were measured using SQUID Vibrating Sample Magnetometer(SQUID VSM;
Quantum Design, Model 6000) at room temperature (25 C).

Ill. Results & Discussion

In order to understand the effect of external mechanical pressing, we compared the microstructure and M;
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value of YIG samples after the sintering process with and without the mechanical pressing. As reported in the
previous studies [9], heat treatment in the sol-gel method affects mainly the microstructure evolution and
enhancement of magnetic properties. Here, we found that the mechanical pressing also improves materials
properties by reducing porosities and being homogeneous grain size which is verified though FESEM images.
From the XRD patterns which show good agreements with the Joint Committee on Powder Diffraction Standard
(JCPDS number # 43-0507) of the pure YIG. Because YIG-after pressed is well matched up with standard’s peak
position. From XPS spectrum, however, we found different background value of metal oxides and relatively
reduced surface area from pressed- YIG which means the grain size of pressed-YIG is larger and uniformed than
previously. Furthermore, magnetic properties are changed dramatically through the pressing process: A huge
enhancement of My (> 3 times than it after the sintering process without the pressing) was observed in the VSM
hysteresis loop. Consequently, we found that the pressing process can play a crucial role for the magnetic

properties of YIG.
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Perovskite-typed bismuth ferrite (BiFeOs) belonging to the R3c space group is a multiferroic material
exhibiting simultaneously ferroelectric and antiferromagnetic (AFM) properties above room temperature. In spite
of having weak-ferromagnetic order due to Dzyaloshinky-Moriya interactions, cycloid spin structures found in
BiFeO; leads to zero net magnetization. It has been found that replacing Bi by a rare-earth or alkaline-earth
element, and Fe by a transition metal element can improve remarkably the physical properties of BiFeO;. Dealing
with this problem, we prepared BigsslLaoisFeixTixO3 (BLFTO) (0 < x < 0.1) compounds and then studied the
influence of the Ti doping on their structural and magnetic properties. The BLFTO samples were fabricated by
solid-state reaction at 1200 °C in air for 12 h. The structural analyses were based on an X-ray diffractometer,
Raman scattering spectroscopy, and the Rietveld method upon the GSAS-II program. Magnetic measurements
were performed on a superconducting quantum interference device (SQUID) magnetometer. All of these
investigations were carried out at room temperature.

The results of structural analyses indicated a gradual change from the rhombohedral structure to tetragonal
one along with the shrink of lattice volume when the Ti-doping concentration increases. This is in good agreement
with the variation tendency of Raman scattering spectra, and with the results obtained from Rietveld refinement,
indicating the decrease of structural distortion with increasing Ti content. Particularly, magnetization measurements
revealed a magnetic phase separation with the coexistence of AFM and ferromagnetic (FM) phases. While AFM
interactions are predominant in the samples x = 0, 0.04 and 0.06, the others show the domination of the FM
interactions. These are related to the structural changes of the rhombohedral and tetragonal phases in BLFTO.
According to the results of Rietveld refinement, we found that the AFM phase is mainly from the rhombohedral
phase. The change from the AFM to FM phases can be explained to be due to the rotation of oxygen in the
octahedron, and the change of the bonding angle Fe-O-Fe in the rhombohedral structure.
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It is known that stoichiometric LaMnOs is an A-type antiferromagnet with the Néel temperature 7y = 135~140
K. Recently, the thin films and nanoparticles based this material have attracted intensive interest because its
magnetic and electrical properties can be controlled in a large temperature range from 60 to 300 K upon tuning
the deficiency or excess of oxygen in non-stoichiometric compounds of LaMnOs.s, leading the mixed valence of
Mn®", Mn’" and/or Mn*" ions. Particularly, with non-stoichiometric compounds, one can easily fabricate
transparent ferromagnetic conducting thin films. To get more insight into this problem, we fabricated LaMnOs
nanoparticles (NPs), and then studied the influence of annealing temperature on structural and magnetic properties
of NPs. Here, LaMnO; NPs were synthesized from precursors of lanthanum (III) acetate sesquihydrate, and
manganese (II) acetate tetrahydrate by using a sol-gel method. As-prepared NPs were then annealed at different
temperatures (7)) of 600-1550 °C for 4 h in air. Crystal-structural analyses based on X-ray diffraction patterns
revealed the samples crystallized in a rhombohedral structure, with the ratio of the lattice parameters c/a varying
from ~2.3 for T, = 600 °C to 2.6 for T, = 1550 °C. By changing T.,, we fabricated LaMnQs particles with
average sizes of 16-3000 nm, which were estimated by using the Scherrer equation and scanning electron
microscope. Magnetization measurements indicated their ferromagnetic-paramagnetic phase transition temperature
(Tc) can be tuned in the range between 43 and 260 K. At 15 K, the saturation magnetization (M;) and coercivity
(H.) values are tunable in the ranges of 4~84 emu/g and 25~1300 Oe, respectively. We think that these changes
in magnetism of NPs versus 7., are due to the changes in the concentration of Mn™" and Mn*" ions, lattice

parameters, local geometrical structures, and grain sizes.
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Transition metal oxides are interesting materials due to diverse physical properties such as superconductivity,
ferromagnetism and metal-insulator transition. These properties are often induced by the number of electrons in
the transition metal ions. Cation doping and control of oxygen contents are used to change physical properties
of the materials. In this work, we studied changes of physical properties of SrFe3Co020,5(SFCO) epitaxial thin
films. SFCO epitaxial thin films have been grown on (001) (LaAlOs3)o3-(SrAlosTaosOs)o7 substrates by pulsed laser
deposition. To find the optimal growth condition, we changed substrate temperature and oxygen partial pressure.
We used 0-20 scans to determine the structure of the films. From full width half maximum (FWHM) values of
rocking curves, we could find the film with best crystallinity. The film, grown in 600°C and 100 mTorr, showed
the narrowest FWHM. We found the reduction of c-axis lattice constant from each films annealed in oxidative
condition (PO, = 600 Torr) at different temperature. Transport measurements confirmed reduction of electrical
resistivity after annealing. Also, SQUID data showed clear ferromagnetism. In short, we clearly demonstrated
annealing in oxidative condition significantly changed materials’ properties via oxidation. This work was
supported by the National Research Foundation of Korea (NRF) and grant funded by the Korea government
(MSIP) through GCRC-SOP (No. 2011-0030013). Also, this research was supported by the Basic Science
Research Program through the NRF funded by the Ministry of Education (NRF-2015R1D1A1A02062175).
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[1] Hironao Okada, Toshihiro Itoh, “Development of Battery-Less Wireless Current Sensor Node Ultilizing
Charging Time of Capacitors with Wide Measurement Range”, Wireless Sensor Network, pp. 223-228
(2013).

[2] Edwin Chobot, Daniel Newby, Renee Chandler, Nusaybah Abu-Mulaweh, Chao Chen, Carlos Pomalaza-Raez,
“Design and Implementation of a Wireless Sensor and Actuator Network for Energy Measurement and
Control at Home”, International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.1, pp.
1-15 (2013).

[3] Andrew J. DeRouin, Brandon D. Pereles, Thadeus M. Sansom, Peng Zang, Keat Ghee Ong, “A Wireless
Inductive-Capacitive Resonant Circuit Sensor Array for Force Monitoring”, Journal of Sensor Technology,
Vol. 3, pp. 63-69 (2013).

[4] Joseba Zubia et al. “Design and Development of a Low-Cost Optical Current Sensor”, Sensors, Vol. 13,
pp. 13584-13595 (2013).
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Comparison between Finite Element Method and
Micromagnetics for Infegrate Magnetic Concentrator

Ki-Seung Lee", Kwang-Ho Shin?, Chun-Yeol You'

1Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science & Technology,
Daegu 42988, Korea
2Depalrtment of Information & Communication Engineering, Kyungsung University, Busan 48434, Korea

Recently, the magnetic sensor is widely applied to the automobile and many electrical devices. And the
markets have required low power consumption, high detectivity, linearity, three-dimensional measurement ability,
small package size and low cost. For these requirements, we employed the Integrate Magnetic Concentrator(IMC)
and the Giant Magnetoresistance(GMR) sensor. Moreover, the micromagnetic simulations are essential tools in the
field of the magnetic research. Before we carried out an experimental procedure, we performed simulations for
IMC and GMR. We used two kinds of the numerical simulation: one is the Finite Element Method(FEM) and
the other is the Mumax3. We employed the magnetic parameters as Py for IMC and GMR thin film and also
the various shapes of IMC and GMR sensor the same as the actual size. We obtained result respectively for FEM

and Mumax3 and realized that both results are quite different, which will be described and discussed on this

paper.

z-axis Total Effective Field Plot IMC

(a) (b)
Fig. 1. (a) Magnetic field distribution around an IMC. This figure shows the magnetic field distribution around
an disk shaped IMC as an example of FEMsimulation results. Since there is no way to express magnetic domains
in FEM simulation, the magnetic material of the disk was supposed to be homogeneous. (b) Micromagnetics

simulation result of IMC by Mumax3 indicated multi-domain structures at small field region.
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Fe203/TiO2, Nanocomposite for Photocatalytic
Degradation of Antibiontics

Chunli Liu’, Yuefa Jia and GuoDong Gong

Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Korea
*Corresponding authors : Tel:+82-31-330-4733, +86 21 66137276.
E-mail address: chunliliu@hufs.ac.kr (Chunli Liu).

The resulting water pollution by the use of antibiotics in a wide range of human activities has been receiving
special attention in recent years. Moreover, due to the stable naphthacene ring structure of antibiotic and inhibition
of microorganisms, antibiotics are hardly removable by conventional water treatment processes. Meanwhile,
photocatalytic technology has been described as one of the most promising way to disposal of antibiotics. In this
paper, Fe;O3/TiO> nanocomposite were successfully synthesized by co-precipitation method using Fe (NOs)s *
9H,O and Ti (SOs), as raw materials. Structural and textural features of the mixed oxide samples were
characterized by X-ray diffractometer, field emission scanning electron microscopy and energy-dispersive X-ray.
The effects of initial concentration of oxytetracycline (OTC), different competitive ions and organics on the
photocatalytic degradation rate of OTC by the Fe,O3/TiO, nanocomposite were analyzed under UV and visible
light irradiation. The results indicate that the optimized initial concentration of OTC was 50 mg/L to achieve the
best photocatalytic efficiency. Cu’’, NH,", C;HsO and EDTA in the aqueous suspension were found to suppress

the degradation rate of OTC, whereas the effect of NOs;™ and H>C,O4 can be ignored.
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Influence of Cu doping on Magnetic and
Magnetocaloric properties of Lag 7CAp.3MNg.92CUp 0803

T.A.Ho, S. H. Lim

Department of Materials Science and Engineering, Korea University, Seoul 136-713, South Korea

We have studied the influence of Cu doping on the magnetic properties and the magnetocaloric effect of
Lag7Cap3Mng9,Cu 0303 prepared by using solid-state reaction. The temperature dependence of magnetization
reveals that the presence of Cu dopant reduces the Curie temperature (7¢) to a value of ~ 165 K compared with
parent compound Laj;Cao3MnO; (~248 K). Based on magnetic-field dependences of magnetization, M(H), we
calculated the magnetic entropy change (ASn), which reached a maximum (|ASmax] = 4.8 J/ Kg K) around Tc
corresponding to the relative cooling power (RCP) of 360 J/ kg under an applied field change AH = 50 kOe.
Additionally, based on Banerjee’s criteria and universal curves of plotting the normalized entropy change as a
function of the normalized temperature, we assess magnetic order existing in the sample. It was found that, the
sample consists of second-order magnetic phase transition at magnetic field below 10 kOe and first-order magnetic

phase transition at magnetic field above 10 kOe.
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Neutron Diffraction Studies for Magnetic Materials

Seongsu Lee’

Neutron Science Division, Korea Atomic Energy Research Institute, Dacjeon, Korea

Neutron diffraction is a very powerful experimental tool to study simultaneously a magnetic and crystal
structure in a microscopic point of view. After refining the neutron diffraction diagrams, we can get the impotent
structural information such as atomic position, lattice parameter, thermal motion, magnitude of spin, spin
configuration etc. The local structure change detected by neutron diffraction experiment can give us a key clue
to understand the physical property of our system.

In this talk, we will introduce High Resolution Powder Diffractometer (HRPD) of HANARA with various
sample environments and how we can use neutron powder diffraction for studying magnetic materials. Also, I
will present some crystal/magnetic structure research examples using neutron diffraction. For example, in order
to investigate a possible structural change of RMnOs; at the magnetic transition temperature, I have carried out
high-resolution structural studies using neutron diffraction. Here I show that the hexagonal manganites RMnO;
undergo an isostructural transition at Ty with unusually large atomic displacements: two orders of magnitude
larger than those seen in any other ordinary materials, resulting in a uniquely strong magneto-elastic coupling.
For the first time, I could follow the exact atomic displacements of all the atoms in the unit cell as a function
of temperature and found consistency with theoretical predictions based on group theories. We argue that this
gigantic magneto-elastic coupling of RMnOs arises from geometrical frustration, and holds the key to the recently
observed magnetoelectric phenomenon in this intriguing class of materials. Also, the some examples to define
commensurate/incommensurate magnetic structure and ferroelectricity driven by magnetic ordering will be
presented [2]. It is very important to understand the change of crystal/magnetic using neutron diffraction studies
for developing new material. After finishing my talk, I hope everyone recognize neutron diffraction is key

experimental tool to enhance the physical properties of permanent magnet.

References
[1] Seongsu Lee et al. Nature 451, 805 (2008)
[2] T. Choi et al. Science 324, 63 (2009), Seongsu Lee et al. Appl. Phys. Lett. 92, 192906 (2008), V.
Kiryukhin et al. PRL 102, 187202 (2009)
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In-situ Measurement for Magnetic Materials and
Minerals Using Mossbauer Spectroscopy

Young Rang Uhm’, Jong Bum Kim, Jin Hyung Lee and Kwang Jae Son
Radioisotope Research Division, Korea Atomic Energy Research institute (KAERI)

Maossbauer spectroscopy is a unique technique which is widely used for study not only various molecular
including biomolecular systems, but also various other objects and materials containing Mossbauer isotopes (for
instance, ~'Fe, '“Sn, *'Sb, '7'I, '"’Au, etc.). This technique provides very precise information about the electronic
and magnetic state of the nuclei, chemical bonds, structure of local environment, etc. Iron is the most common
transition element on earth. Many minerals contain iron as a main or as a substitution ion. *"Fe Mossbauer
spectroscopy allows the identification of appropriate iron-bearing minerals, the determination of their oxidation
states or non-equivalent positions of iron, and the investigation of their magnetic behavior. Thus, Mdssbauer
spectroscopy complements standard methods of analysis of the chemical composition and structure of minerals,
e.g. Recently, A new miniaturised Mossbauer spectrometer has been developed for laboratory, and industrial
application such as astrobiology and geological exploration by Palancky University in Czech Republic and
Gutenberg University in German. In this study, we introduce a variety of Mdssbauer spectrometers, and those

various applications.
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Direct observation of magnetization in Nd-Fe-B
permanent magnets by transmission electron microscopy

Hyun Soon Park’

Department of Materials Science and Engineering, Dong-A University

Among the permanent magnets currently available, sintered Nd,Fe;4sB magnets show the best magnetic
properties (K. ~ 4.5 MIJ m”, H. ~ 1.1 MA/m, poMs ~ 1.6 T); that is, they show the largest value of
maximum-energy product [(BH)max > 400 kJm-3]. Since the large maximum energy product leads to a
remarkable degree of miniaturization of motors and actuators, these magnets can significantly contribute to power
saving and/or green technologies. In fact, Nd—Fe—-B magnets have been applied in traction motors of hybrid
electric vehicles, and as actuators of hard disk drives. In order to further improve both coercivity (H.) and
maximum-energy product (BH)max, understanding the magnetization process and the magnetism at the ultrathin
grain boundary (GB) region is of vital importance. In this talk, using in situ Lorentz TEM and electron
holography, I present the observations of magnetization reversal and the magnetism at the ultrathin GB region
in a thin film of sintered Nd,FesB [1,2].

References

[1] H. S. Park, etal, J. Appl. Phys. 97, 033908(2005).
[2] Y. Murakami, et.al, Acta. Mater. 71, 370(2014).
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AEM study on the texture development mechanism
in HDDR processed Nd-Fe-B magnets
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Probing and imaging nanoscale magnetism with scanning
magnetometers based on diamond quantum defects

Donghun Lee’

Department of physics, Korea university

Probing and imaging magnetismat nanometer scale is of great interest in a wide range of fields, including
solid-state physics, materialsscience andbiomedical applications. Simultaneously satisfyinghigh spatial resolution
andhigh fieldsensitivity, however, requires development of novel magneticsensors. The nitrogen-vacancy (NV)
defect center in diamondhas promising potential for nanometerand nanoteslamagnetometrydue to its
atomic-scalesize, long spin coherence timesand high magnetic field sensitivity (e.g. < anHz”z). Since these
properties are robust against a wide range of operating temperature, it is also suitableforstudyingnovel magnetic
materials exhibiting temperature-dependent magnetic orders. Furthermore the defect can be integrated into
AFM(atomic forcemicroscope)type scanning probesproviding imaging capability of nanoscale magnetism. In this
talk, Iwill introduce the conceptandworking principle of the novel technique. I will also present recent progress

in the fieldand research plans at Korea university.
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Thermoelectric properties of Indium and Gallium -
codoped ZnO thin films

Hong Nhat Nguyen Tran', Huu Truong Nguyenz, Thanh Tuan Anh Pham?, Cao Vinh Tran?,
Sunglae Cho®, Deniz P. Wong®, Kuei-Hsien Chen” and Bach Thang Phan**

'Faculty of Applied Science, University of Technology, Vietnam National University, HoChiMinh City, Vietnam
2Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh City, Vietnam
3Department of Physics, Ulsan University, Korea
“Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan
5Faculty of Materials Science, University of Science, Vietnam National University, HoChiMinh City, Vietnam
*Corresponding author: pbthang@hcmus.edu.vn

It is well known that thin film properties such as electrical, optical, thermal properties,... depend on crystal
quality of thin films. Recently, researchs on thermoelectric materials have gain interest due to requirement for
alternative and sustainable energy sources. We found that among three parameters which control figure of merit
ZT of thermoelectric materials are (1) low thermal conductivity k for obtaining a large temperature gradient
between two ends of the material; (2) high electrical conductivity o; (3) large Seebeck coefficient S is needed
to generate a high voltage per unit temperature gradient. However, electrical conductivity and thermal conductivity
vary in a similar way. For example, improvement in ¢ also increases in k. Therefore, improvement in ZT is not
an easy task. Lattice thermal conductivity can be reduced by degrading crystal quality of materials through
introduction of structural defects such as point defects, dislocations, interfaces, precipitates, nanostructure
engineering. However, low crystal quality also reduces electrical conductivity. Due to dopant radius, solubility of
single dopant (Al, Ga, In...) in the host ZnO materials limit a control of electrical conductivity and crystal quality.
In our point of view, because of the difference in ionic radii between Ga (0.062 nm), In (0.081 nm) and Zn
(0.074 nm), combination of the larger (In) and smaller (Ga) dopants in size compared to the host atom (Zn) can
control the ZnO crystal structure efficiently compared to single dopants, which in turn control electrical
conductivity and also thermal conductivity of the host ZnO thin films. In this report, we discuss effects of In

and Ga dopants on crystallinity, electrical and thermoelectric properties of ZnO thin films.

Keywords : crystalline IGZO thin film, multi-dopants, electrical properties, thermal conductivity, localized

states, film crystallinity, thermoelectric properties
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Magnetic Properties of
Fe alloy/SiO, core/shell structure powder

Sunwoo Lee"’, Sungjoon Choi' and Sang-Im Yoo'

1Department of Materials Science and Engineering, and Research Institute of Advanced Materials,
Seoul National University, Seoul 151-744, Korea

Fe metal powder which exhibits excellent soft magnetic behavior has been used for inductors or converters.
Even though Fe exhibits high saturation magnetization with very low coercivity, its applications are limited by
high AC losses at high frequency regime, which is not avoidable because of metallic property of Fe. To reduce
the eddy current loss, insulating coating on the Fe powder to increase electrical resistivity can be applied. For
this reason, we tried to fabricate Fe alloy/SiO, core/shell structure powder, which blocks inter—particle eddy
current path within the sample. SiO, insulation coating was performed by sol-gel method using Tetraethyl
orthosilicate (TEOS) as its precursor via sol-gel processing. TEOS concentration and coating time were controlled
for an optimization. The SiO, coating layer was confirmed by TEM, and magnetic properties of SiO,—coated Fe
alloy powder, including permeability, Q factor and core loss, were measured for an evaluation. Permeability of
SiO, coated samples was decreased as increased TEOS concentration and coating reaction time. Core loss was
observed to be decreased by SiO insulating layer, which was confirmed by TEM analysis. Details will be
presented for a discussion.

This work was supported by a Grant from world class 300 (0417-20150129).

Keywords : Fe powder, SiO, coating, insulating coating, eddy current loss
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Characterization and Fabrication of Fe metal powder
Coated with Alumina oxide

SungJoon Choi*, Sunwoo Lee, Jae-Hyoung Yoo and Sang-Im Yoo

Department of Materials Science and Engineering, and Research Institute of Advanced Materials,
Seoul National University, Seoul 151-744, Korea

In recent years, the soft magnetic composites (SMC) have attracted great interest as the potential applications
in electromagnetic circuits, sensors, electromagnetic actuation devices, low frequency filters, induction field coils,
magnetic seal systems, and magnetic field shielding. Among AC losses of metal powder, the eddy current loss
could be reduced by an insulation coating to increase electrical resistivity. For the same purpose, we have tried
to fabricate a core and shell layer composed of a Fe alloy metal powder and layer of Al,O; by the sol-gel method.
In this study, influences of the process conditions such as reaction time and concentration of Aluminium
Isopropoxide (AIP) on the magnetic properties of the Fe alloy metal powder were investigated. To evaluate the
AC losses of SMC, the magnetic core was fabricated by mixing and pressing Al,Os-coated Fe alloy powder with
a resin. The analysis of Fe alloy metal powder coated with Al,O; was conducted using field emission-scanning
electron microscope (FE-SEM), transmission electron microscope (TEM), Inductance analysis and B-H curve
analyzer. The results showed that the Fe alloy metal powder was uniformly coated by a thin layer of Alumina
oxide. Details will be presented for a discussion. This work was supported by a Grant from world class 300
(0417-20150129).

Keywords : Eddy current, Insulation coating, Core-shell structure
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The Effect of Oxygen Annealing on the Magnetic
Properties of Strontium W-type Hexagonal Ferrite

Jae-Hyoung You', SungJoon Choi, Sunwoo Lee and Sang-Im Yoo'
Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM),
Seoul National University, Seoul 151-744, Korea
wLSang—Im Yoo, e-mail : siyoo@snu.ac.kr

In this report, we examined the role of oxygen vacancy on the magnetic properties of strontium W-type
hexaferrite (SrFei3027, StW), which is a ferrimagnetic oxide material that has a hexagonal crystal structure. The
SrW samples were obtained by annealing and subsequent furnace-cooling in the PO, of 10 atm. The samples
showed different cell volumes and saturation magnetization (M) values for different annealing temperatures. The
samples annealed at 1300, 1310, and 1315 °C in the PO, of 10° atm, exhibited the M, values of 78.9, 79.9,
and 81.4 emu/g, and cell volumes of 984.32, 985.28, and 986.85 A3, respectively. The difference in M, and cell
volumes may come from oxygen vacancy of the samples due to low annealing PO,, since the oxygen vacancy
can cause reduction of Fe’" to Fe’* possessing different magnetic moments and different ionic radius. To verify
the origin of the different M, values, and cell volumes, we tried to oxygenate the samples obtained at the different
annealing temperatures (1300, 1310, and 1315 °C) by annealing in air. As a result, the M, values and cell volumes
of the samples decreased during the oxygenation process and the values become similar for the different samples.
Detailed analysis of oxygen vacancy in SrW and its effect on magnetic properties will be presented for a

discussion.

Keywords : Hexagonal ferrite; oxygen deficiency; oxygen annealing; magnetic property
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Magnetic Supercapacitor for Future Electric Vehicles

Yang-Ki Hong’, Jihoon Park, Woncheol Lee and Jaejin Lee'
Department of Electrical and Computer Engineering and MINT Center
The University of Alabama, Tuscaloosa, Alabama 35487, USA
'Client Research & Development Center, Intel Corporation, Hillsboro, Oregon 97124, USA

Recently, electric vehicle technology has emerged, and autonomous car is just in front us. Accordingly,
advanced energy storage device, which fulfills both high-energy density (Wh/kg) and high-power density (W/kg),
has been searched. In response to this, we have proposed magnetic supercapacitor in US (2015) and WO (2013)
patents. A magnetic supercapacitor has a dielectric layer positioned between magnetic layers. The magnetic layers
comprise hard, soft magnetic material or magnetic exchange coupled magnet. Conceptually, a magnetic flux
generated by the magnetic layers increases the permittivity of the dielectric layer, thereby enhancing the
capacitance of the supercapacitor. When the magnetic layers comprise soft magnetic material, the capacitance of
the supercapacitor can be controlled by changing current through a conductive segment. In this paper,
experimental permittivity (), i.e., (¢ = f{Happ), and theoretical calculation of the electric polarization (P) for a

given magnetic moment, ie., P = f{m), will be presented.
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Magneto-resistance in doped SrRuO; thin film

Chang Uk JUNG" and Umasankar Dash’

'Department of Physics and Oxide Research Centre, Hankuk University of Foreign Studies,
Yongin, Gyeonggi 449-791, Korea
*cu—jung@hufs.ac.kr

1. Introduction

The ferromagnetic and conducting perovsktic of SrRuO3 have been paid a significant attention due to their
potential for various applications.[1] In particular, STRuO3 is used as the bottom electrode in devices due to its
good conductivity and low lattice mismatch with perovskite oxide substrate. Recent discovery of large negetive
magnetoresistance (MR) in (Sri«Lax)(Ru;<Fex)Os; polycrystalline sample offers numerous possible applications in
magnetic industry such as data storage, non-volatile memory, and sensing applications.[2] However, these
polycrystalline samples suffered from A- site disorder problem and co-doping of La3+ was necessary to stabilize
them. Recently, we have shown that high quality Fe-doped SrRuOs; without A- site co-doping can be stabilized
using epitaxial strain during thin film growth.[3] But the obtained maximum MR value ~14% in our Fe doped
SrRuO; epitaxial thin film was substantially less as compared to 55% that of co-doped (SrixLay)(RuixFex)O;
polycrystalline samples. We particularly noticed that our Fe doped SrRuOs; samples with intentionally reduced
oxygen vacancies were metallic, while large MR was observed in semiconducting (SriLay)(Rui«Fey)O;
polycrystalline samples. So, we measured MR of our previously reported Fe doped SrRuOs; deposited at a lower
oxygen partial pressure and possessing higher number of oxygen vacancy and we successfully corelate the oxygen
vacancy to MR. [4] In addition, we also report a very high negative MR of ~36.4% observed in semiconducting
SrRug 7Fe30s.4 epitaxial thin films. This MR value for high oxygen vacancy thin film of SrRug7Feo303.4 is more

than two times larger than the MR for low oxygen vacancy thin film of SrRugoFeq Os.q.

2. Experimental

For the current study, we have used three set of samples, (1) We have used the existing MR and structural
analysis for the low oxygen vacancy thin film [3], (2) we measured MR for the high oxygen vacancy thin film
used in our previous report [4] and (3) we fabricated a new SRFO thin film with very high oxygen vacancy.
These SrRuj«FecOsq (x = 0.10, 0.20, and 0.30) thin films with different oxygen vacancy were grown on STO
substrates under different oxygen partial pressure by using pulsed laser deposition. The laser power and substrate
temperature was maintained at 35 mJ and ~7500C at a constant frequency of 4Hz. The thin films were deposited
at oxygen partial pressure of 100 mTorr and 180 mtorr, so they are expected to show different oxygen vacancy.
The crystal structure was characterized by high resolution x-ray diffraction (HR-XRD). Surface morphology was
examined by atomic force microscopy (AFM). Magnetoresistance was measured by using a set of cryostats
(Physical Property Measurement System by Quantum Design and CMag Vari9 by Cryomagnetics Inc.) and a dual

channel source measure unit. (Keithley 2612A standard measurement unit.)

- 139 -



3. Results
The main results of our study are as follows. For x = 0.10 and x = 0.20 Fe doped SrRuO; thin films the

HR-XRD peaks shifts towards lower 20 angel with increase in Fe doping concentration as well as oxygen
vacancy, implying that both the lattice constant and unit cell volume. However, for x=0.30, the peak of the thin
film shifts towards right as compared to x=0.20, implying that the lattice constant decreased. This Fe doping
induced change in the lattice constant parameters of SRFO thin films has been reported to be well explained in
terms of possible substitution of Fe3+ ion rather than Fe4+ion at Rud+tsites. When the MR trend of x = 0.10
and x = 0.20 thin films were considered, the MR value increases with increase in oxygen vacancy for
semiconducting thin films, while it decreases with increase in oxygen vacancy for metallic thin films. In this
context a larger MR is expected for a thin film having more oxygen vacancy and showing semiconducting
behaviour. For this purpose, we prepared semiconducting SrRug7Feo303.0.12 thin films with higher oxygen vacancy
compared the MR for a series of SrRu;. FeO;4 films grown at lower oxygen partial pressure. As predicted, the
MR for SrRug7Feo30s3.012 thin films value increased more than two times as compared to MR value of
SrRug sFe0203.0.00 thin film.

4. Conclusion

The SrRu;«FecOs.q perovskites thin films (x = 0.10, 0.20, and 0.30) with various amount of oxygen vacancy
were deposited on STO(100) substrates. Without applied magnetic field, the films showed metal-insulator
transition as Fe doping increased. For low doping case of x = 0.10, magnetoresistance was higher for films with
lower oxygen deficiency while magnetoresistance was higher for films with higher oxygen deficiency for higher
doping of x = 0.20. The magnetoresistance approached upto ~ 40 % for SrRug;Fep303.0012. These results were
compared with the magnetoresistance studies for polycrystal of (SrixLax)(RuixFex)Os samples. These results

highlight the crucial role of oxygen stoichiometry in determining the MR in SRFO thin films.

5. References
[1] G. Koster, et. al, Rev. Mod. Phys. 84, 253 (2012).
[2] A. Mamchik, et. al., Phy. Rev. B. 70, 104409 (2004).
[3] K. R. N. Toreh, et. al., J. Alloys Compd. 657, 224 (2016).
[4] B. W. Lee. et. al., J. Korean Phy. Soc. 59, 322 (2011).

- 140 -



KMS 2016 Summer Conference







Invited O-III-1

Enhancing some characteristic properties of
magnetic micro-/nano- materials

Pham Duc Thang*

Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology,
Bulding E3, 144 Xuan Thuy road, Cau Giay district, Hanoi, Vietnam

Metal-oxide materials are of particular interest as exhibiting a wide variety of physical properties, such as
conducting/non-conducting behaviours at different ranges of frequency, tunnelling of the magnetization at
nano-scaled structures, enhanced photoluminescence in semiconductor quantum wells, as well as their numerous
commercial applications in microelectronics, data storage, optoelectronics, etc.

Firstly, in this presentation, some micro-/nano-structure based magnetic and non-magnetic oxides have been
prepared by different chemical and physical techniques. By changing processing parameters, for example
annealing/substrate temperature, ambient pressure, starting composition and by doping metallic elements, one can
be able to modify crystallographic- and micro- structure and magnetic properties of the materials. Grain size,
exchange of ion valences and their crystallographic sites, stress-induced effect on the change in magnetic
properties will be discussed.

Secondly, multilayer structured composites of ferro-electrics and -magnetics having a significant relative
change in magnetization have been investigated. A theory based on strain-mediated magnetic-electric coupling will
be reported to understand the properties enhancement. This could be useful for practical applications in new types

of multi-functional devices.
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Atomic Scale Design of Magnetic Materials for Electric
Machine and Telecommunication Devices

Yang-Ki Hong"", Jihoon Park', Woncheol Lee' and Jaejin Lee®
1Depar“[ment of Electrical and Computer Engineering and MINT Center
The University of Alabama, Tuscaloosa, Alabama 35487, USA
’Client Research and Development, Intel Corporation, Hillsboro, Oregon 97124, USA

Global market for soft magnetic materials is estimated to reach $66.6 Billion by 2019 [the iRAP report], and
the market for permanent magnetic materials will reach $15 Billion by 2018.

The first part of this talk covers the applications of magnetic materials to motor for future electric vehicles
and telecommunication components such as self-biased GHz hexaferrite circulator, miniature ferrite MHz-GHz
antenna, and low-power MHz ferrite inductors. The second part focuses on the electronic structure of magnetic

materials, emphasizing ferrites, rare-earth free permanent and nanocrystalline soft magnets.
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Wireless magnetic actuators and applications

Sung Hoon Kim’

Department of electronics convergence engineering, Wonkwang university,

Typically, the mechanical blood pumps consist of an electrical motor, shaft, bearing, and impeller, and they
require a power cable or TETS with an implantable battery. The general configuration of a blood pump can cause
several problems, including heating, abrasion, and bacterial infections. A magnetically levitated motor for a blood
pump was recently developed to achieve a smaller pump size, and to prevent heating and abrasion from the
mechanical components, such as the shaft and bearings. However, the driving power was transmitted by a
percutaneous power cable. Therefore, the TETS method has been developed to solve problems associated with
a percutaneous the power cable, such as bacterial infections. The use of a TETS, which requires an implantable
battery with a control circuit, is one of the methods used for wireless power transmission. However, when the
TETS is used for an implantable blood pump, the complex configuration requires a difficult surgical operation.
Thus, a new method is required to avoid these problems. In this study, I proposed new strategies for a functional
blood pump based on wireless control. The newly developed pump has the simplest pump structure: it has a pump
housing and a fully magnetic impeller, without a shaft and mechanical bearings. I previously designed blades in
the magnet. Therefore, an external rotating magnetic field or the rotation of an external magnet drives the pump
without the use of a power cable or implanted battery. In addition, a simple power generator to drive the
electronic devices without an additional power source was achieved using a wound coil in the pump case. The
pump has a total volume of 20 cc and weighs 52 g. In addition, the pump produces a maximum flow rate of

8 L/min at 80 mmHg as a centrifugal pump. Because of its small size, the pump is suitable for use as a pediatric

pump.
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Fig. 1. (a) Demagnetization curves after heat treatment at 600°C for 1h with and

without NdHx-Cu dip-coating and (b) the coercivity increment as a function of diffused Nd-Cu contents.
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O-IV-2

Magnetic moment and Magnetocrystalline anisotropy of
Fe1sN2: A first principles study

Imran Khan, Jisang Hong
Department of Physics, Pukyong National University

Using the full potential linearized augmented plane wave (FLAPW) method, we have investigated the
electronic structure and magnetic properties of FeisN, with body centered tetragonal structure. The average
magnetic moment was found to be 2.5 pg/Fe atom which is in agreement with the experimentally calculated value.
A perpendicular magnetocrystalline anisotropy of 0.57 MJ/m® was obtained for pure Fe;sN, which is due to the
tetragonal distortion and it is in agreement with earlier reported results. The estimated coercivity and maximum

energy product are 6.5 kOe and 71.7 MGOe.
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O-IV-3

Magnetic property of porous black phosphorene layer:
electric field and edge passivation effect

Arqum Hashmi’, M. Umar Farooq Umar and Jisang Hong
Department of Physics, Pukyong National University

Using the first principles method, we explored the possibility of long range magnetic ordering in
two-dimensional porous phosphorene (PP) layer. The self-passivated pore geometry showed a non-magnetic state
while the pore geometry with dangling bond at two zigzag edges with the distance of 7.7 A preferred an
anti-ferromagnetic ordering (AFM). The thermodynamic Gibbs free energy calculation revealed that the passivated
system was more stable than the pristine PP layer and the O passivation was more favorable than the H
passivation. The AFM state was persisted by the oxidation of the edge. Pore to pore magnetic interaction with
a distance of 13.5 A between two pores was found to be remarkably long ranged, and this emerges from the
interactions between the magnetic tails of the edge states in the armchair direction. Interestingly, the long range
AFM ordering changed to ferromagnetic (FM) ordering by external electric field. Our study implies a possibility
that a long range FM ordering in whole 2D phosphorene sheet can be formed if a uniform pore exists in a
phosphorene monolayer. The results are noteworthy in the interplay between electric field and electronic spin
degree of freedom in phosphorene studies and may also open a promising way to explore phosphorene based

spintronics devices.
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Manipulating magnetism by strain in FeRh(001) thin films

Soyoung Jekal', S. H. Rhim and S. C. Hong
Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749, Republic of Korea

Symmetrically terminated FeRh (001) exhibit radically different magnetism by termination: a Rh-terminated
film prefers ferromagnetism (FM), while an Fe-terminated one is stable in G-type antiferromagnetism (G-AFM)[1].
We extend our study to asymmetrically terminated FeRh (001) film with both termination at each side. This
asymmetrical FeRh (001) film possess both FM and G-AFM, whose details depend on film thickness[2].

In this talk, we additionally consider strain effect on magnetism of both symmetrically and asymmetrically
terminated FeRh(001) films. Compressive (tensile) strain along in-plane direction stabilizes G-AFM (FM).
Furthermore, for 9-ML Rh-terminated film, there is a crossover from FM to G-AFM for 2% compressive strain,
while unstrained one is stable in FM.

In the case of asymmetrically terminated FeRh(001) film, the number of layers of FM and G-AFM depend
on strains as shown in Fig. 1. Moreover, magnetocrystalline anisotropy (MCA) is also controllable by strain,
where the contributions from each of the Fe- and Rh-terminated surface, and the boundary where magnetism

changes, are analyzed from the electronic structure.
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Defect induced ferromagnetic interaction in
Co’*-doped Y,0O3 nanorods

Sandeep K.S. Patel*, Prasanta Dhak, Min-Kwan Kim, Jae-Hyeok Lee,
Miyoung Kim, Sang-Koog Kim
National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory,
Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National
University, Seoul 151-744, South Korea

1. Introduction

In recent research, dilute magnetic oxide (DMO) systems are one of the promising candidates for potential
spintronics application, because they display room-temperature ferromagnetism [1]. The recent literature on
transition-metal-ion-doped room-temperature ferromagnetism in low-band-gap (~3.0 eV) ZnO, TiO,, SnO, and
In;O; systems is vast [2-7]. Although the origin of such room-temperature ferromagnetism in these oxides is
explained by the bound magnetic polaron (BMP) model [8], there remains controversy with respect to its scientific
explanation. There have been few reports of the existence of ferromagnetism in Cr-doped In,Os [7], whereas it
has been established that Fe-doped TiO, exhibits paramagnetism [6]. Griffin [9] and Tian at al. [10] have reported
non-intrinsic ferromagnetism due to the formation of ferromagnetic clusters or impurity. According to the BMP
model, oxygen vacancies defects play an important role in determining the existence of ferromagnetism in such
DMOs. Because the oxygen-vacancy concentration (V,) can be controlled, the saturation magnetization can be
modulated accordingly [8].

Meanwhile, for hybrid device application in the present research, high-k dielectric systems such as Y,O; are
of great interest, though little attention has been paid to one-dimension (1D) nanostructures. In the present study,
we synthesized Y».CoxOs3; (x = 0.00, 0.04, 0.08) nanorods by hydrothermal method and studied the room-

temperature magnetic properties of pure and transition metal Co”" ions doped Y,O3 nanorods.

2. Results

C02+—doped Y,0; nanorods of 70-100 nm diameters and 0.3-2 um lengths with different compositions (x =
0.00, 0.04, 0.08) in Y>xCoxO3 were synthesized by a hydrothermal method. The X-ray diffraction, Raman spectra,
X-ray photoelectron spectroscopy and transmission electron microscopy (TEM) results indicated the formation of
a pure cubic phase structure of Y,0; doped with Co”" ions without any secondary phase formation. The TEM
analysis indicated that the nanorods were grown along the [100] axis. The pure Y,Os; nanorods showed
diamagnetism whereas the C02+—doped ones exhibited room-temperature ferromagnetism. The existence of such
room-temperature ferromagnetic behavior in Co**-doped Y,Os nanorods is due mainly to the existence of oxygen
vacancies defects originating after the doping of transition metal Co”" ions in the Y,O; host lattice. Oxygen
vacancies act as defect centers in the bound magnetic polaron model to account for this dilute magnetic oxide
of medium band gap with low transition metal Co’" ions concentration. The presence of defect-related oxygen

vacancies was further confirmed by the photoluminescence (PL) spectra analysis.
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3. Discussion

The surface morphology was examined by SEM and TEM. The straight rod-shape morphology of the pure
and Co-doped Y»0; samples are of 70-100 nm in diameter and 0.3 um-2 pm in length. The XRD patterns
properly matched the pure-phase cubic crystal structure and Ia-3 space group. The analysis of the XPS spectra
indicated the presence of three elements, Y, O and Co, in the Yi96C00.0403 composition, and the oxidation state
of Y was Y. As described in the bound magnetic polaron (BMP) model, ferromagnetism in such insulating
DMOs occurs due to localized defects instead of the electron-mediated magnetism proposed for conducting diluted
magnetic systems (DMSs). In our case, when the Co™" ion is present, oxygen vacancies (V,) surrounding it are
created as C02+—V0—C02+, and these act as defect centers that mediate the localized carriers and affect the
ferromagnetic properties. Therefore, the magnitude of ferromagnetism is dominated by the incorporation of

.. 24+ . . . . .
transition metal Co~ ions, which creates defect centers associated with oxygen vacancies.

4. Conclusions

We synthesized pure and Co-doped Y»O; nanorods of high aspect ratio of dimensions using a simple and
inexpensive hydrothermal process and studied their formation mechanism as well as structural and magnetic
properties. The pure Y,O; nanorods exhibited linear diamagnetism, whereas the Co’’-doped Y,Os; nanorods
showed room-temperature ferromagnetism. The existence of ferromagnetism in doped samples is due to the
creation of oxygen vacancies during defect formation in the host lattice. The ferromagnetic behavior is explained
by the defect-mediated mechanism in the framework of the bound magnetic polarons. The present PL spectra
confirmed the existence of additional oxygen vacancies in the doped Y,O; nanorods. Such variation in the
magnetic behavior of DMO through oxygen vacancy increase after doping with transition metal ion can be used

for potential applications in spintronics.
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Exchange bias and R3¢ to Pn2,a phase transition in
single crystalline Gd-doped BiFeO3 hanowires

Sandeep K.S. Patel’, Min-Kwan Kim, Miyoung Kim, Sang-Koog Kim
National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory,

Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National
University, Seoul 151-744, South Korea

1. Introduction

In recent years, the exchange bias effect has received considerable interest due to the intriguing physics and
its importance in technological applications [1]. Exchange anisotropy appears in hybrid ferromagnetic—
antiferromagnetic (FM/AFM) systems and manifests itself in the form of a shift of the magnetization hysteresis
loop. The presence of uncompensated surface spins also leads to exchange bias anisotropy in the AFM
nanostructured materials such as Co3O4 [2] and NiO [3]. Recently, the exchange bias effect has been observed
in ABOs type AFM perovskite, such as BiFeO; [4].

Single phase BiFeO; (BFO) is the most promising multiferroic material because of its high ferroelectric Curie
(Tc ~ 1103K) and Neel (Tx ~ 643K) temperatures [5,6]. Owing to its high T¢ and Tx ordering temperatures,
this material is expected to find potential applications in spintronics, data storage and electromagnetic devices
[6-9]. It has G-type antiferromagnetic ordering with a spin cycloid with period of approximately 62 nm [10,11].
This spiral spin structure limits the observation of ferromagnetism in BFO. The limiting observation of
ferromagnetism can be mitigate through the suppression of the spiral spin cycloid structure by reducing its size
below 62 nm or by chemical substitution of Bi'" or Fe’" sites by suitable ions of comparable ionic sizes [12,13].
Recently, many authors have carried out rare-earth ions (R3+) doping at Bi’" sites to suppress the spin cycloid
structure and enhance the magnetization in BFO [13,14]. In this study, we report the structural transformation
and observation of exchange bias properties in one dimensional Gd-doped BFO nanowires (NWs). We provide
an interpretation of the temperature dependence of exchange bias and coercivity, based on the uncoupled surface

spins.

2. Results

Multiferroic one-dimensional single crystalline Bi;..Gd,FeO; (0 < x > 0.10) nanowires of 50-60 nm diameters
have been synthesized by hydrothermal technique. Addition of Gd* ions into the BFO NWs results in
rhombohedral (R3c) to orthorhombic (Pn2;a) phase transition and alters their magnetic properties. The
improvement in the multiferroic properties could be due to the spin canted Dzyaloshinskii-Moriya (DM)
interaction that were manifested by the suppression of cycloidal spin structure, since the sizes of the NWs are
less than 62 nm. A distinct exchange bias phenomenon is also observed, which can be attributed to the exchange

interaction at interface of AFM core-FM shell like structure.

3. Discussion
XRD pattern obtained for Bi;«GdiFeOs; (x = 0) confirmed that the compound is single phase and possesses
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the rhombohedral lattice type with R3c space group and Bii.(GdFeOs (x = 0.10) revealed an orthorhombic lattice
type structure with Pn2,a space group. The TEM images show that the particles have NWs shapes with diameter
about 50-60 nm and a length from hundreds of nm to several microns. The enhancement in magnetic property
of Bi;..Gd,FeOs (x = 0.10) NWs can be attributed to the R3¢ to orthorhombic Pn2/a structural transformation,
which might cause a tilting of FeOs octahedrons due to the canting of Fe—O—Fe bond angles. Moreover, oxygen
deficiency could also increase the magnetization by introducing Fe’™ through the double exchange mechanism
across the Fe''-O*—Fe’', but the presence of Fe’" rules out by the X-ray photoelectron spectroscopy
measurements. The exchange coupling interactions between the AFM core and FM-like shell of the particles leads

the exchange bias phenomenon.

4. Conclusions

Bi;.«GdFeO; NWs with rhombohedral (x = 0) and orthorhombic structure (x = 0.10) were successfully
synthesized through a hydrothermal method. The decrease in intensity and broadening of Raman modes further
confirms the structural changes. In addition to the antiferromagnetic behavior, the magnetization curves of the
BFO nanowires also present a ferromagnetic response at 300 and 5 K. The Bi;.(Gd,FeO; (x = 0.10) nanowires
exhibited significantly difference in exchange bias fields compared to BFO nanowires. This behavior is associated
to the substitution induced suppression of cycloidal spins and AFM-core/FM-shell like structure in BFO. The

existence of exchange bias makes BFO nanowires a potential candidate for spintronics and memory based devices.
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Intrinsic spin-orbit torgue in two dimensional
antiferromagnets

Suik Cheon' and Hyun-Woo Lee'
1Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea

We consider spin torque generated by an electric current flowing through a two-dimensional(2D) collinear
antiferromagnetic(AFM) layer subject to the Rashba spin-orbit coupling. In particular, we focus on the spin-orbit
torque (SOT), which is the spin torque generated by the interplay between the current and the spin-orbit coupling.
Considering small Fermi energy and strong exchange limit, we investigate the damping-like(DL) component of
the SOT, or DL-SOT. Compared to the DL-SOT in a ferromagnetic case, we show that this torque in the AFM
case is more sensitive to the exchange interaction and the electron density. Moreover while the intrinsic DL-SOT
in the ferromagnetic case arises from the whole bands[1], in the 2D collincar AFM system, which is invariant
under combination between time reversal and lattice translation symmetry operations, we show that certain specific

bands are important to the DL-SOT.

Reference
[1] H. Kurebayashi et al., Nat. Nanotechnol. 9, 211 (2014).
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Recently, in accordance with rapid progress of the digital electronic equipment which is capable of high speed
image data transmission, the electro-magnetic interference (EMI) becomes more serious. Most of the radiated
emission noise is due to the common mode noise current in the data cables connected to digital equipment. To
provide an effective solution for the problem, Mn-Zn or Ni-Zn soft ferrite beads are conventionally used as the
common-mode noise filter to reduce a type of electrical noise [1]. When the ferrite beads surrounded a data cable,
the bead cores can be used to reduce the radiated magnetic wave generated from the common-mode noise current.
However, permeability values of the ferrite materials are too small to fabricate a small bead core over the MHz
~ GHz frequency range because of Snock’s limit [2]. Moreover, the large volume of the ferrite bead on the data
cable poses a severe problem for miniaturized device design. Although several amorphous materials with high
permeability have been proposed as a candidate material for the smaller EMI noise filter [3], the bead filters have
still difficulties in the application of the miniaturized devices or the flexible devices.

In our study, impedance characteristics were investigated for the possibility of employing the flexible magnetic
film as a noise filter over the frequency range from MHz to GHz. The effective impedance was determined by
the dimensions of filters and the intrinsic material properties, including complex permeability. The impedance was
mainly due to the inductance for the flexible magnetic film but to the inductance and resistance for the
conventional ferrite bead core in a frequency range of 100 to 800 MHz. Although the inductance of the flexible
magnetic film was much lower than that of the ferrite bead until 40 MHz because of lower initial real
permeability, the inductance exceeded the level of the ferrite bead in the frequency range of 40 to 800 MHz.
The higher inductance at the frequency range was attributed to the area dimension of the magnetic thick film
as well as the initial imagery part of permeability. The higher inductance was, the better the effect was reached
to filter out the common-mode noise. As a result, the noise emission from a data signal cable was effectively

attenuated by employing the flexible type magnetic film as a common-mode noise filter.

Keywords : soft magnetic materials; electromagnetic noise; magnetic composites; inductance; noise filter
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1. Introduction

The study of light-matter interaction is a central subject in quantum information and communication science
and technology. In order to be useful for quantum application, a proposed technology has to be able to exchange
information with preserved coherence [1-3]. Recently hybrid systems consisting of resonantly coupled spin
ensembles and microwaves have received much attention [4-5]. In this present work, we have proposed a simple
hybrid structure consisting of yttrium iron garnet (YIG) film and split ring resonator (SRR) to study the interaction

of magnetic resonances in YIG film with microwave photon resonances in SRR.

2. Methods and Results

A SRR structure along with microstrip line (shown in Fig. la) has been fabricated using lithographic
techniques on a standard duroid (RT/duroid 5870) substrate of dielectric constant 2.3. The dimensions of the split
ring and the microstrip line are (Fig. 1la): a = 85 mm, b = 7.5 mm, and g = 0.06 mm (the distance between
the microstrip line and the SRR is also g), w = 3 mm. The split ring is inductively coupled to a microstrip feeding
line. For the measurements, coaxial adaptors have been soldered at the two end of the stripline. The

characterization of this structure has been carried out using a calibrated two port vector network analyzer (VNA).

@) - 16 4
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Fig. 1. (a) Sketch of the split ring resonator structure with geometrical parameters.
Frequencies of the peaks as functions of the applied field (b) when YIG film covers only SRR and
(¢) when YIG film covers both an SRR and a section of the microstrip line
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During measurements, an epitaxial YIG film (grown on GGG substrate) with the dimensions 8§ mm x 15 mm
x 25 um is placed on top of the split ring with the YIG layer facing the SRR. A dc magnetic field (H) is applied
(using electromagnet) in the plane of the film in the direction perpendicular to the microstrip line (along X
direction). The input and the output of the microstrip feeding line have been connected to the ports of a VNA
and its reflection (Si;) and transmission (S»;) characteristic have been measured as a function of microwave
frequency and the strength H of the applied field. A microwave current flowing through the microstrip feeding
line (along Z direction) excites a (photon) resonance in the SRR. At resonance, significant microwave current
flows through the SRR. Its Oersted field drives the magnetization precession in the YIG film.

The microwave transmission |[S21| as a function of microwave frequency (f) measured at different applied
magnetic field. At H=0 Oe only one resonance mode (which is purely SRR resonance mode) was observed. When
magnetic field is applied two peaks were observed out of which one peak is very strongly dependent on the

applied field. Essentially, it moves across the displayed frequency range with an increase in field.

3. Discussion

The variation of resonance peak positions are plotted as a function of applied magnetic field and is presented
in Fig. 1b. This clearly shows strong anti-crossing of the two lines, which suggests strong coupling between two
modes. In order to identify the resonances peaks observed in Fig 1b, another set of measurements were performed.
During the measurement the YIG film was placed such that it covered not only the SRR but also a section of
the feeding microstrip line. These measurements were taken on a different SRR structure. The shape of the SRR
for this structure was the same as in Fig.1la, but its sizes were slightly smaller, therefore the frequencies of the
resonances in Fig.1c do not coincide with the ones in Fig.1b. Here we observed that for this YIG film placement
one extra a resonance peak was appeared and is located in between two peaks of the type shown in Fig.1b. This
extra mode shows a smooth and monotonous variation with the magnetic field and fitted well to the Kittel formula
for the in-plane position. We will call it “magnon mode or Kittel mode”. The variation of other two modes as
a function of magnetic field can also be seen in Figl c. These modes show anti-crossing behavior independently
at two different frequency regions when they came closer to Kittel mode. Importantly, far away from the
“anti-crossing” with the Kittel mode the frequencies are almost the same and the line slope is practically
vanishing. This implies the horizontal sections of these lines are uncoupled (pure) SRR resonances (photon
modes). The sections of these lines with significant slopes (close to the anti-crossing region) are SRR resonances
coupled to the magnon mode of the YIG film. The strong anti-crossing between the photon and magnon modes
seen in Fig 1(b) and (c) suggests a strong coupling between them.

The strength of coupling of the SRR mode to the magnon mode can be determined by using the equation
used for two coupled resonators [5]. From the fit, we obtain A = 270 MHz or = 9 %. In order to understand
the process of anti-crossing of the SRR and magnon modes numerical simulation was carried out to calculate
the radiation impedance (Zr) of spin waves excited by the microwave current in the split-ring resonator. It was
shown that the SRR resonator experiences additional energy losses due to excitation of spin waves and also
storage of oscillation energy in the spin system of the YIG film within the area of localization of the microwave
magnetic field of the microwave current in SRR. It represents the physical mechanisms of coupling of the SRR

resonances to magnon excitations in the YIG film.

4. Conclusion

By using the frequency-domain VNA-FMR spectroscopy we have demonstrated a strong coupling regime of
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magnons to microwave photons in the planar geometry of a lithographically formed split-ring resonator loaded
by a single-crystal epitaxial YIG film. This interaction manifests itself as a strong anti-crossing between the
photon and magnon modes. The numerical simulations of the microwave field structure of the SRR and of the
magnetization dynamics driven by the microwave currents in the SRR reveals the physical origins of the effect

of anti-crossing.
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1. Introduction

Magnetic skyrmions are topologically protected spin textures, which are promising potential candidates for
information-storage and -processing device applications due to their characteristic features including nano-scale
size, topological stability, and ultra-low threshold current density necessary for their motions [1]. From the
fundamental interest as well as technological applications, several internal modes of skyrmion crystals, such as
gyration mode and breathing mode have been explored [2,3]. Furthermore, collective excitations in 1D chains of
single-skyrmion nanodisks along with spin-wave propagations and their dispersion in 1D periodic skyrmion lattice
nanostrips have been investigated as well [4,5]. However, collective skyrmion gyration modes in narrow nanostrips
still remain elusive. Here, we report on a micromagnetic numerical simulation study of coupled skyrmion gyration
modes in 1D periodic skyrmion lattices in narrow-width nanostrips and their applications for reliable information

carriage in straight and curved nanostrips.

2. Methods and Results

In the present study, we employed the Mumax3 code [6] to numerically calculate the coupled gyration modes
and their characteristic dispersions. Two, five and more skyrmions are periodically arranged in continuous
thin-film narrow-width nanostrips. The first skyrmion core at the left end was displaced and relaxed to study
dynamic coupled motions. The collective motions of the individual skyrmion cores show unique standing-wave
forms of different wavelengths. The dispersion curves in the reduced zone scheme were obtained and the overall
shape was concave up. Additionally, the band structure of 1D skyrmion lattices was varied by changing the
skyrmion interdistances (din) and perpendicular field (H,). As din decreases, the band width Aw and the angular
frequency wgz at k = kgz increase. Also, Aw and wpz of the resultant band structures decrease with increasing
H,.

3. Discussion

Such collective dynamic motions are determined predominantly by a strong exchange interaction according
to the relative positions of the nearest-neighboring skyrmion cores. Also, the linear dependences of wsz on H,
are mostly associated with the variation of the wo of the isolated skyrmions. From a technological point of view,
such gyration-signal propagation in a 1D skyrmion array can be used as a reliable information carrier. The
propagation speeds generally follow the dependence of wgz on dinx and H,. The results are promising for potential

signal-processing applications.
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4. Conclusion

In summary, we explored the gyration modes of coupled skyrmions and their dispersions in 1D skyrmion
lattices. The modes and their characteristic dispersion relations were examined for different skyrmion
interdistances and perpendicular magnetic fields externally applied to the nanostrips. Additionally, the
controllability of the dispersion curves and skyrmion gyration propagation were demonstrated. The strong
exchange coupling between neighboring skyrmions leads to the propagation of skyrmion gyrations as fast as ~135
m/s, which value, significantly, are controllable by applied perpendicular fields. This work provides not only a
fundamental understanding of the dynamics of coupled skyrmions but also a new type of skyrmion magnonic

crystal applicable to future information processing devices.
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1. Introduction

Magnetic domain-wall (DW) motions in thin-film rectangular-shape nanostripes have attracted significant
attentions because of their technological applications in magnetic memory [1] and logic devices [2]. However,
one of the main challenges is the suppression of the DW mobility due to the Walker breakdown behavior, in
which DWs are periodically transformed from the transverse to vortex walls [3]. Further theoretical works found
that the Walker breakdown behaviors can be hindered and/or reduced using specific geometrical confinements of
cylindrical nanowires [4] and nanotubes [5]. They have curved geometries that differ from flat thin films and
thereby leading to the geometrical confinement of local magnetizations in such structures. Locally different
demagnetization fields can thus influence the dynamics of local magnetizations and their collective intrinsic
modes. Since systematic study of spin-wave modes as related to the DW motions is a prerequisite for operations
performed by such devices, herein we present the results of a study on the magnetization dynamics as well as

DW motions in a cylindrical nanotube.

2. Method & Results

We studied, by micromagnetic numerical calculations [6], magnetization dynamics as well as DW motions in
a cylindrical nanotube with a head-to-head DW, driven by circular rotating fields of different frequencies. We
found the presence of two different localized DW oscillations, ferromagnetic resonance, and azimuthal spin-waves
modes at the corresponding resonant frequencies of circular rotating magnetic fields. Associated with these
intrinsic modes, there exist very contrasting DW motions of different speeds and propagation directions for a
given DW chirality. The direction and speed of the DW propagation were found to be controllable with the
rotation sense and the frequency of circular rotating magnetic fields. Furthermore, spin-wave emissions from the

moving DW were observed at a specific field frequency along with their Doppler effect.

3. Discussions

From an application point of view, such magnetic nanotubes studied here can be used as a DW racetrack and
have several advantages such as a high stability of DWs and hindering the Walker breakdown due to the
geometrical confinements of local magnetizations. Also, the DW chirality provides a further degree of freedom,

which can be detected via the direction of DW propagations for a given rotation sense of the circular rotating
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fields. Furthermore, the stray fields of the DWs play a crucial role in trapping magnetic particles inside a
nanotube, which may provide an on-chip system for capturing, manipulation, and delivery of individual magnetic

nanoparticles in bio-applications, as well as information storage and processing devices.

4. Conclusion

We report on intrinsic spin-wave excitations and these related very contrasting DW motions in soft magnetic
nanotubes of a vortex-type DW. We found that the speed and direction of DWs in the nanotube are reliably
controllable with the rotation sense and frequency of circular rotating magnetic fields for a given DW chirality.
This work provides fundamental correlations between the characteristic DW motions and excited spin-wave modes
and furthermore constitutes an important step toward the achievement of all-magnetic-controlled DW motions,

applicable to magnetic memory and logic devices using DW motions.
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