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The magnetism of oxides

Josep Fontcuberta’

Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)
Campus UAB, 08193 Bellaterra, Catalonia, Spain

Magnetite Fe;O, guided the humankind towards unknown frontiers. Since those early days, oxides have been
the backbone of many scientific and technologic developments and reached a peaceful maturity, robustly settled
in textbooks and deeply integrated in technological applications, until late 1980°’s when the high temperature
superconductors were discovered. The subsequent rush stimulated an impressive development in oxide thin film
growth technologies and a deep revision of the understanding of metal oxides and strongly correlated electronic
systems which ultimately boosted a tremendous explosion of research on oxides. Today, long beyond the
celebrated colossal magnetoresistance, oxides are fuelling the discovery and development of unexpected, intriguing
and fascinating new areas of knowledge, such as magnetic ferroelectrics and magnetic monopoles. Ferromagnetic
oxides are finding its way as active components in spintronics, either as spin filters for advantageous magnetic
tunnel junctions or used to manipulate spins in non-magnetic materials, which could eventually lead to pure
spin-current based rather than charge&spin-based devices, with prospects of more energy-efficient spintronic
devices. The tinny spin-orbit coupling interaction, responsible for the magnetic anisotropy, has also emerged as
a fundamental interaction allowing to modulate electric transport properties, not only of metallic ferromagnetic
systems but also in antiferromagnetic metals and insulators that may lead to a new generation of magnetic
memories. Still, “interface is the device” and interfaces between oxides and metals and interfaces between large
band-gap oxides have led to the discovery of emerging properties such as switchable “on-off” magnetization or
magnetism and superconductivity that challenges our understanding of oxides. This is the playground where we
happily play, learn and envision the future while enjoying building a new science out of the old good oxides.
Along the seminar, we will jointly follow the track of the new materials and ideas that make this journey possible

and so successful.
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High-coercivity Dy-free Nd-Fe-B permanent magnets

K. Hono'
Elements Strategy Initiative Center for Magnetic Materials,
National Institute for Materials Science (NIMS), Tsukuba, Japan

Due to the recent concern about the stable supply of heavy rare earth elements, attaining high coercivity in
Nd-Fe-B magnets without using Dy has received intense research interest. In this talk, we will overview our
recent progresses at NIMS toward the development of high coercivity Dy-free Nd-Fe-B permanent magnets. To
obtain better understandings of the microstructure-coercivity relationships, we revisited the microstructures of
Nd-Fe-B sintered and hot-deformed magnets using aberration-corrected STEM complemented by atom probe
tomography (APT), magneto-optical Kerr microscopy and finite element micromagnetic simulations. We found that
the intergranular phase parallel to the c-planes are mostly crystalline with a higher Nd concentration in contrast
to that lying parallel to the c-axis that contains higher Fe content with an amorphous structure. Micromagnetic
simulations suggest the reduction of the magnetization in the latter is critical to enhance the coercivity. Based
on these new experimental findings together with our recent detailed characterization results of the intergranular
phases in Ga-doped Nd-Fe-B magnets, we developed a method to increase the coercivity of Nd-Fe-B

hot-deformed magnets while keeping relatively high remanence.
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Sampling the structure and chemical composition of
ferromagnetic nanoparticles with wide size distributions
by Ferromagnetic Nuclear Resonance

Y. Shin"?, C. Meny"
"Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS),
UMR 7504 CNRS- University of Strasbourg, 23, rue du Loess, 67034 Strasbourg Cedex 02, France
Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 120-750, South Korea

Assemblies of nanoparticles are investigated in many research fields. One of the problems for understanding
their properties arises from the difficulty in producing mono-dispersed particles. Therefore, the identification of
the key parameters at the origin of their properties is blurred by wide size distributions. In this work we report
on the new method we have developed in **Co Nuclear Magnetic Resonance (NMR) which allows the sampling
of the structure and chemical composition of ferromagnetic nanoparticles within their size distributions.

Nuclear Magnetic Resonance is commonly used in chemistry or biology but it is much less popular for studying
ferromagnetic systems. However recent developments have shown that NMR can give unique information on the
structure, stacking faults, chemical order or interface morphology of magnetic thin films, multilayers [1], or nano-particles
[2]. When used for studying ferromagnetic samples, NMR is also called Ferromagnetic Nuclear Resonance (FNR,
acronym we favour but it is also sometime called Internal Field NMR, IFNMR). In this present work, we report
on a new FNR methodology that provides unique insights into the study of ferromagnetic nanoparticles.

In this new methodology we introduce the concept of Temperature Differential Ferromagnetic Nuclear Resonance
(TDFNR) spectra. These spectra are obtained by first measuring FNR spectra for different temperatures. Differences
between spectra obtained at adjacent temperatures are then computed resulting in the so called Temperature Differential
Ferromagnetic Nuclear Resonance (TDFNR) spectra. These TDFNR spectra have the advantage over all the other
investigation methods to allow analysing the structure and the chemical composition of particles for selected size
ranges [2] within the particles size distribution. Therefore the TDFNR spectra allow one to sample simultaneously
the crystallographic structure, the chemical composition and the chemical order of ferromagnetic nanoparticles within
the size distribution of the particles. In addition from the TDFNR spectra intensities it is possible to estimate
the particle size distribution. Our methodology allows therefore a very complete understanding of the relationship
between the structure and the size of the particles even in the case of broad size distributions. In addition no
specific sample preparation is required and the method allows analysing the samples in their macroscopic shapes.

The method is first applied to the study of cobalt nanoparticles and allows showing that surprisingly in the
studies sample, the smallest Co particles have mostly a hexagonal structure while the largest one have rather a
cubic (fcc) structure. In a second example, we extend the field of application of the method by sampling the
chemical composition and chemical order within the size distribution of alloyed CoFe nanoparticles. Our method
can thus be applied in many research fields, allowing a deeper understanding of the properties of assemblies of

ferromagnetic nanoparticles with wide size distributions.
References

[1] P. Panissod, C. Meny,. Appl. Magn. Reson. 19, 447-460 (2000)
[2] Y.F. Liu,..., C. Meny, Nat. Commun.7, 11532 (2016).
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Calculation of Coupling Factor of Prolate Spheroid
Exposed to Low-Frequency Magnetic Field

Jae-Hoon Shim, Kyu-Jin Jung’, Min-Soo Choi, and Jin-Kyu Byun

Department of Electrical Engineering, Soongsil University

1. Introduction

When human body is exposed to low-frequency magnetic field, the induced current or electric field inside
human body can lead to adverse health effects such as stimulation of nerve or muscle tissues. Since induced
current density inside human body is difficult to measure, alternative methods have been proposed to assess
magnetic field exposure at low-frequency. One of such methods is coupling factor approach that is defined in
IEC standards. In IEC 62226-2-1 standard, coupling factor K is defined as [1]:

J

K __* nonuniform

Juniform ( 1)

where Juonuiform 1S the current density induced by nonuniform magnetic field, and Jyiform 1S the current density
induced by uniform magnetic field. In IEC 62226-2-1 standard, 2D circular disc model is used as an equivalent
human model. In this paper, 3D prolate spheroid is used as an equivalent human model, and coupling factors

are calculated for exposure to low-frequency magnetic field from circular coils.

2. Exposure Scenario by Circular Coil

Fig. 1 shows simplified exposure scenario when human body is located near circular coil. The human body
is approximated by simple prolate spheroid, which has conductivity value of 0.2 [S/m], height of 0.8 [m], and
width of 0.4 [m]. The frequency of current source is 50 [Hz], and the magnitude of the current is set to make
magnetic field of 1.25 [uT] at the closest point on the spheroid as shown in Fig. 1. COMSOL Multiphysics
software was used for induced current density calculation, and various values of coil radius » and distance d
between coil and spheroid are investigated.

To alleviate the errors from element division of numerical analysis, 99 percentile values of induced current
density is used for calculation of Jyonuiform instead of maximum values. The 99 percentile values are extracted

from 5 [mm] grid inside the spheroid.

Fig. 1. Prolate spheroid model and circular coil.
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3. Calculation Results

Fig. 2 shows calculated values of coupling factor K according to the distance d and radius » of the coil. In
general, K value is increased as radius » of coil and distance d between coil and spheroid is increased. This is
due to the fact that the characteristics of the magnetic field at the spheroid follow those of the uniform field
as r and d are increased. Within 30 [cm] distance, maximum value of K was less than 0.56, which means that
less than 56 % of induced current is generated compared to uniform field exposure. The calculated K values were
slightly less than those obtained by 2D disc model in IEC 62226-2-1 standard [1].
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—0—r=0.005m
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0811 v r=002m
a —4—r=0.04m
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
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Fig. 2. Coupling factor K of prolate spheroid according to radius » and distance d.
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Magnetic anisotropy of Mn, Fe and Co dimers on
monolayer phosphorene

Imran Khan', Jicheol Son and Jisang Hong
Department of Physics, Pukyong National University, Busan 608-737, Korea

We studied the geometries, electronic structure and magnetic properties of substitutional doping and adsorption
of transition metal (Mn, Fe and Co) dimers on phosphorene monolayer. The electronic band structures and
magnetic properties were dependent on the doping type and dopant materials. For Mn and Fe substitutional and
adsorption dimer, we obtained semiconducting band structures with spin polarization. However, we found a
half-metallic feature in Co substitutional dimer while the Co adsorption dimer showed a semiconducting behavior
without any spin polarization. The hybridization between TM and phosphorene sheet contributed to suppressing
the magnetic moment of TM dimers. For instance, the total magnetic moments of -2.0, 4.24 and 1.28 pg/cell
for Mn, Fe and Co substitutional dimer were obtained while the Mn and Fe adsorption dimers showed magnetic
moments of -1.69 and 0.46 pg/cell. We observed that the Mn and Fe substitutional dimers showed an out-of-plane
magnetization with magnetocrystalline anisotropy energies (MAEs) of 0.57 and 0.89 meV/cell while an in-plane
magnetization with a MAE of 0.58 meV/cell was obtained in Co substitutional dimer. The Mn adsorption dimer
still displayed a perpendicular magnetization with a MAE of 0.50 meV/cell. In contrast, the Fe adsorption dimer
had an in-plane magnetization with a MAE of 0.11 meV/cell. This research was supported by Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science,
ICT and future planning (2016R1A2B4006406)
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Magnetism in phosphorene and AFM to
FM switching by electric field

Arqum Hashmi" and Jisang Hong

Department of Physics, Pukyong National University, Busan 608-737, Korea.
Correspondence and requests for materials should be addressed to J.H. (hongj@pknu.ac.kr)

We explored the possibility of long range magnetic ordering in two-dimensional porous phosphorene (PP)
layer by means of Ab-initio calculations. The self-passivated pore geometry showed a non-magnetic state while
the pore geometry with dangling bond at two zigzag edges with the distance of 7.7 A preferred an
anti-ferromagnetic ordering (AFM). Pore to pore magnetic interaction with the distance of 13.5 A between two
pores was found to be remarkably long ranged and this emerges from the interactions between the magnetic tails
of the edge states in the armchair direction. The AFM state was persisted by the oxidation of the edge.
Interestingly, the long range AFM ordering changed to long range ferromagnetic (FM) ordering by external
electric field. The results are noteworthy in the interplay between electric field and electronic spin degree of
freedom in phosphorene studies and may also open a promising way to explore phosphorene based spintronics
devices.

This research was supported by Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science, ICT and future planning (2016R1A2B4006406)
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Strain Effect on the Magnetic Properties of Pd :
the First Principles Study”

Do Duc Cuong’, S. H. Rhim" and Soon Cheol Hong’

Department of Physics and Energy Harvest Storage Research Center University of Ulsan, Ulsan 44610, South Korea
Tsonny@ulsan.ac.kr, schong@ulsan.ac.kr

In this study, different correlation functions have been applied to investigate magnetic properties of palladium
(Pd). While GGA show the magnetic moment of Pd up to 1.1 ug, no magnetic moment was found when LDA
is used. To understand the difference between magnetisms in LDA and GGA, the detail electronic structures of
Pd using LDA and GGA are compared to each other and discussed in detail. The strain effects on electronic

and magnetic properties of both bulk and thin film of Pd are also calculated and discussed.
*This work is supported by grants from the Priority Research Centers Program (Grant No. NRF-2009-

0093818) and the Basic Science Research Program (Grant No. NRF-2015R1A2A2A01003621) through NRF
funded by the MOE and MSIP of Korea.
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The Spontaneous Magnetization Enhancement by the
Thermal Fluctuation in a Ferro-antiferromagnetic mixed
system: an Atomistic Micromagnetic Simulation Study

Namkyu Kim'", Jung-Il Hong? and Ki-Suk Lee’

'School of Materials Science and Engineering, UNIST, Ulsan 44919, Korea
*Department of Emerging Materials Science, DGIST, Daegu 42988, Korea

1. Introduction

The couplings between ferromagnetic (FM) and antiferromagnetic (AFM) materials offer interesting and
technologically important phenomena such as an exchange bias effect [1]. Recently, Hong et al [2] found a
significant enhancement of the spontaneous magnetization (Ms) with temperature in the FM-AFM mixed phase,
which is against the general behaviors of known magnetic materials. In this work, we investigate the temperature
dependence of the spontaneous magnetization of a FM-AFM mixed system by using atomistic micromagnetic

simulations.

2. Simulations

In order to mimic FM-AFM mixed phase, we adopted simple model system in which a FM spherical particle
with radius ranging from 2 to 5 nm located inside AFM matrix as shown in Fig. 1(a). The calculation size of
a whole system is 5x5x5 nm’ with a periodic boundary condition along x, y, and z-axes. The face centered cubic
(FCC) structure with 2.5 A-lattice constant was used for both FM and AFM materials. The VAMPIRE package
[3] was used to perform atomistic micromagnetic simulation with following material parameters: an atomic
moment for both FM and AFM, 1.72 pg, the exchange constants Je= 12.2x10%" J/link and Jap= 2.7x1072! J/link,
the atomic magnetocrystalline anisotropy K = 4.644x10>* J/atom along an easy axis (z-axis). It should be noted
that, in our atomistic simulations, all atoms are considered as the same material but the exchange interaction
between atoms are different according to FM and AFM materials.

The Monte-Carlo method was used to consider the thermal fluctuation, and Ms value for a given temperature
was obtained from the averaging of Ms during a hundred of Monte-Carlo calculation steps at a stable stage under
a saturation magnetic field with 2 T along the easy axis (+z direction).

As shown in Figure 1, the Ms increases with the temperature for the case of FM spheres with D < 3nm,
where the AFM interactions are dominant. Figure 2 reveals the physical mechanism of such a significant Ms
increment in our simulations; at low temperature, the spin moments in a FM sphere are tilted largely from the
applied field direction (+z direction) owing to the strong couplings with AFM spins at the interface. As increasing
the temperature, the thermal fluctuations of AFM spins are getting larger and it gives rise to the weakening of
the FM-AFM couplings. Consequently, FM spins are aligned along the applied field direction and it causes the

enhancement of Ms with the temperature.
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Fig. 1. (a) The model system with FM spherical particle of D = 2.6 nm.

(b) The relative value of spontanecous magnetization changes as a function of the temperature.
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3. References
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[2] J.-1 Hong et al., unpublished.
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Tooth Shape Design of Permanent Magnet Motor for
Cogging Torque Reduction

Jae-Hoon Shim’, Min-Soo Choi, Kyu-Jin Jung and Jin-Kyu Byun

Department of Electrical Engineering, Soongsil University

1. Introduction

Recent advancements in high remanence permanent magnets and switching circuits have enabled proliferation
of permanent magnet motors with high speed and accurate control. Cogging torque of a permanent magnet motor
is caused by change of reluctance and magnetic energy with respect to relative position between stator and rotor,
and is known to generate noise and vibration.

Cogging torque can be reduced by skewing rotor or stator, or changing the shape of the motor. In this paper,
shape of the stator tooth is designed to reduce the cogging torque of a permanent magnet motor while maintain
the average torque. The shape of the slot in the stator tooth has higher degrees of freedom compared to that

used in the previous papers [1]-[2].

2. Model of the Permanent Magnet Motor

Fig. 1 shows the model of the 4-pole, 6-slot permanent magnet motor with stator diameter of 47 [mm], rotor
diameter of 27 [mm], and air gap width of 0.4 [mm]. Permanent magnets have remanence of 0.65 [T] along radial
direction. The objective function OF is set as follows in order to reduce cogging torque while maintaining the

average torque:

minimize: OF =c,

()

where Tcos pp 15 the peak-to-peak value of the cogging torque, Ty, is the average torque, and ¢, and ¢, are

avg

weighting factors for balancing cogging torque and average torque objective terms. The design variables are angle
of the slot opening 4 and location of three points that determine the tooth shape (Fig. 2). COMSOL Multiphysics
software was used for finite element analysis and torque calculation, and LiveLink with Matlab module of
COMSOL was used for optimal design.

.

Fig. 1. Model of permanent magnet motor. Fig. 2. Shape design variables for stator.
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3. Design Results
Fig. 3 shows initial and final shape of the stator after optimization, while the values of design variables and
torques are given in Table 1. The smooth arc-type slot was created in the tooth after the optimization. Cogging

torque was reduced 78.9%, while average torque was reduced by 5.5%.

=

(b) Optimized stator shape.

(a) Initial stator shape.

Fig. 3. Comparison of the stator shape.

Table 1. Design variables and torque before and after optimization.

point@® [mm] | point® [mm] | point@® [mm] | 4 [7] Teop [Nm] Tave [Nm]
Initial 0 0 0 4.5 2.567 18.562
Optimized 0.429 0.784 0.001 4.075 0.541 17.537

4. References
[1] II-Hwan Park et al., “A Study on Reducing Cogging Torque by Core Shapes in Permanent Magnet
Motors,” J. Korean Magn. Soc., vol. 20, no. 2, pp. 61-67, 2010.
[2] Jae-Hoon Kwon et al., “Optimal design of power tools BLDC motor for reducing cogging torque,”
Proceedings of KIEE B Sector Fall Conference, pp. 171-173, 2013.
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3D Magnetic Field Analysis and Comparative Study of
Circular Halbach Array

Min-Soo Choi’, Jae-Hoon Shim, Kyu-Jin Jung and Jin-Kyu Byun

Department of Electrical Engineering, Soongsil University

1. Introduction

The Halbach array was first introduced by Klaus Halbach in 1979 in order to focus strong magnetic field
in particle accelerators. In a Halbach array, direction of the magnetization vector is sequentially rotated to obtain
the needed the magnetic field distribution. The advantages of Halbach arrays include effective magnetic shielding
and less iron losses. Circular Halbach arrays or Halbach cylinders are used in brushless motors and magnetic
coupling devices.

In this paper, the magnetic field of a circular Halbach array is analyzed using 3D finite element modeling.
The magnetic field distribution and spatial average value is compared for two different configurations of the

permanent magnets (PMs): 90 and 45 degrees difference between magnetization directions of adjacent blocks.

2. Modeling of the Circular Halbach Array

Fig. 1 shows the 3D model of the circular Halbach array. COMSOL Multiphysics software was used for finite
element analysis. Two different configurations of the permanent magnets (PMs) were investigated. The first has
32 blocks with 45 degrees magnetization direction change in adjacent blocks (Fig. 2). The second model has 16
blocks with 90 degrees magnetization direction change in adjacent blocks (Fig. 3). The remanence of each PM
block is 1.42 [T] in both models. The inner and outer radius of array is 30 [mm] and 50 [mm], respectively,
and the height of the array is 30 [mm]. The magnetization direction is expressed by radial and azimuthal unit

direction vectors.

Fig. 1. 3D model of the circular Halbach array.
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Fig. 2. 90° change of magnetization. Fig. 3. 45° change in magnetization.

3. Analysis Results

Fig. 4 and 5 show magnetic field distribution according to azimuthal angle along outer circle located at r=55
[mm]. It can be observed that the peak of the flux density of 45° model has less ripple. Table 1 shows spatial
average of the magnetic flux density of two models. The average flux density of 45° model is about 8.15% higher

than that of the 90° model, even though the two models have the same volume of permanent magnets.

1 e F 25 ) 25
Are lengeh are length

Fig. 4. Magnetic flux density along r=55 [mm] Fig. 5. Magnetic flux density along r=55 [mm]

outer line (90° model). outer line (45° model).

Table 1. Average flux density of Halbach arrays.

90° model 45° model
average flux density (r=55 [mm]) 0.4982[T] 0.5388[T]
average flux density (r=25 [mm]) 0.0718][T] 0.0526[T]

4. References
[1] S. M. Jang et al.“Analysis of characteristic linear Halbach array,” Proceedings of KIEE Summer

Conference, pp. 892-894, July 2001.
[2] S. M. Jang et al.,“Characteristics analysis on the field system of Halbach array by the permanent magnet,”

Proceedings of KIEE Summer Conference, pp. 24-26, July 1997.
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Surface reconstruction and magnetic phase of the FePt
thin films on Pt (110) substrate

Hanchul Kim and Miyoung Kim’

Dept of Nano Physics, Sookmyung Women’s University, Korea
"kimmy@sookmyung.ac kr

The FePt3 alloy is one of the most investigated materials for high density storage applications due to its rich
variety of magnetic structures which transform sensitively depending on change in its local structure. Here, we
present the ab-initio total energy and electronic structure calculations within the framework of density functional
theory for the FePt3 film of 0.5 nm in thickness on a Pt (110) surface. The precise all-electron FLAPW
calculation reveals that the FePt thin film with a missing-row surface reconstruction along the [110] direction is
energetically more preferred to an unreconstructed clean surface. From the analysis of the electronic structures,
this is attributed to the energy gain by the p-electron charge spill-out to the large (110) facet area, which was
mostly from Pt atoms at the second and third atomic layers. The missing-row reconstruction is found to enhance
the stability of the ferromagnetic phase over the antiferromagnetic phase which is the ground phase for bulk, and
to induce possible concurrence of a meta-stable atomic structure with an in-plane anti-phase boundary along the
orientation of missing-row in addition to the conventional L1, surface, implying the possible observation of

various magnetic phases.
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Describing the magnetic structure and origin of band
gap on Ba,CuOsO, system; density functional theory
approach

Lee, Changhoon*, Jin, Taewon, Shim, Ji-Hoon
POSTECH, Department of Chemistry

We examine the magnetic structure and origin of band gap opening for Ba,CuOsOg¢ by extracting spin
exchange interaction and by adopting spin-orbit coupling effect. The ordered double-perovskites Ba,CuOsOgswhich
consist of 3d and 5d transition-metal magnetic ions (Cu®" and Os®, respectively) is magnetic insulators; the
magnetic susceptibilities of Ba,CuOsOs obey the Curie-Weiss law with dominant antiferromagnetic interactions
and the estimated Weiss temperature is -13.3 K. Solid-state osmium oxides can exhibit a variety of magnetic and
electronic phenomena associated with their electron correlation. There are two important issues on solid-state
osmium oxides; one is origin of band gap inducing metal to insulator transition. Other one is variety of oxidation
state of Os ion.This wide spectrum of oxidation state of Os atom on osmium compounds is directly attributable
to a large a spatial extension of Os 5d orbital. From the results of density functional study, the spin exchange
interaction between Cu atoms is mainly responsible for antiferromagnetic ordering on Ba,CuOsOg system. To
describe the magnetic insulating states of Ba,CuOsOg, it is necessary adopting anelectron correlation effect as well

as spin-orbit coupling effect.
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Growth and Nitridation of Fe thin films on
(0001) Al,O3 substrates

Hyeonjun Kong"’, Eunyoung Ahn', Yuon-Kyoung Baek?, Jung-Goo Lee?, Jinhyung Cho?,
Jaekwang Lee', Sungkyun Park', Hyoungjeen Jeen'
'Department of Physics, Pusan National University, Busan, 46241, South Korea
Korea Institute of Materials Science, Changwon, 51508, South Korea
*Department of Physics Education, Pusan National University, Busan, 46241, South Korea

Due to of its large saturation magnetization and possible large coercivity, Fe;sN, has been believed as a
promising candidate material in the next-generation rare-carth-free permanent magnet applications. However,
stabilization of this meta-stable phase has long been challenged. In this work, synthesis and nitridation of (110)
Fe thin films on ALO; (0001) substrates were performed by RF magnetron sputtering and in-situ and ex-situ
nitridation processes. From high resolution x-ray diffraction, we confirmed (110) epitaxial Fe thin films are
successfully grown. We systematically studied magnetism and microstructures from vibrating sample
magnetometer, scanning electron microscope, and atomic force microscope. In addition, we will show our
on-going efforts to form Fe;¢N, thin films from in-situ and ex-situ nitridation processes.

This work was supported by the Industrial Strategic Technology Development Program (10062130,
Theory-driven R&D for non-centrosymmetric structured rare-earth free Fe-based permanent magnet materials)
funded by the Ministry of Trade, industry & Energy (MI, Korea). We wish to acknowledge the assistance of the
staffs of the Korea of Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute.
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Structure and magnetic properties
of cold-deformed Mn-Al-(C)

Hui-Dong Qian’, Ping-Zhan Si', Chul-Jin Choi', Kook-Chae Chung, Jong-Woo Kim
Powder & Ceramic Division, Korea Institute of Materials Science, Changwon, Korea
"Email: cjchoi@kims.re.kr; pzsi@mail.com

The magnetic Mn-Al system has attracted continuous interests for more than half century. [1] The research
interests increase recently with increasing cost of rare earth resources and increasing demand for low cost
rare-earth free magnets.[2] A number of techniques, including elemental modification, structural modification, etc.,
have been employed to improve the magnetic performance of the Mn-Al-based magnets. [3, 4, 5] The deformation
processes, hot or cold, have been proved to be effective in modifying the structure and thus a better magnetic
performance. [3, 5, 6] In this work, we prepared the Mn-Al-(C) alloys by induction melting method and
subsequent optimized annealing processes. A modified cold deformation process was employed to modify the
structure and improve the magnetic performance of the alloys. The structural transformations originated from the
heat-treatment and cold deformation were studied systematically by using XRD, SEM, and TEM. The effect of

the structure on the magnetic properties of the Mn-Al-(C) magnet was investigated.
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Structure control of Fe Particles for the Efficient Nitridation
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The iron nitride phase a““-Fe;¢N, has been suggested as a possible rare-earth free permanent magnet candidate
due to abundant amount of Fe and N on the earth, its large magnetocrystalline anisotropy, and large saturation
magnetization. Thus, researchers have developed the various synthesis methods such as wet chemical, ball milling
and plasma process etc. However, there is no report on the structure control of Fe particles for the efficient
nitridation to obtain high-purity a“-Fe;sN, phase. In this study, we have fabricated two different structures of Fe
particles and compared them to conventional Fe powders after ammonia nitriding process.

This work was supported by the Industrial Strategic Technology Development Program (10062130,
Theory-driven R&D for non-centrosymmetric structured rare-carth free Fe-based permanent magnet materials)

funded by the Ministry of Trade, industry & Energy (MI, Korea).
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Ferromagnetic low-temperature-phase (LTP) of MnBi has attracted much attention because it has a higher
coercivity than that of Nd-Fe-B at high temperature (~ 200°C) and it has been a desirable material as
rare-earth-free permanent magnets that can be used in such high temperature. We present a change of magnetic
properties of MnBi films by controlling the numbers of Bi/Mn bilayer. The thin films of LTP-MnBi were
fabricated onto glass substrates by UHV sputtering, followed by in-situ annealing process at an optimized
condition of 350°C and 1.5 hours. The composition ratio of Bi/Mn in the films was adjusted with a variation
of the thickness of Bi and Mn layers. The highest value of maximum energy product (BH)m.x was about 8.5
MGOe at room temperature, which was obtained in one Bi/Mn bilayer with the thickness ratio of 34 nm/16 nm.
To investigate the effect of Bi/Mn multilayers on the magnetic properties, we increased the numbers of Bi/Mn
bilayer ([Bi/Mn]x) up to five (N = 5). Here, the total film thicknesses were fixed with 100 nm and the ratio
of Bi/Mn was sustained with 34 nm /16 nm. (e.g. BMn/Bi/Mn = 34nm/16nm/34nm/16nm for [Bi/Mn],) The
increase of coercivity was observed from 5.8 kOe (N=1) to 9.8 kOe (N=5) with increasing number of bilayer.
However, the remnant magnetization exhibited an unusual behavior. It was decreased at N=2 and increased up
to N=5. We found that these are closely related to a microstructural change of LTP-MnBi, which were confirmed
with XRD, TEM, and EDX analyses. We will discuss how the multilayered structure of MnBi films affects their

magnetic properties in details.

Keywords: Permanent magnet, MnBi, Coercivity, Multilayer film
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Magnetic properties of large-scaled MnBi bulk magnets

Sumin Kim’, Hongjae Moon, Hwaebong Jung, Hyun-Sook Lee" and Wooyoung Lee"
Department of Materials Science and Engineering, Yonsei University,
262 Seongsanno, Seodaemun-gu, Seoul 120-749, Korea
*Corresponding Authors Email: wooyoung@yonsei.ac.kr, h-slee@yonsei.ac.kr

We investigated the magnetic properties of large, compacted, sintered MnBi bulk magnets with dimensions
of 20.3x15.3x10.3 mm’. To obtain high content of the low-temperature-phase (LTP) of MnBi in the precursor
powders, a new process was implemented and produced about 98 wt% of LTP. To improve the coercive field
of MnBi, particle sizes were controlled using different milling techniques. The dependence of magnetic properties
of the bulk magnets on the particle size was analyzed. The highest maximum energy product, (BH)m.x, Obtained
among our samples was 7.3 MGOe. This is the first report of demonstrating high performance in large-sized

MnBi bulk magnets.

Keywords: rare-earth-free permanent magnet, MnBi, bulk magnet, melt spinning, hot compaction
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Electrical and magnetic properties of Fe;O, films on
highly crystalline Cu(111) islands

Ji Woong Kim’, Dooyong Lee, Sehwan Song, Yunhee Cho and Sungkyun Park’
Department of Physics, Pusan National University, Busan 46241, Korea
WLpsk@pusan.ac.kr

Physical properties of interface between transition metal and ferrimagnets had been long interests in various
applications such as spintronics, magnetic tunnel junction, magnetic recording media. In this work, the epitaxial
Fe;04 film, one of ferromagnetic oxides was synthesized using sputtering methods on Al,O5;(0001) substrates.
Varying the population density of metallic Cu(111) islands on the substrate, the magnetic and electrical properties
of (111) oriented Fe;O4 films were examined. With (111) oriented Cu island, the increased carrier concentration
and electrical conductivity were observed. However, the saturation magnetization was decreased owing to the
presence of intermixing between Cu and Fe;O4. The detailed interfacial chemistry and island density depended

physical properties will be discussed.

This work was supported by NRF-Korea (NRF-2015R1D1A1A01058672) and KAERI. JW. Kim also
supported by NRF-GPF program (2015H1A2A1034200).
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Anneadling Effect on the Magnetic Properties for
Co-based Amorphous Alloys

Sumin Kim’, and Haein Choi-Yim
Department of Physics, Sookmyung Women’s University, Seoul 04310, Republic of Korea

1. Introduction

Annealing treatment to the amorphous phase is necessary to optimize their magnetic properties, since
amorphous phase caused by rapid quenching is structurally in the metastable state. Annealing effect has been
investigated for a number of amorphous alloys [1,2]. It has been found that the heat treatments cause reduction
of coercivty and losses [3]. The low coercivity is a primary property of soft materials. Moreover, Annealing below
glass transition temperature cause nucleation but not crystallization. In this study, the annealing effect on the

magnetic properties of Co-based amorphous ribbon was investigated.

2. Experiment

Alloy ingots with the composition Co7,B192S145Crs and CogssFe7:B192S145Crs were prepared by melting high
purity constituent elements in arc-melting under a Ti-gettered argon atmosphere. Each ingot was re-melted at least
four times to maximize compositional homogeneity. Amorphous ribbons were produced by melt spinning using
a wheel speed of 39.27 m/s in an argon atmosphere. The ribbons were typically 2 mm in wide and 20~30 pum
in thick. The as-spun ribbons were subjected to annealing treatments at various temperatures below glass transition
temperature (T,) for 15 minutes in vaccum. The composition and structure of ribbons identified by X-ray
diffraction (XRD) with Cu-Ka radiation. Thermal stability associated with the T, and crystallization temperature
(Tx) were measured using a differential scanning calorimeter (DSC) and thermomechanical analysis (TMA) under
a flowing argon atmosphere. The saturation magnetization (M) and coercivity (H;) at room temperature were
measured in a maximum applied field of 1500 kA/m with a vibrating sample magnetometer (VSM). The field
resolution of VSM is 1 mOe (0.08 A/m).

3. Result and discussion

The annealing effect on the magnetic properties is reported for the Co07:B192SissCrs and CogssFe72B192S145Crs
alloy systems. Through the DSC and TMA experiments, we determined the annealing temperature below T,
without crystallization process. All of the ribbon with or without heat treatment was identified as a fully
amorphous alloy in XRD patterns. The hysteresis curves indicated the magnetic properties. We confirmed that

the annealing contributes to soft magnetic characteristics such as high M and low H..

4. References
[1] H.S. Chen, J. Appl. Phys. 52, 1868 (1981).
[2] H.S. Chen and A. Inoue, J. Non-Cryst. Solids 61&62, 805 (1984).
[3] FE. Luborsky, IEEE Trans. Magn. MAG-11, 1644 (1975).
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Dependence of exchange bias field on
antiferromagnetic layer thickness in NiFe/FeMn/CoFe
heterostructures grown under a magnetic field
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"Neutron Science Division, Korea Atomic Energy Research Institute, Republic of Korea
*Department of Physics, Inha University, Republic of Korea
3Center for Naanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tenessee 37831, USA
*Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tenessee 37831, USA
’Department of Physics and Astronomy, California State University-Long Beach, Long Beach,

1250 Long Beach, California 90840, USA
Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
"Department of Emerging Materials Science, DGIST, Daegu 42988, South Korea

We have investigated the antiferromagnetic layer thickness dependence of exchange bias field in NiFe
(F)/FeMn(t4r, AF)/CoFe(F) trilayered heterostructures with #4+ up to 30 nm. It was found that exchange bias field
at both F/AF interfaces exhibit anomaly around #, = 20, 25 nm after saturation at ¢,/~10 nm. Considering that
the theoretical and experimental results studied so far[1-4], it has been found to be very unusal behavior.
Well-known factors such as FeMn(111) texture, FeMn grain size, and F/AF interface roughness are unlikely to
explain the observed anomaly. We measured and compared polarized neutron reflectivity of NiFe (F)/FeMn(z4r
=25nm)/CoFe(F) at positive (300 Oe, R") and negative (-300 Oe, R’) saturations using Magnetism Reflectometer
@BLA4A, Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. By comparison, we found that there
exists very small, but non-zero spin asymmetry. Spin asymmetry is defined as (R™-R’)/(R"+R"). This is unexpected
results because spin asymmetry at both saturations should be the same with each other. We attempt to understand
our results as follows. In case of #4/< 20 nm less than AF domain wall length, the intra-layer AF exchange
coupling tends to make FeMn(111) fully compensated spin structures. This may be ascribed to the fact that the
uncompensated magnetic moments within FeMn(111) layer have seldom been seen in previous reports regarding
(NiFe or Co)/FeMn(111) bilayered heterostructures. Meanwhile, partially uncompensated, rotatable AF spins or
partial domain wall is likely to be accommodated within FeMn(111) layer in case of z4~ 25 nm, close to a AF
domain wall length for FeMn(111) texture. We believe that partially uncompensated rotatable spins or partial
domain walls possibly lead to the anomaly observed even after saturation of exchange bias field around #4~10

nm in NiFe/FeMn/CoFe heterostructures.

This work was supported by NRF Grants (2012M2A2A6004261) funded by the Korea government.
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Fig. 1. Antiferromagnetic layer thickness dependence of the exchange bias field at NiFe/FeMn(open circle)

and FeMn/CoFe(solid circle) interfaces in NiFe/FeMn/CoFe heterostructures.

References
[1] Jinguo Hu et al. JAP 94, 2529 (2003)
[2] H. Xi and Robert M. White, PRB 61, 80 (2000)
[3] H. Sang, et al. J. Appl. Phys. 85, 4931 (1999)
[4] Ki-Yeon Kim et al, Phys. Rev. B 84, 144410 (2011)
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Effect of Fe/Co ratios on Thermal and Magnetic Properties
at Co-Fe-B-Si-Ta Alloys system

Jiyun Oh’, and Haein Choi-Yim
Department of Physics, Sookmyung Women’s University, Seoul 04310, Republic of Korea

1. Introduction

A lot of soft magnetic alloys have been researched as promising materials until now. Especially, amorphous
alloys can be good candidates in several application industries therefore many research groups have studied
various combinations of alloys recently. [1-3] Co-based and Fe-based alloys have a good possibility in several
applications, for instance sensors, power devices, transformers, motors and energy converting supplies [4,5].
Furthermore, adding the 4 at. % Ta alloying to the Co-Fe composition enhance the glass forming abilities (GFA)
[6]. In previous research, we studied the thermal and magnetic properties by making a small quantity of Cr and
Ta addition to Co-Fe alloys [7]. In this examination, we researched the thermal and magnetic properties of the

(CoixFex)72B192SissTay (0<x<1) alloys more specific than previous study.

2. Experiment

In this examination, (Co;—Fe,)72B192SiggTas (0<x<1.0) multi-component ingots were made of pure elements,
such as Co (99.95 %), Fe (99.95 %), B (99.5 %), Si (99.999 %) and Ta (99.95 %), and total mass is 6 g.
Co-Fe-B-Si-Ta alloy systems were made by vacuum arc melting furnace under argon atmosphere and re-melted
at least six times for homogeneity of alloys. The ribbons were rapidly solidified by a copper roller vacuum
melt-spinning method under an argon gas atmosphere with roller speed of 39.27 m/s. And the width of ribbons
is 2x 107- 3 x 10°m and the thickness of ribbons is about 30 x 10°- 40 x 10°m. After preparing of ribbons,
we identified the thermal and magnetic properties of alloys by using various measuring equipment. First, the
structure of alloys is confirmed by X-ray diffraction (XRD). Second, the thermal properties, such as crystallization
temperatures (Ty) are measured by using differential scanning calorimeter (DSC). Last, the magnetic properties

are established by vibrating sample magnetometer (VSM).

3. Result and discussion

In this study, we conducted more research on Co-Fe-B-Si-Ta system than earlier research in order to study
deep into the thermal and magnetic properties of Co-Fe based alloys. In XRD results, the curves have broad hump
trace of amorphous phase, but the curves have several peaks which are conjectured crystalline phase. The thermal
stabilities of melt-spun ribbon samples are revealed from the increase of the Tx and the detection of two
exothermic peaks. The soft magnetic properties of the Co-Fe-B-Si-Ta ribbons are indicated by the shape of
hysteresis loop. So these melt-spun ribbons are suitable for diverse applications which require the good thermal

stability and good soft magnetic properties.
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Analysis of Thermal and Magnetic Properties by adding
Mo to Co-based and Fe-based Amorphous Alloys

Seoyeon Kwon’, and Haein Choi-Yim
Department of Physics, Sookmyung Women’s University, Seoul 04310, Republic of Korea

1. Introduction

Fe-based amorphous alloy systems have attracted interest for the low material cost, and good soft magnetic
properties [1-3]. Particularly, improving the soft magnetic properties and glass forming ability of Fe-based
amorphous alloy systems has been studied for the several applications [4,5]. These (Co, Fe)-B-Si alloy system
was developed in 1974 and used in field of application development for its good soft magnetic properties and
high-strength compared with other Fe-B-Si systems [6,7]. Therefore, we have selected this system. Adding Mo
in the Fe-B-Si systems enhances glass-forming ability (GFA) and thermal stability. In this study, we researched
on effects of replacing Co by Fe and the part of small Mo additions, in Fe-Co-B-Si-Mo alloy system. We

examined the thermal and magnetic properties of (Co;xFex)72B192SissMos (0<x<1) by amorphous ribbons in detail.

2. Experiment

(CoixFey)72B192SissMos (0<x<1) alloys were prepared by an arc-melting furnace with high purity metals
under Ti-gettered Argon atmosphere. In addition, these ingots were re-melted four times respectively, in order to
be homogeneous alloys. Then, these samples, ribbons with width of 2mm were prepared by single copper roller
melt spinning machine in 39.27m/s. After processing of ribbons, we identified ribbons' thermal and magnetic
property by multiple measuring equipment. The structure of amorphous is confirmed by X-ray diffraction
(XRD). We conducted an analysis of the results by differential scanning calorimeter (DSC)) to identify the
thermal properties such as the crystallization temperature (Ty), the glass transition temperature (Tg), and the
super cooled liquid region (ATx = Tx — Tg) and the magnetic properties measured by using vibrating sample

magnetometer (VSM).

3. Result and discussion

In this research, we performed diverse study on Co-Fe-B-Si-Mo system in order to identify that adding Mo
element enhances glass-forming ability and thermal stability. Also we want to study into the thermal and the
magnetic properties for Co-Fe based amorphous alloys with Mo in depth. (Coj.<Fex)72B192SissMos (0<x<1)
amorphous ribbons showed good thermal stability with large super-cooled liquid regions. Furthermore, the
amorphous ribbons of these composition exhibited good soft magnetic properties. Thus the addition of a small

quantity of Mo will have beneficial effects on the thermal stability and soft magnetic properties.
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1. Introduction

Perpendicular magnetic anisotropy (PMA) is the perpendicular direction dependence of the magnetic properties
of a material. Magnetic thin films with PMA are magnetized in a direction normal (perpendicular) to the plane.
Experimental studies of the PMA in magnetic thin films and multilayers have been done for almost 40 years since
Iwasaki and Takemura first investigated the mechanism of the PMA in Co/Cr thin films [1]. In 1985, Carcia et
al. established the importance of the interface between the magnetic layer and the nonmagnetic layer as the
driving mechanism for the PMA [2]. Subsequently, in studies of magneto resistive random access memories
(MRAMs), magnetic tunnel junctions (MTJs) with PMA became a key issue for realizing next-generation
high-density and non-volatile memory devices, such as a spin-transfer torque MRAM [3-7]. PMA has two strong
advantages for the next-generation devices: low current density and high thermal stability. Both these factors are
important issues for application of next-generation devices. Moreover, amorphous materials has higher saturation
magnetization than crystalline materials. This characterization is particularly useful for improving of capability of
devices. Therefore, we have been studied magnetic and perpendicular magnetic anisotropic property of multilayers
consisting of amorphous Co7sSijsBjo. In this paper, we investigated the multilayer with PMA and studied the

magnetic property of multilayer with various conditions.

2. Experiment
The chamber’s base pressure was up to 2.0 x 107 Torr, and the working pressure was 2 mTorr. All films
were uniformed in size, 1.4 cm x 1.4 cm, and were deposited by ultra high-vacuum system at room temperature.

The magnetic properties of all multilayers were measured by a vibrating sample magnetometer.

3. Result and discussion

In this study, we investigated the magnetic properties (the coercivity and saturation magnetization) of the
CoSiB/Pd multilayers and found the dependence of repetition of CoSiB/Pd bilyaer on their magnetic property.
We note that the coercivity and the saturation magnetization of the CoSiB/Pd multilayer increase or decrease with
changing of repetition number of CoSiB/Pd bilayer. Especially the perpendicular magnetic anisotropic property

is closely related with the repetition of CoSiB/Pd bilayer.
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Spin Hall Transistor using
In As 2DEG Channel and Logic Devices
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'Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea
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In InAs 2DEG channel, spin Hall and Rashba effects are utilized to provide spin transistor. A ferromagnetic
electrode and Hall bar type probe are used for injection and detection of spin current, respectively. In the channel,
polarization direction of spin current precesses due to Rashba effective field and the rate of precession is
controlled by gate electric field which determines a strength of the Rashba effect. By observing channel length
dependence of spin Hall voltage, spin current and coherent spin precession are electrically monitored. From the
original Datta-Das technique, we measured the oscillation of channel conductance as the gate voltage varies.
When the polarization direction of injected spin is reversed by 180°, the phase of the Datta—Das oscillation shifts
by 180° as expected. Depending on the magnetization direction, the polarization has the opposite direction and
the spin Hall transistor behaves as an n- or p-type transistor. Thus, we can compose the complementary transistors
which are analogous to the conventional complementary metal oxide semiconductor field effect transistors. Using

the experimental data extracted from the spin Hall transistor, the logic operation is also presented.
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Effect of pulsed magnetic field annealing
on the resistance switching property of
Fe- and Co- doped ZnO thin films

Changjin Wu"", Hongtao Xu?, Chunli Liu’
'Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, South Korea
School of Materials Science and Engineering, Laboratory for Microstructures, Shanghai University, China

The 5% Fe doped ZnO (ZnO:Fe) thin films were deposited on Pt/TiO2/SiO2/Si substrates by spin-coating.
The effects of magnetic annealing on resistance switching (RS) performances were investigated by annealing the
films with (ZnO:Fe-4T) and without (ZnO:Fe-0T) a pulsed magnetic field of 4T and analyzing the consequent
electrical characteristics respectively. As compared to the films without magnetic annealing, the magnetic annealed
films showed improved RS performance regarding the stability of the set voltage and the resistance of the high
resistance state. The transmission electron microscopy and x-ray photoelectron spectroscopy analyses on the 5%
Fe doped ZnO (ZnO:Fe) thin films revealed that the ZnO:Fe-4TP film contains more uniform grains and higher
density of oxygen vacancies, which promote the easier formation of conducting filaments along similar paths and
stability of switching parameters. Likewise, the 1% Co doped ZnO (ZnO:Co) devices fabricated by the same
methods also revealed the superiority of magnetic annealing when compared the RS of ZnO:Co-4T films with
the ZnO:Co-0T films. These results suggest that the external magnetic fields can be utilized to prepare magnetic

oxide thin films with improved resistance switching performance for memory device applications.
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*KU-KIST Graduate School of Converging Science and Technology, Korea University

1. Introduction

We report the detection of a chemical potential change induced by the Rashba effect in an InAs-based high
electron mobility transistor(HEMT) structure. In this potentiometric measurement, we deposit a ferromagnetic
junction (NigFe9) as a spin detector on an InAs HEMT channel. We observe hysteretic voltage signals which
is determined by the vector alignment between the magnetization of Nig Fe;9 electrode and the Rashba field. We

investigated the temperature dependence of the spin signal and observed clear signal up to room temparatrue.

2. Experiment and Result

The potentiometric measurement is performed in a three-terminal configuration involving one ferromagnetic
contact (Py/NiFe) and two non-magnetic contact(Au). The bias current is applied between the two Au electrodes
and a voltage is measured between the Nig Fej9 electrode and Au contacts. The magnetization direction of Nig Fejo
can be switched to be either parallel or antiparallel to the current induced Rashba field in the InAs HEMT
channel. The voltage measured by the detector shows a clear hysteretic step change during the magnetic field
sweep. This potentiometric measurements are performed for various temperatures from 1.8 K to 300 K. The
amplitude of the voltage decrease with increasing temperature due to the smearing of the Rashba spin splitting

at a higher temperature.

3. Discussion and conclusion

We have carried out electrical measurements of the chemical potential change induced by the Rasbha spin
splitting. The spin-dependent potentiometric voltage were detected up to room temperature and the temperature
dependence of the potentiometric signal was also observed. Utilizing this method, we can extract the strength of

the Rashba effect in semiconductor channels.
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The demonstration of Datta-Das spin field effect transistor (spin-FET) [1], is one of the major concern in the
field of spin transport devices because it can be utilized for switching and logic devices. For developing
Spin-FET, spin transport efficiency in a quantum well structure is crucial factors. Some reports [2, 3] have
researched spin injection into semiconductor quantum well, however, the spin injection efficiency is still low to
operate spin-FET at room temperature. In this research, we experimentally observed spin dependent
electrochemical potentials in the non-local geometry at room temperature.

The inverted High Electron Mobility Transistor (HEMT) with a 2 nm InAs active layer is utilized as a
channel. The channel size of 8 um was defined by conventional Ar-dry etching. Previous works [2, 3] used
etching process for top contact between spin injector and the semiconductor channel. In this research, we
deposited Nig;Fe;9 magnetic electrodes (FM) at the side of the InAs quantum well channel. The junction area
between FM1 (FM2) and the InAs channel is only 0.5 pm x 2 nm (Ilpm x 2 nm) which is much smaller than
that of previous works. Using the current injection into the side of the quantum well, the potentiometric signal
and the rotation of spin torque induced magnetization are simultaneously detected. In this geometry, the spin is
injected from the injection ferromagnet into the channel directly and the chemical potential is monitored by the
detection ferromagnet. For the side injection, the milling of cladding layer is not necessary, so the efficient spin
transport and the undamaged Rashba spin splitting are produced. The ferromagnetic detector sense the Rashba
effect induced chemical potential change of the channel and this potentiometric signal is also modulated by the
magnetization direction of detector. The large chemical potential changes of 1.03 Q and 0.96 Q are observed at
1.8 K and 300 K, respectively.
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'Department of Physics, Inha University, Incheon 22212, South Korea
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l. Introduction

The spin orbit coupling related phenomena such as the interfacial perpendicular magnetic anisotropy (iPMA),
the interfacial Dzyaloshinskii-Moriya interaction (iDMI) have been heavily investigated [1-4] because of their
application of non-volatile memory devices and new type future information storage devices such as spin transfer
torque-magnetic random access memory (STT-MRAM) and skyrmion based logic or race-track memory [5-6].
Especially, the interface is an important place in many physical phenomena and Brillouin light scattering (BLS)
measurement is powerful tool to investigate such interfacial phenomena. In this study, we mainly investigate the
contribution of each TOP and BOTTOM interface to the iDMI, PMA, and MOKE amplitude modulations as an
ultra-thin Cu layer (0-0.5 nm) is inserted in the Pt/Co or Co/AlOy interfaces by employing MOKE and BLS

measurement.

Il. Experiment

We prepared two wedge shaped samples on the top of the thermally-oxidized Si/SiO, wafer. The wedge
sample structures are Si/SiO/Pt(4 nm)/Cu(0.0~0.5 nm)/Co(1.1 nm)/AlOx(2 nm) and Si/SiO,/Pt(4 nm)/Co(l.1
nm)/Cu(0.0~0.5 nm)/AlOx(2 nm). All samples were deposited by DC magnetron sputtering with a base pressure
of ~7x10™® mbar. In order to observe the magnetic properties and role of Cu inserting layer, we performed MOKE
and BLS measurement. For the details of BLS measurement conditions, we remark proper references in this

abstract [1-3].

lll. Results and Discussion

Figure 1(a) shows the effective uniaxial anisotropy (K.x) of BOTTOM and TOP samples as functions of the
Cu-insertion layer The K of TOP sample is slowly decaying with #c,, while K.y of BOTTOM sample rapid
decays. At a glance, the contribution to the PMA from top interface is not negligible, however not significant,
and the PMA of the system mainly came from the bottom Pt/Co interface.

From systematic BLS measurements, we obtained iDMI energy densities corresponding to spin wave vector
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(Dy) and external magnetic field (Dy) at the BOTTOM and TOP samples as a function of #c, as shown in Figure
1(b). Consequently, we conclude that the PMA from the bottom interface (Pt/Co) is not totally blocked by a 1-2
ML thick Cu-insertion layer, while iDMI energy from (Pt/Co) is clearly suppressed with a 1-2 ML thick
Cu-insertion layer. These facts clearly indicate that iDMI and PMA mainly came from the BOTTOM interface
(Pt/Co); however, PMA and iDMI go different ways despite the same physical origin, spin orbit coupling.
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Fig. 1. (a) Effective uniaxial anisotropy (K.s) as a function of f#¢, for BOTTOM and TOP samples.
The positive K.y implies perpendicular easy axis, and K, is volume anisotropy. Effective uniaxial anisotropy
contributed volume anisotropy energy(inset). (b) iDMI energy density from SW dispersion relations (Dy) and

external magnetic field dependence measurements (Dy).
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single crystalline Mn doped BiFeO;

Ki-Myung Song”and Seongsu Lee

If ferromagnetic and ferroelectric are controlled by same driving force, Multiferroic materials, which exhibit

dependence of spontaneous electric polarization and magnetization on the external electric and magnetic fields,

may be useful in various type of device. BiFeOs, leading multiferroic material is well known as ferroelectric

(T=1083) and antiferromagnetism(Tny=634) at room temperature.

The multiferroic (BipgBag)(Fe1.«Mny)O; (where x=0.1, 0.2, 0.3) has been synthesized by using the flux growth

method. The crystal grown below the Curie temperature, consist of single ferroelectric domain. Effects of Mn

substitutions on the structure and ferroelectric properties of (BigoBag)(FeixMny)Os samples have been studied by

performing neutron diffraction, ferroelectric measurement and magnetic measurements. Studies of ferroelectric

properties (P) exhibit to reduce as a doped Mn molar ratio is increased. when we studied magntic structure by

neutron diffractometor, a single-helicity spiral spin structure is disappeared and Fe spins exhibit the G-type

antiferromagnetic order[1].
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Fig. (a)Neutron diffraction patterns at the magnetic peak.

(b)Schemetic of BFO with G-type antiferromagnetic ordering.
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The magnetization switching by spin-orbit torque provides an alternative route to operate magnetoresistive
random access memory (MRAM) devices [1]. The key elements of this approach are the transverse spin current
generated by in-plane charge current in ferromagnet/ heavy metal structures and the magnetization switching
driven by the spin current. The switching of the magnetic layer is, in many cases, proved by the anomalous Hall
effect while the magnetization switching in full magnetic tunnel junction (MTJ) structure is scarcely reported
because of the difficulties in the fabrication process [2,3]. Here we report the spin-orbit-torque driven switching
of in-plane magnetic layer in exchange-biased MTJs. The MTJ layer stack consists of Ta/ CoFeB/ MgO/ CoFeB/
Ru/ CoFe/ IrMn/ Ta/ Ru. The stack is patterned into nano-scale MTJs having three-terminal geometry, and the
junction size is 200 nm x 80 nm. By flowing current in the bottom Ta layer, it is possible to switch the bottom
CoFeB free layer while the top CoFeB layer is pinned by the synthetic antiferromagnetic structure. The
magnetization switching is monitored by measuring tunnel magnetoresistance of the MTJ. We have analyzed the
relation between the critical switching current and external magnetic field by measuring magnetoresistance
switching curves with varying in-plane current and external magnetic fields. It is shown that the CoFeB free layer
is switched by an in-plane current of 2.0 mA even without external magnetic fields. This experimental result

obtained with the exchange-biased MTJ raises prospect for the spin-orbit-torque MRAM devices.
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Spinel ferrites, MFe,O4(M=Mn, Co, Ni, Zn, Mg) are among the most important magnetic materials and have
been widely used for magnetic, electronic and microwave applications over the past a half century. Among the
various ferrite materials, spinel ZnFe,O4(ZFO) has been widely studied for its magnetic and electrical behaviors
and adopted for applications in gas sensing, drug delivery, magnetic resonance imaging, photocatalyst, and so
forth. In this contribution, ZFO nanoparticles were synthesized via a hydrothermal method involving NH4,OH or
ethylendiamine (En), the morphologies and the magnetism of as-prepared samples were investigated. The X-ray
diffraction(XRD) patterns showed that the nanoparticles were single phase ZnFe,O, Furthermore, ZFO
nanoparticles have sphere-shaped and sphere/cube-shaped with En and NH4OH solvents, respectively, as confirmed
by the scanning electron microscopy (SEM). The average crystallite sizes of ZFO are about 39.47nm(En) and
38.81nm(NH4OH) calculated by Scherrer’s equation. Magnetic investigation revealed that the saturation
magnetization (Ms) of ZFO with En(69.5emu/g) is higher than with NH4OH(41.2emu/g) at room temperature. The

difference in Ms may be due to the difference in structural morphology of the nanoparticles.
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Fig. 1. XRD patterns of ZFO nano particles. Fig. 2. Magnetic hysteresis loop
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Spintronics device is one of alternative ways to realize next generation electric device beyond modern
electronic device. The generation, manipulation and detection of spins in materials are an important issue for the
development of spin-based electronics. In an aspect of overcoming these challenges, refers to ohmic junction and
suitable spin trnasport channel with long spin relaxation time in terms of propagating spin polarized current
injected from source to drain without spin dephasing. Recent studies have shown generation of pure spin current,
efficient propagation, spin manipulation in low-dimensional materials. Among them, Van der Waals materials
representing atomic ultra-thin layers isolated from layered single crystals have been researched. Transition-metal
dichalcogenide (TMD), which is one of Van der Waals materials have been known for large spin—orbit
interaction (SOI) and object of opto-valleytronics research, thus TMD has recently attracted attention.

In this research, we introduce 1T’-WTe, crystals as a material for spintronic device. We fabricated Hall bar
structure using an exfoliated WTe, layers. This device is used for electrical and magnetic measurement. We
obtained ohmic contacts between metal electrodes and WTe, by chemical and physical surface treatment, and then
observed the extremely large magnetoresistance (XMR), transverse resistivity contributed by both electron and
hole transport, and the quantum oscillation by the Shubnikov—de Haas effect at low temperature. In a transport
measurement, we observed non-saturating magnetoresistance (MR) which illustrates a high-mobility and
semi-metallic property of 1T’-WTe, crystal. Therefore, these study imply that WTe, is one of the excellent

candidates for spin transport devices.
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Tetrahedron-based perovskite PbVO; (PVO) is an intriguing polar magnetic material because its strong
tetragonal distortion allows VOs square-pyramidal structure rather than VOs octahedron. Bulk PVO is known to
show the unique features of 2-dimensional antiferromagnetic ordering and large pyroelectric polarization. In a
single-crystal bulk, the ground state of magnetic ordering of PVO is degenerated by C- and G-type configurations
[1] and its transition temperature is reported as Ty=47 K [2]. In this study, we fabricated epitaxial PVO thin films
on LaAlO; (LAO) (001) and SrTiO; (STO) (001) substrates by pulsed laser deposition with off-stoichiometric
condition [3]. Structural properties of the epitaxial PVO thin films with respect to mechanical strain induced by
lattice mismatch with substrates were investigated by X-ray diffraction, high-resolution transmission electron
microscopy, Raman scattering spectroscopy. As a result, abnormal lattice elongation of the PVO thin films along
c-axis and consequent octahedral distortion were observed. Our magnetic measurement exhibits a clue for this
exotic phase at low temperature, which is a direct evidence for change of the exchange interaction between two
adjacent d,, electrons of the V™ ions. The phenomenon is attributed to the elongation of the c-axis lattice
parameter of the PVO thin-films. In addition, the experimental characterizations of linear and nonlinear optical
properties for the PVO thin films were performed through spectroscopic ellipsometry and second harmonic
generation (SHG), respectively. Symmetry breaking along c-axis in PVO thin films were demonstrated by using

SHG signal with nonlinear susceptibility and Fresnel’s formula fitting.
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FeM,X, spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials
for spin filters, one of the key devices in spintronics. On the other hand, the electronic and magnetic properties
of these spinel structures could be modified via the control of cation distribution. Among the spinel oxides, iron
manganese oxide is one of promising materials for applications. FeMn,O4:5 shows inverse spinel structure above
390 K and ferrimagnetic properties below the temperature. In this work, we report on the structural and magnetic
properties of epitaxial FeMn,Oyss thin film on MgO(100) substrate. The reflection high energy electron diffraction
(RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxial grown on MgO(100) without
the impurity phases. The valance states of Fe and Mn in the FeMn,O4:s film were carried out using x-ray
photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer
(VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of

magnetic ordering in FeMn,O.s5 will be discussed.
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Voltage control of magnetic anisotropy in
monocrystalline ferromagnetic metal/oxide
layered structures

S. Mitani"%, Z.C. Wen'®, Q.Y. Xiang'?, Y. lida'?, H. Sukegawa' and S. Kasai'

'National Institute for Materials Science, Tsukuba 305-0047, Japan
*Graduate School of Pure and Applied Sciences,Univ. Tsukuba, Tsukuba 305-8577, Japan
*Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
’S. Mitani, e-mail: mitani.seiji@nims.go.jp

Voltage control of magnetic anisotropy (VCMA) is of particular importance in the emerging technologies of
magnetic random access memories. Large interface perpendicular magnetic anisotropy and its voltage effect were
reported in monocrystalline Fe/MgO heterostructures [1,2], suggesting that monocrystalline systems can be a good
playground in the research.

In this study, interface perpendicular magnetic anisotropy and its voltage effect were investigated for various
monocrystalline ferromagnetic metal/oxide layered structures such as Cr/Fe/MgO and Ru/Co,FeAl/MgO. We found
relatively large voltage effect of magnetic anisotropy in the Co,FeAl/MgO system [3] and observed
temperature-independent characteristic behaviors in the applied electric field dependence of magnetic anisotropy
in the Fe/MgO system. The detailed results of VCMA will be presented as well as the current status in
development of new materials for monocrystalline ferromagnetic metal/oxide layered structures and magnetic

tunnel junctions.

This work was partly supported by the InPACT Program of Council for Science, Technology and Innovation,
Japan and JSPS KAKENHI 16H06332. Q.Y.X and Y.I. acknowledge National Institute for Materials Science for

the provision of a NIMS Junior Research Assistantship.
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K. Hono, Appl. Phys. Lett. 103, 192401 (2013)..
[2] T. Nozaki, A. Koziol-Rachwal, W. Skowronski, V. Zayets, Y. Shiota, S. Tamaru, H. Kubota, A. Fukushima,
S. Yuasa and Y. Suzuki, Phys. Rev. Applied 5, 044006 (2016).
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Berry phase from atomic orbital

Dongwook Go', Changyoung Kim?, and Hyun-Woo Lee"
'Department of Physics, POSTECH, Pohang, Korea
?School of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
"E-mail: hwl@postech.ac kr

We examine properties of the Berry phase in multi-orbital cubic systems with both time-reversal and inversion
symmetries. We find that the Berry curvature near the Gamma point in the Brillouin zone is proportional to the
atomic angular momentum L. Considering that the Berry curvature acts as an effective magnetic field in
momentum space, this result implies that trajectories of accelerated electrons are bent sideways as if an an

external magnetic field is applied parallel to L.
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Spin-Orbit Torque and Beyond

See-Hun Yang’
IBM Almaden Research Center, San Jose, CA 95120, USA
“E-mail: seeyang@us.ibm.com

Efficient manipulation of magnetic elements are one of the main goals in spintronics. Discovery of spin
transfer torque two decades ago has made a major impact on magnetic community and industry thus accelerating
development of more powerful devices, i.e. STT-MRAM [1]. In particular, over the past few years a new type
of torque, so-called spin-orbit torque has emerged and promised even more exciting advent of new type of devices
in the future [2,3]. In this talk I will review the recent advancement of spin-orbit torque driven domain wall

motion in magnetic nanowires and present other novel torques beyond spin-orbit torque [4,5,6].

References

[1] Stuart Parkin and See-Hun Yang, “Memory on the Racetrack”, Nature Nanotechnology 10, 195-198 (2015).

[2] Kwang-Su Ryu, Luc Thomas, See-Hun Yang, and Stuart Parkin, “Chiral Spin Torque at Magnetic Domain
Walls”, Nature Nanotechnology 8, 527-533 (2013).
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Current induced nucleation and motion of skyrmion in
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Skyrmions, a magnetic texture characterized by its unique topological charge, have attracted recently a
concerted effort to study how they could be controlled and moved in ferromagnetic films or tracks, and open
a new route for spintronics and information storage technologies [1]. Stabilization, nucleation and motion are the
three challenges toward such an achievement. In this study, we show how a multilayer with a global symmetric
stacking allows 300 nm diameter skyrmion stabilization combining Dzyaloshinskii-Moriya (DMI) and dipolar
interactions, without strong constrains on materials (in particular without strong DMI). The sample structure is
compatible with spin-orbit torques, particularly induced by the spin Hall effect and enables current induced
skyrmion motion. In a track, using two asymmetric electrodes (point contact on one side, large contact on the
other side), we demonstrate independent nucleation at the point contact and shift of the skyrmion. Velocities up
to 60 m/s at current densities lower than 5x10'' A/m® are achieved. The observation of a deflection toward the

edges is the ultimate proof of the skyrmion topological charge.
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Shift of magnetic hysteresis loop by Dzyaloshinskii-Moriya
interaction in laterally asymmetry microstructure

Dong-Soo Han', Nam-Hui Kim*3*#, June-Seo Kim', Yuxiang Yin', Jung-Woo Koo', Jaehun Cho?,
Sukmock Lee?, Mathias Klaui®, Henk J. M. Swagten’, Bert Koopmans', and Chun-Yeol You**
'Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
’Inha University, Incheon 22212, Republic of Korea
3Johannes Gutenberg-Universitit Mainz, 55099 Mainz, Germany
*DGIST, Daegu 42988, Republic of Korea
*Chun-Yeol You, e-mail: cyyou@dgist.ac.kr

Recently, Dzyaloshinskii-Moriya interaction (DMI) has been heavily investigated by using many experimental
techniques such as Brillouin light scattering (BLS) [1-2], asymmetric domain-wall expansion [3], and
non-reciprocal spin wave velocity [4]. In this study, we would like to introduce unique technique to
straightforwardly observe the DMI by shift of magnetic hysteresis loop arising in DMI in laterally asymmetric
microstructures [5]. We prepared two types of thin films of Si(sub.)/Ta(4 nm)/Pt(4 nm)/Co(1.2 nm)/Ir(4 nm) and
Si(sub.)/Ta(10 nm)/AlOx(2.5 nm)/Co(1.15 nm)/Pt(4 nm) with perpendicular magnetic anisotropy (PMA),
respectively. The first one has bottom Pt, while the second has top Pt layer, so they are expected to have opposite
DMI. All samples are deposited by dc-magnetron sputtering, especially, we fabricated well-defined microstructure
of triangle in order to introduce lateral asymmetry, and squares with lateral symmetry by using electron beam
lithography and Ar’ ion milling technique. In order to obtain asymmetry hysteresis properties and extract DMI
energy density, we carried magneto optical Kerr effect (MOKE) measurement with microscopic imaging technique
by applying positive and negative biased magnetic field [5]. For triangular-shaped microstructures of Pt/Co/Ir and
AlO/Pt/Co, we found a shift of the hysteresis loop by applying additional in-plane magnetic field (+Hy, -Hy).
On the other hands, for the case of square-shaped microstructure, there is no shift of loop. Consequently, we
establish a unique, simple, and reliable approach to quantify the DMI in thin film structures and observe a shift
in magnetic hysteresis loops arising from the DMI, by introducing a lateral asymmetry in microstructures and

applying additional in-plane bias field.
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Efficient control of perpendicular magnetization through
spin-orbit torques in antiferromagnet/ferromagnet/oxide
structures
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*KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
>Center for Spintronics, Korea Institute of Science and Technology, Seoul, Korea
SPCTP and Department of Physics, Pohang University of Science and Technology, Pohang, Korea
"Center for Nanoscale Science and Technology, NIST, Gaithersburg, Maryland 20899, USA
Department of Materials and Science and Engineering, Chungnan National University, Daejeon, Korea
"Byong-Guk Park, e-mail: bgpark@kaist.ac.kr

Perpendicular magnetization in heavy metal (HM)/ferromagnet (FM)/oxide structures can be efficiently
manipulated by in-plane current via spin—orbit torques (SOT). However, in order to achieve SOT-induced
deterministic switching, an in-plane magnetic field is required, which is one of the major obstacles for device
applications. To tackle such challenge, we introduce antiferromagnets (AFM) instead of HM as the source of both
SOT and external magnetic field as AFM can create an effective field through exchange bias [1].

In this work, we report sizable SOT as well as in-plane exchange bias field in [rMn/CoFeB/MgO structures,
which allows for purely electrical deterministic switching of perpendicular magnetization. We could further
improve the switching performance by integration of an additional in-plane FM layer below the IrMn layer
creating a stronger exchange bias. These results suggest that AFM is a promising material candidate in SOT-based

devices because of its sizable SOT and exchange bias.
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Dynamics of Magnetic Domain Wall in Ferrimagnets
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Magnetic domain walls, which separate regions of opposing magnetic domains, can be manipulated and used
to encode information for storage' or to perform logic operations’. Owing to these fascinating technological
applications, magnetic domain walls have been intensively studied during the last decade. To compete with other
technologies, high-speed operation, and hence fast domain wall propagation, is essential. In this talk, we show
that it is possible to achieve high domain wall velocity using ferrimagnets. In ferrimagnetic GdFeCo wire, in
which the magnetic moments of Gd and FeCo are coupled antiferromagnetically, we observe a drastic increase
of domain wall velocity at the angular momentum compensation temperature, 74, of ferrimagnet. A maximum
field-driven domain wall velocity as high as 2 km/s (wall mobility as large as 20 km - s ' - T') is obtained at

Ta. The effects of current on the DW motion across 7 are also investigated and will be discussed in this talk.
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Recent Development Status of MTJ with TEL PVD EXIMTM
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Director of Advanced Technology, Corporate Marketing, Tokyo Electron U.S. Holdings, Inc.
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chang-man.park@us.tel.com

STT-MRAM (Spin Transfer Torque-Magnetic RAM) has been demonstrated in globe with many technical
breakthrough as next generation emerging memory this year. Despite the steep demands to use the memory as
embedded memory, cache memory, standalone memory, storage-class memory and so on, challenges in process,
material, and circuit technology still remain. The author will update the latest development of TEL EXIM™ PVD
tools for STT-MRAM p-MTJ stack deposition process.

From device characteristic perspective, major targets are to accomplish small write current, high MR ratio /
low RA product, and high thermal stability. The first demand for PVD tools in STT-MRAM fabrication are to
set the basis of such properties, as they are highly decided by the engineered stacks and actual PVD processes.
Another important aspect of PVD tool is flexibility, to deposit stacks with perpendicular magnetization, and also
stacks using unknown future technologies that lie ahead, which makes the Spintronics device more appealing.
Finally, depositing complex multi-layer MTJs with stableness, from within wafer uniformity to tool marathon run
performance, is essential to take STT-MRAM into high volume manufacturing.

In this presentation, the latest MTJ film properties deposited with high throughput on EXIM™, along with

read/write characteristics with patterned MTJ elements will be discussed.
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Asymmetric Bead Immunoaggregation for
Label-free Protein Detection
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This talk presents a novel immunoaggregation assay based detection of target protein up to femto-molar
concentration for detecting A HINI influenza. This detection assay is a sandwich assay using specific antibody
immobilized magnetic nanoparticles (MG) and polystyrene micro-particles (PS). A label-free detection is achieved
by using a portable CMOS image sensor (CIS). Influenza type A HINI nucleoprotein (NP) triggered aggregation
of MG and PS is selectively imaged by CIS, using magnetic attraction, to measure the size and count the number
of beads. The number of beads counted represents the concentration of target protein. Our verification procedure
includes fluorescence verification of molecular protocol and comparison with conventional single-type bead assay.
This protein detection is rapid, label-free, and capable of the quantitative measurement of protein concentration

and has potential for incorporating other contents. Our platform opens up new applications for protein detection.
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Applications of Metal doped-Ferrite Bismuth as Reusable
Magnetic Nanoparticles for Fast Removal of Organics
under Visible Light Irradiation

Byeong-Kyu Lee” and Tayyebeh Soltani
Department of Civil and Environmental Engineering, University of Ulsan,
Dachak-ro 93, Nam-gu, Ulsan 680-749, Republic of Korea
*B-K. Lee (Tel: 82-52-259-2864, Fax: 82-52-259-2629; E-mail address: bklee@ulsan.ac.kr)

Pure BiFeO; magnetic nanoparticle (BFO MNPs), Ba-doped BFO MNPs  Cu-doped BFO MNPs, and Cu-Ba
co-doped BFO MNPs as visible-light driven photocatalysts have been successfully synthesized via a simple and
rapid sol-gel method at a low temperature and with rapid calcination. Metal loading (Ba>", Cu*") in BFO MNPs
brought a distorted structure of BFO MNPs, consisting of small, randomly oriented and non-uniform grains,
increased surface area and improved magnetic and photocatalytic activities. Metal doping into pure BFO greatly
increased magnetic saturation at least 3.0 emu/g and significantly decreased the band-gap energy until 1.7 eV,
as compared to 2.1 emu/g and 2.1 eV, respectively, for pure BFO MNPs. The decrease in the band-gap energy
of metal-doped BFO MNPs along with oxygen vacancy, and the increase in ferromagneticity and surface area,
compared with pure BFO MNPs, led to a marked increase in the photocatalytic activity of the nanomaterials.
The metal doped BFO MNPs showed great photocatalytic degradation of volatile organic compounds (VOCs)
and phenolic compounds under visible light irradiation. It was identified that both Fe’*/Fe*’and Cu’/Cu®" pairs
in synthesized nanomaterials greatly promoted the heterogeneous decomposition of H,O, to + OH and S,0s* to
SO4 ". Thus the enhanced photocatalytic degradation of organics removal is due to the improved photocatalytic
and photo-Fenton catalytic activities. The high degradation efficiency of organics along with high reduction in
chemical oxygen demand (COD), total organic carbon (TOC) and high concentration of carbon dioxide (CO,),
proved the high mineralization efficiency of whole organic pollutants under visible light irradiation. After
photodegradation, the whole nanoparticles were easily separated from aqueous solutions by applying an external
magnetic field. The identified major intermediates of photodegradation enabled to predict the proposed organics
degradation pathway. The nano catalysts did not exhibit significant loss of photocatalytic activity after their

successive using.

Keywords: Visible light; Photo-degradation; Metal doped BiFeO;; Magnetic nanoparticle
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Magnetic characterization of Fe nano-sized powder
synthesized by pulsed wire evaporation method

D. H. Kim", S. H. Lee', D. J. Lee?, J. H. Park? and B. W. Lee’

'Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies,
Yongin, Gyeonggi 17035, South Korea
*Nano Technology Inc.A-3F, 63, Dachwa-ro 50beon-gil, Daedeok-gu, Daejeon-si, 34364 South Korea

Recently, soft magnetic metal powder composite have been used for chip power inductors for high frequency
applications due to their ability to prevent eddy current loss and higher saturation magnetization than ferrite. Fe
based amorphous powder that possesses good magnetic properties and low core loss is a favorite element for the
chip power inductor. However, the amorphous powder has a lower saturation magnetization () as compared to
crystalline Fe powders and also shows a high core loss at the high frequency range. In order to achieve high
performance (i.e. having high M, and low core loss) when operated at a wide frequency range above 1 MHz,
Fe based nano-sized particles with an insulating shell layer has been intensively investigated [1]. To prepare the
Fe nano-sized core-shell particles with specific functional properties, many synthesis techniques have been
attempted [2, 3]. The pulsed wire evaporation (PWE) is known as a one-step synthetic technique with high
efficiency as compared with other methods involving several treatment steps [2]. In this work, we characterized
the microstructure and magnetic properties of Fe/Fe;Os4 nano-sized core-shell powder prepared by the PWE

method.

References
[1] H. K. Kim and S. Y. An, J. Magn. 20, 138 (2015).
[2] H. M. Lee, Y. R. Uhm, and C. K. Rhee, J. Alloys and Comp., 461, 604 (2008).
[3] S. Peng, C. Wang, J. Xie, and S. Sun, J. AM. CHEM. SOC., 128, 10676 (20006).

- 120 -



Invited S-III-5

Magnetic SnFe,O4 nanoparticles: synthesis and their
application for visible light photocatalyst for
chlortetracycline

Yuefa Jia” and Chunli Liu
Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 449-471, Korea

Due to their moderate bandgap energy and magnetization, spinel ferrite nanomaterials such as CoFe;Os,
ZnFe,O4, MnFe,04, and NiFe,O; have recently raised increased research interest for their applications in
magnetically retrievable photocatalyst[1-4]. Considering the advantages such as environmental friendliness and
abundant element storage, we attempted in preparing SnFe,O, nanoparticles and studied their magnetic properties.
Highly crystalline SnFe,O, nanoparticles with high saturation magnetization were prepared in alkaline solutions
containing SnCl, and FeCl, - 4H,0O with NaOH and NH4,OH by a one-pot solvothermal method at 200 C. The
technique requires neither long time high temperature calcination nor any other supplementary reagents during the
preparation process. The structural, optical, morphology, and magnetic properties were investigated by XRD,
FT-IR, PL, HRSEM, HRTEM, XPS, and VSM. The results showed that SnFe,O4 nanoparticles have the crystallite
size in 40-50nm with a high saturation magnetization of 74.3 emu/g, which is much higher than the reported
values for SnFe,Os nanoparticles prepared using precipitation exchange[5,6]. The photocatalytic experiments
showed that the SnFe,O4 nanoparticles can effectively degrade chlortetracycline with the assistance of H,O, under
the visible light radiation, and can maintain a stable performance with continuous recycled usages. Our results
demonstrated that that SnFe,O, can be a potential photocatalyst for removing the organic pollutions in

environment water.

Keywords: olvothermal, SnFe,O., saturation magnetization, degradation, chlortetracycline
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Highly crystalline SnFe,O4 nanoparticles with high saturation magnetization and superior chlortetracycline

degradation efficiency was developed using a one-pot solvothermal method.
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Tunable magnetic properties and large magnetocaloric
effect of non-stoichiometric LAMnO3; nanoparticles

P.S. Tola and T. L. Phan

Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies,
Yongin, Gyeonggi 449-791, South Korea

LaMnOs; nanoparticles (NPs) with various particle sizes of 28-101 nm have been studied the structural
characterization, and magnetic and magnetocaloric properties. Rietveld refinements revealed that all NPs
crystallized in the rhombohedral structure, with varied structure parameters dependent on the particle size (D).
Magnetization (M) measurements indicate a large difference in magnitude between zero-field-cooled and
field-cooled magnetizations at temperatures (7) below ferromagnetic-paramagnetic (FM-PM) phase transition,
particularly for the samples with D = 36-43 nm, which are ascribed to spin-glass-like behaviors and magnetic
inhomogeneity. We also found the possibility of tuning the FM-PM phase transition temperature (7¢) from 77
to 262 K, which is dependent on D, and W as well. Under an applied field H = 50 kOe, the maximum magnetic
entropy change (|ASwyi|) achieved around 7¢ can improve from 4 J<kg'<K™' for D = 43 nm to 6.4 J<kg'<K
for D = 101 nm, corresponding to relative-cooling-power (RCP) values of 241~286 J<kg'. We also analyzed
carefully the data of M(T, H), and magnetic entropy change (JASy|) versus T and H based on theoretical models

to further understand the magnetic properties and phase-transition type.

Keywords: Perovskite manganites, Nanoparticles, Magnetic and magnetocaloric properties
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Vortex-state nanoparticles for bio-imaging
and magnetic hyperthermia

Sang-Koog Kim’
National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory,

Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National
University, Seoul 151-744, South Korea

Bio-imaging and bio-medicine industries have grown significantly in pursuit of earlier diagnosis of, and more
timely therapy for, human diseases. MRI (Magnetic Resonance Imaging) is becoming more widely used to
visualize internal organs and structures of the human body. To be able to take full advantage of MRI’s and other
bio-imaging techniques’ special utility, however, it is essential that their signal sensitivity and spatial resolution
be improved to the point that tumor-candidate cells can be isolated and identified. Currently one of the most
promising MRI modalities involves the use of contrast agents constituted of super-paramagnetic nanoparticles. Yet
this technique requires the application of extremely high magnetic fields (1 - 7 Tesla) to obtain a sufficient
number of net signals. The generation of fields of such strength incurs significant cost in superconductor
maintenance, and moreover, could have as-yet-unknown side-effects on the human body. Thus, it is necessary to
find a new, innovative approach - one that entails extremely high-sensitivity, high-spatial-resolution, yet
low-magnetic-field bio imaging - and to develop the relevant diverse and proven applications to in-vivo diagnosis
and therapy.

To this end, we report for the first time that the resonantly excited precession and reversal dynamics of vortex
cores in soft magnetic nanoparticles and their size-specific resonant effect [1] may be used to develop
new-paradigm bio-imaging techniques as well as hyperthermia therapy. These approaches, though challenging, are
very creative. In this presentation we will report the synthesis of vortex-state nanoparticles [2], micromagnetic
numerical calculations of novel vortex-state particles’ dynamics [1] as well as the concept of the use of those
particles and novel spin dynamics for bio-imaging and hyperthermia applications. This concept will provide the
original and core technologies that exceed the limitations of conventional bio-imaging tools and therapy to realize

the simultaneous implementation of bio-imaging diagnosis and immediate therapy.
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ADb initio Theoretical Studies on Multiferroicity
in Transition Metal Oxides

Kunihiko Yamauchi’
ISIR-SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

“Multiferroics” are attractive multifunctional materials where magnetism and ferroelectricity are strongly coupled
[1,2]. They are also playgrounds for magnetoelectric effect, which enables control of magnetization via external
electric field. Multiferroics can be classified according to different driving forces, which primarily break the spatial
inversion symmetry paving the way to ferroelectricity: (i) spin order, (ii) charge order and (iii) orbital order. In
this talk, theoretical studies on the various multiferroics based on density functional theory (DFT) will be summarized.

In the first group, plenty of studies have been focused on spin-driven ferroelectricity in perovskite rare-earth
manganites, RMnQO;. It has been known that antisymmetric Dzyaloshinskii—-Moriya interaction causes weak electric
polarization in spin-spiral TbMnO;, while exchange striction mechanism causes stronger polarization in E-type
antiferromagnetic HoMnOs. Recently, a high-pressure experiment reported that TbMnO; shows the magnetoelectric
phase transition to have large polarization, which is caused by the magnetic transition as confirmed by a DFT
calculation [3].

In the second group, LuFe,O, has emerged as a prototype of charge-order induced multiferroics for a long
time, however, recently magnetite (Fe;O4) has been also suggested as a new candidate, which would depict it
as the first multiferroic known to mankind. Magnetite shows the first-order metal-insulator Verwey transition at
Ty = 120 K, below which the crystal structure has a polar Cc space group. By comparing the polar crystal
structure with the centrosymmetric structure via DFT calculation, we got the sizable ferroelectric polarization,
which value is consistent with the experimental measurement [4]. It is revealed that the ferroelectricity is induced
by a polar charge-ordering and the polarization is primarily caused by local electric dipoles between divalent and
trivalent Fe ions in magnetite.

If time permits, I would like to introduce an alternative mechanism of magnetoelectric effect, called “spin-dependent
pd hybridization”. It has been reported that the mechanism can be responsible for the magnetoelectric effect observed
in Ba,CoGe,07, where two neighboring Co spins are aligned in a C-type antiferromagnetic configuration. According
to a theoretical analysis, the microscopic origin of the magnetoelectricity is based on two relevant ingredients,
i.e., the anisotropic p-d hybridization between Co and O states and the on-site spin-orbit coupling at Co sites

[5]. This mechanism may be applied to magnetoelectric effect measured in magnetite [6].
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Record-high spin-driven polarization and light-matter
interactions in BiFeO3

Jun Hee Lee’
Ulsan National Institute of Science & Technology, Ulsan, Korea

Although BiFeO; is one of the most investigated multiferroics, its magnetoelectric couplings are barely
understood on an atomic level. By combining a first-principles approach with a spin-cycloid model, we report
hidden but huge spin-driven polarizations at room temperature in bulk BiFeO;. One of the ferroelectric
polarizations reaches ~3.0 pC/cm?, which is larger than any other spin-driven polarization in a bulk material by
one order of magnitude [1]. The broken inversion symmetries of the R3c BiFeO; induce the strong response of
the magnetic interactions to an electric field and are responsible for the associated huge spin-driven polarizations.
Second, we show strong THz non-reciprocal directional dichroism induced by the spin-driven polarizations [2].
The broken inversion symmetries of the R3c structure are responsible for the huge spin-driven polarizations and
subsequent uni-directional light propagation at room temperature. Beyond the spin-current polarization governed
by the inverse Dzyaloshinskii-Moriya interaction, various spin-current polarizations derived from both ferroelectric
and antiferrodistortive distortions cooperatively produce the strong non-reciprocal directional dichroism or the
asymmetry in the absorption of counter-propagating light in BiFeOs;. Our systematic approach can be generally
applied to any multiferroic material, laying the foundation for exploiting optical magnetoelectric effects in the next

generation of technological devices such as optical diodes [3,4].
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DFT calculations for magnetic systems
- a simple guide for non-experts
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Ulsan 680-749, Republic of Korea

A simple guide on first-principles calculations for non-experts will be given.

First, a brief outline of density functional theory will be provided with classification and summary of various
first-principles method and name of packages. Issues with magnetism in the scope of DFT realm are listed first,
and DFT approach for those properties will be reviewed - basic magnetism, magneto-crystalline anisotropy(MCA),
magnetic circular dichroism (MCD), and magneto-optical Kerr effect (MOKE). Comparison with experiments and

recently popular Berry phase technique will be covered as well.
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Magnetic properties in Sry.xLasRu; xFexOs thin film

Chang Uk JUNG' and Umasankar Dash

Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies,
Yongin, Gyeonggi 17035, Korea
“cu-jung@hufs.ac kr

1. Introduction

The Mamchik et al. measured the magnetotransport behavior and ferromagnetism in Srj LasRu;.<FeO;
(SLRFO) polycrystalline material.[1] They observed spin glass behavior and high negative magnetoresistance in
spin-frustrated SLRFO polycrystalline material. Their results accompanied by grain boundary and a disorder in
the material. Gupta et al. studied the effect of grain boundary on the magnetoresistance behavior of LCMO bulk
polycrystalline materials. They showed that domain boundaries have a major role in spin dependent scattering in
LCMO ploy-crystal samples and the value of MR in LCMO epitaxial thin films is less as compared to bulk
polycrystalline samples.

In our earlier report, we had shown by using epitaxial strain, we could stabilize single crystalline thin film
of Sr(Ru,Fe)O; thin films without co-doping in Sr site and we had tried to address the ‘intrinsic’ aspect of
‘self-spin valve’.[2] However we changed two things together, co-doping vs. single doping and polycrystal vs.
epitaxial thin film. Now we want to focus on only one change from the Mamchik’s work; polycrystal vs epi thin
film. In the current study, we made single crystalline epitaxial thin films of Sr;La,Ru;4Fe,O(x= 0.00, 0.05, 0.10,
0.20, 0.30) on SrTiOs; (001) substrates.

2. Experimental

For the current study, LaFeOs; doped SrRuO; epitaxial thin films Srl-xLaxRul-xFexO3(x= 0.05, 0.10, 0.20,
0.30) on STO (001) substrate were grown by pulsed laser deposition, using KrF excimer Laser (35 mJ/cm?’ 4Hz).
The substrate temperature was maintained around 750°C during thin film growth. Two different oxygen partial
pressures were used during the film deposition. SLRFO 5 and 10% films were deposited on 175 mTorr whereas
SLRFO 20% and 30% films were deposited on 250 mTorr oxygen partial pressure. As we know oxygen partial
pressure has the key role in determining the quality of thin films. This oxygen partial pressure is higher than
that for the earlier oxygen deficient films in our previous study.[2] The thickness of films have been characterized
by field emission transmission electron microscope (FESEM) and found to be about 60 nm. Surface morphology
and lattice parameters were used to evaluate the film quality. Crystal structure was characterized by using
high-resolution X-ray diffraction. Surface morphology of films was analyzed by atomic force microscopy.
Magnetic measurements were carried out by using a superconducting quantum interface device Vibrating sample
magnetometer (SQUID-VSM). In order to investigate the magnetoresistance (MR), we have used a standard four
point hall bar geometry for all thin films. A magnetic field up to 9 T was applied parallel to the applied current.
By applying magnetic field sweep 9 T, the sample resistivity (Rxx) decreased giving rise to negative
magnetoresistance. The temperature dependence resistance and field dependence resistance of all compositions

were measured by using a cryogen-free cryostat and dual channel source measure unit (Keithley).
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3. Results and Conclusion

All the films showed excellent c-axis orientation with the STO (001) substrate. The change of the calculated
c-axis lattice constant remains the same within +0.003 A. The reciprocal space mapping showed that SLRFO has
grown coherently with the in-plane lattice constant values as same as those of the underlying STO (001) substrate.
Zero field resistivity values of the SLRFO films were measured and compared with that for Ru doped film, SLRO
bulk crystal. In comparison between SRFO with higher oxygen vacancy and SRFO with lower oxygen vacancy,
higher oxygen vacancy in the film gives pronounced effects on the resistivity at low-temperature while
high-temperature resistivity does not change much. The Co-doping of La3+ at Sr2+ site together with Fe3+
doping at Ru4+ site was reported to be useful to make single phase sample in poly-crystal. The Co-doping in
SRO thin film increased resistivity much more than single Fe doping in SRO thin film while the latter
accompanies with oxygen vacancy problem. The disorder affecting the increase of resistivity is stronger for
co-doping shown in SLRFO than single doping with oxygen vacancy in the SRFO. Also making thin films of
SLRFO, we could minimize the contribution of grain boundary and can compare MR with bulk magnetic
measurement. We have observed a large negative magnetoresistance (~35%) in SLRFO epitaxial thin films grown
on STO (001) substrates. With increasing LFO doping concentration, decreasing Tc and increasing resistivity of
the thin film was observed. It was found that metal insulator transition persists in the SLRFO epitaxial thin film.
Upon application of external magnetic field sweep up to 9 T the film resistivity decreased giving rise to a large
negative magnetoresistance which was stronger in low temperature (down to 10 K). It was also noticed that the

absolute value of MR increased with increase in doping concentration from x = 0.05 % to 0.30%.
4. References

[1] A. Mamchik, et. al., Phy. Rev. B. 70, 104409 (2004).
[2] K. R. N. Toreh, et. al., J. Alloys Compd. 657, 224 (2016).
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Influence of the tip material on the formation and resistive
switching properties of NiO naondots

Jihye Kim"?, William Jo' and Christian Mény?
'Department of Physics, Ewha Womans University, Seoul, 03760, Korea
*Institutes of Physics and Chemistry of Materials of Strasbourg, UMR 7504 ULP-CNRS, Strasbourg, 67043, France
E-mail: wmjo@ewha.ac kr, christian.meny@ipcms.unistra.fr

Resistive switching (RS) consists in changing the resistance state (low resistance state, LRS to High resistance
state, HRS or inversely) of a device through the application of an external voltage or current.' It has been
suggested that the interface effects between electrodes and thin film are critical parameters for understanding the
RS behavior.” Most of RS behaviors have been studied extensively in thin films with various electrode materials.
Few studies on RS behaviors in nanodots have been reported so far. Since the AFM probe can also be used as
the top electrode, effects of the electrode material can also be studied. Au and Co-coated tips are used to study
material effects on the formation of NiO nanodots. The formation results showed a large dependence on the tip
material in the formation of NiO nanodots. Under sufficient humidity, the tip material dependence on the
formation of nanodots seems to indicate that the interface effect between the tip and sample surface could be
a more important parameter than other parameters. It could be related to the change of the end-shape of the tip
during electric field application. The end-shape of the tip may also resultin different magnitude of induced electric
field between tip and sample surface. NiO nanodots we have grown show bipolar resistive switching
characteristics, but the detailes analysis of electrical transport properties show a behavior that was very different
depending on the tip material. Moreover, HRS/LRS ratio (on/off ratio) of the tips is different under positive bias,
while the ratio is similar under negative bias. The tip material dependence of RS properties could be described
by work function and oxygen affinity. Since the oxygen affinity of Co is large, a cobalt oxide layer could be
formed at the surface of the Co tip when positive bias is applied. The electrical current transport mechanism can
be explained using I-V fitting with various contact barrier models like the Richadson Schottky Simmons model.
My work suggests that it is possible to improve RS characteristic by selecting an appropriate electrode material

in nanoscale devices.

References
[1] D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, Nature, 453, 80 (2008).
[2] N. Ge, M. Zhang, L. Zhang, J. J. Yang, Z. Li and R S. Williams, Semicond. Sci. Technol. 29, 104003
(2014).
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First-principles prediction of novel Fe;4sM2N, (M=AI, W, Zi)
alloys with high coercivity

Taewon Min’, Jinho Byun, Hyoungjeen Jeen, Sungkyun Park, Jaekwang Lee
Department of Physics, Pusan National University, Busan, 46241, Korea

FeisN, has a potential applications as one of the promising rare-earth-free permanent magnets due to its
extremely high magnetization. However, the low coercivity of Fe;¢N, hinders its practical application. Here, using
density functional theory calculations, we explored the change of tetragonality, volume and magnetization in
various FesMuN, (M=Al, W, Zr) alloys depending on atomic position of two M atoms. We find that a Fe;4Zr,N,
alloy has a tetragonality of 1.29 and exhibit almost ten times higher coercivity than the Fe;sN, coercivity, which
will be desirable for the application. We expect that our results provide essential information to understand the
underlying mechanism related to coercivity, and develop novel Fe;sN,—based permanent magnets with high
coercivity.

This work was supported by the Industrial Strategic Technology Development Program (10062130,
Theory-driven R&D for non-centrosymmetric structured rare-earth free Fe-based permanent magnet materials)

funded by the Ministry of Trade, Industry & Energy (MI, Korea).
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Theoretical Study of Rare-Earth Lean Magnet
Compound NdFe;oN

Takashi Miyake'?
"National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
*National Institute for Materials Science, Tsukuba 305-0047, Japan
“Takashi Miyake, E-mail: t-miyake@aist.go.jp

The ThMn,,-type iron-based rare-earth compounds have attracted interest as potential strong permanent magnet
compounds because of their high iron content (low rare-earth content) which is favorable for achieving large
magnetization. Recently, NdFe;,N film has been synthesized [1] following first-principles calculation [2], and it
was reported that NdFe;pN exhibits larger saturation magnetization and anisotropy field than those of Nd,FesB.
Here we present a theoretical study of this compound. Our first-principles calculations show that magnetism in
NdFe;;TiX and NdFe;X for X=B,C,N,O,F is sensitive to X. The magnetization is substantially larger for X=N,O,F
than for X=B,C, while the magnetocrystalline anisotropy becomes the strongest for X=N [3]. Analysis using a
classical spin-model clarifies that the magnetic anisotropy above the room temperature is strongly influenced by
the exchange coupling between Fe and Nd [4,5]. We also report the effect of the third element M
(M=T4,V,Cr,Mn,Co,Ni,Cu,Zn) on the energetics and magnetism in NdFe; M [6].

References
[1] Y. Hirayama et al., Scripta Materialia 95, 70 (2015).
[2] T. Miyake et al., J. Phys. Soc. Jpn. 83, 043702 (2014).
[3] Y. Harashima ef al, Phys. Rev. B 92, 184426 (2015).
[4] M. Matsumoto et al., J. Appl. Phys. 119, 213901 (2016).
[5]1 Y. Toga et al., arXiv:1606.00333.
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6] Y. Harashima et al., arXiv:1609.07227.
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Optimization of spontaneous magnetization :
Slater-Pauling curve revisited

B. I. Min’
Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea

One of the key factors for the advanced permanent magnet is the large spontaneous magnetization. By
investigating the magnetization variation of Fe-rich multicomponent alloys, the magnetization is optimized with
average valency. For binary alloys of Fe-X (X=transition-metal(TM)), the characteristic mountain-shape
Slater-Pauling curve for X=3d TM elements (Fig. 1) is produced even for X=4d-5d TM elements. For ternary
alloys of Fe-Si-X, the magnetization is found to repeat the Si-absent binary pattern of the Slater-Pauling curve
with the shifted reference moment. We have also investigated the magnetic properties of (FeX)16N2, Fe-Y (Y=s,p

metal), and Fe-RE (RE-metallic elements), and discussed the materials design of advanced permanent magnets.
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Fig. 1. Slater-Pauling curve [J. C. Slater, J. Appl. Phys. (1937) ; L. Pauling, Phys. Rev. (1938)]
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Role of heavy fransition metals on
magnetic anisotropy in TM/Fe/MgO(001)

P. Taivansaikhan', D. Odkhuu?, S. H. Rhim', and S. C. Hong"
'Department of Physics and Energy Harvest Storage Research Center, University of Ulsan,
Ulsan 680-749, Republic of Korea
*Department of Physics, Incheon National University, Incheon 406-772, Republic of Korea

Capping by 5d transition metal (TM= Hf, Ta, W, Re, Os, Ir, Pt, and Au) on a typical magnetic tunnel junction
Fe/MgO(001) is investigated using a first-principles calculations for their magnetism and magnetocrystalline
anisotropy (MCA), which exhibits systematic changes with the atomic number of the capping TM. The early (late)
TMs, less (more) than half-filled, show antiparallel (parallel) magnetizations with respect to Fe. This magnetic
behavior is explained by kinetic exchange energy gain of electrons in the minority spin states of TMs and Fe.
The cappings of the center TMs, Re, Os, and Ir, enhance MCA of Fe/MgO(001) significantly, particularly in
Os/Fe/MgO(001) perpendicular MCA (PMCA) reaches gigantic 8.52 meV/cell. On the other hand, the cappings
by the very early and the late TMs, Hf, Ta, and Au, do not change much the MCA of of Fe/MgO(001), while
the capping by W and Pt turn PMCA to in-plane. The variation of MCA is due to the shifting-down of the TM

d-bands as the number of valence electrons increase.

Keywords: A first principles study, Magnetic moment, Magnetocrystalline anisotropy, and Capping effect
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Potential rare earth free permanent magnetic:
The a ”-Fe16N2

Jisang Hong" and Imran Khan
Department of Physics, Pukyong National University, Busan 608-737, Korea

Using the first principles method, we have investigated the electronic structure and magnetocrystalline
anisotropy of a”-Fe;sN, systems. In order to tune the magnetocrystalline anisotropy of the pure a”-Fe;sN, we
follow two routes, firstly the impurity doping both substitutional and interstitial, and secondly the multilayer
approach. The impurity doping induces local lattice distortions near the impurity site, however the volume of the
cell and total magnetic moment of the doped systems were not much affected. The substitutional heavy 4d, 5d
elements were found to be more helpful for the enhancement of magnetocrystalline anisotropy than interstitial
doping of 2s and 2p elements. Due to the increased magnetocrystalline anisotropy we found almost 50~58 %
enhancement of coercivity for 5d element (W and Pt) doping in a"-Fe;¢N,. In multilayer approach we have
studied two systems, (i.e) a"-Fe;sNo/Ag/ a”-Fe;sN, and a”-Fe ¢Ny/Au/ o”"-Fe¢N,. Here we used a very thin layer
(3 monolayer) of Ag and Au. In this approach the magnetocrystalline anisotropy was enhanced almost 60 % of
the pure a”-Fei¢N, for Ag doping. Besides the saturation magnetization drops almost 40 % of the pure FeisNo.
Due to enhancement of the magnetocrystalline anisotropy and reduction in saturation magnetization the coercivity
was enhanced to almost 80 % of the pure a”-Fe;¢N,. Besides the maximum energy products were also seen to
enhance in impurity doped systems. In the light of the obtained results o”-FecN, could be a potential candidate

for the future cost effective rare earth free permanent magnet.
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High Clarke number element based new permanent
magnetic materials

Chul-Jin Choi’, Kook-Chae Chung and Jong-Woo Kim
Korea Institute of Materials Science, Changwon, 51508, R. Korea
"E-mail: cjchoi@kims.re.kr

With the advent of high performance permanent magnets based on the rare earth elements such as Sm-Co,
Nd-Fe-B alloys in the 1980s, the application areas have been extended from the electronics to hybrid electric
vehicles and wind turbines etc. However, the advantages of these rare-earth element based magnets may be
overshadowed by the supply constraints, high prices and environmental issues.

Therefore, many researchers have paid much attention on the non-rare earth element, i.e. the high Clarke
number element (relatively abundant element in the globe), based permanent magnetic materials. In recent years,
the researches on several materials systems have been focused on the nanocomposite made from transition-metallic
alloys, tetragonal L1o FeCo alloys, anisotropic Mn-based alloys and body centered tetragonal Fel6N2 iron nitride
alloys, etc. A variety of methods are available to manufacture rare earth free, high Clarke element based
permanent magnetic materials in bulk, nanostructure, nanocomposite and thin films.

How to make the high Clarke element based magnetic materials with large energy product is still big hurdle
to solve. The proper scale-up methods to produce magnetic nanostructures with high energy efficiency have still
been a significant challenge, which are also very important to the development of novel high Clarke element
based permanent magnetic materials to meet tomorrow’s energy needs.

In this paper, we outline the challenges, prospects and research status for several potential alloys with high

Clarke number elements, which could replace Nd based permanent magnetic materials
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Multi-functional simulations for designing new
permanent magnetic materials
01714", ol MXIE’

e,

FaAsrled
‘g sha

2
B
Ol“J ox,
oX of

FTAUE AL AL FET AT E AAE ARE 2 AT B3} A A
Aare] mE Wasich AARAE B o RS s AxfaglolARE vH %Y

i

2 (o
(s
roi
ol

OlE£ 9IS SA LT chop Beld B SNRo Rk A4te] Washe ofelat Aol §714.0
= ol R Aokttt A7 TheFer AR Aol T AALAT} o] Fol A ShXgk olefat thaket A7 e

Aol AgEE B G Walo] det 2 AAQER SY Aoz Syuo] gk dlE ol Adw
AN AQLIe] el ARk B3 ol W Hrhsiag AIATIONY 44, AT 5o
7290 A A clZo] ool AL Yeldl 712 ASES VMo uaky] FARAE B 47TE
Aol g A, oA 2AFR0 A9 AoATE 02 Ly} et

Q2 7|t Ao BAS HPERO 2 ARS] u 4] AR}

mlm alu
1=
ol
ok
1:1
£

of| =5t 3} 7|ute] u|A|RZ]) Lz}l oA 5}

g = 9 AP
AR AR A B4 W BA OAAE st g

BosEol A Zzbe] At whol digk ket 2ol 7 A TAle] HEAS ol AmE ALt wHA
o) Mg FlsA, Dela AA AMS $71HeR EHEts WSS Amuad s

- 160 -



=xS-VI-3

1-D magnetic material fabrication for developing new
permanent magnetic materials
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High throughput synthesis and analysis of new permanent
magnetic materials

Ho-Sup Kim", Dong-Woo Ha', Chul-Jin Choi? Kook-Chae Chung? Jong-Woo Kim?, Ki-Suk Lee®
'Korea Electrotechnology Research Institute
Korea Institute of Materials Science
3Ulsan National Institute of Science and Technology

1. Introduction
Searching for new materials have been always demanding time and process cost. High-throughput technology
is an approach to the rapid discovery, optimization of new materials[1-3]. In this study, high-throughput method

of synthesis and analysis of magnetic materials was introduced to search for new magnetic materials.

2. Experiment

High-throughput synthesis of thin film was carried out in the vacuum chamber with the components of Quartz
Crystal Microbalance (QCM) to measure the deposition rate of each source, heater to increase the temperature
of large area substrate, and thermal evaporators. We could obtain continuous composition spread on the large area
substrate by means of the disposition of evaporation crucibles and the distances between substrate and crucibles.
The samples with composition spread were used to investigate the effect of composition ratios of magnetic
materials on magnetic properties, microstructure, and preferred orientation. High-throughput analysis system is
composed of the permanent magnets with surface magnetic intensity of 1.3 T, a continuous reel to reel tape
moving device, and a three-axis Hall sensor. The system can measure the hysteresis loop in each position of tape
using a permanent magnet while the tape moves at regular intervals. The advantages that can be obtained in this
high throughput experiment are as follows. 1) We can obtain compounds having different composition ratios in
a run. The magnetic properties of them can be quickly determined through the continuous measurement results.
2) The reliability of results of the composition ratio dependency is high because all the compounds on the

substrate experience the same deposition conditions except for the composition ratio.

3. Conclusion
The high-throughput methodology offers rapid and efficient magnetic materials screening, optimization and

discovery.

4. References
[1] D Goll et al, J. Phys.: Condens. Matter 26, 064208 (2014).
[2] W. F. Maier, Angew. Chem. Int. Ed. 46, 6016 (2007).
[3] D. Goll et al, J. Appl. Phys. 96, 6534 (2004).
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High-gas pressure stabilization of the meta-stable
magnetic hydrides, oxides, and nitrides

Ping-Zhan Si"*", Nai-Kun Sun?, Chul-Jin Choi®
'Zhejiang Key Lab of Magnetic Materials, China Jiliang University, Hangzhou, 310018, China
*School of Science, Shenyang Ligong University, Shenyang, 110159, China
*Korea Institute of Materials Science, Changwon, 51508, R. Korea
"E-mail: pzsi@mail.com; pzsi@cjlu.edu.cn

A number of ferromagnetic materials, including La-Fe-Si-H, Sm-Fe-N, CrO,, a"-Fe;¢N,, etc., are unstable at
elevated temperatures, and this has become bottleneck for the synthesis and applications of these materials. In
this work, a high-gas pressure heat-treatment device designed by Si was employed to suppress the decomposition
of La-Fe-Si-H, Sm-Fe-N, and CrO,. The self-made device can work under H,/O./N, gas pressures up to 100 MPa
and in temperatures up to 1000 C. 1] High-density LagsProsFe;;4Si¢ hydride sintered plate with a large
magnetic-entropy change that almost twice as large as that of bonded La(Fe,Si);; hydrides were obtained under
50 MPa H, heat-treatment.[2] The high pressure H, suppresses desorption of H atoms and thus makes high
temperature sintering possible. This work opens an effective route for synthesizing thin magnetic refrigerants of
La(Fe, Si);3Hx hydrides. [3] High-performance SmyFe 7Ny powders were obtained by nitriding SmyFe;; under N,
with gas pressures up to 40 MPa, which is beneficial in suppressing the decomposition of SmpFe7Ny and
enhancing the nitrogen absorption rate, and thus is effective for synthesizing high-quality Sm-Fe-N.[4] The MnsN
prepared under high N, gas pressures exhibits much larger coercivity in comparison with that prepared under
ambient N, pressures.[5] Ultra-high purity CrO, were prepared by decomposing CrO; under 40 MPa O,. [6] The
CrO; nano- and micro-particles were prepared by nitriding Cr,O; under high O, pressures. [7, 8] The influence
of high-pressure nitrogenation on the structure and magnetic properties of SmFe;(Mo, and LagsProsFe;; 4Sij¢ has
also been studied. [9, 10] High gas pressure heat-treatment can to some extent enhance the gas-solid reaction rate,
enriching the gas-atom concentration in the final products, and suppress the decomposition of meta-stable

compounds.
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A study of the aneurysm measurement and analysis at
the CT image reconstruction techniques
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Apply proton beam therapy using passive collimator

2", MAE, MM, ZTS
122) ohAl E] oFAd 2}X] 2 ANE]
e ySIs)
R EEEBEREEE
‘ZRu)eta o) gt
A ek a dhe) 5o}

5
=

et

Az Bol| A AAFZAL BEetT PR oyt HAAS 2 o =
o]t t‘“Mi EOM *Plﬂ% AoEQl e AT o He=ef H2go] aq-d s 7t

ollimator : MLC)E A}A| A&k
g gotr A Gk

oA 9 " zpA] A ZFSE MLCY] leaf Ao]ZRE= 2 1~5 mm, A2 45~160 mm, =o] 60 mm AElS e Q]
Btz o @ A& R, RAMELE WAL 120 * 120 mE AlA Yoz o] 8T WAL 100 * 100 mo] FEE
shict zaQde] SRl sl 2 Ao R &g o|REE wix|ehe, Zlof sl 2+t &efold 7kt
Al ARstgdct. Zejdlolg ol e7joet Eel7bsstA AdE YU FuHlskaaL, Ty ¢le] e-dka) st
WeFo R 7b7) o]Fo] ThsstEs stk AA AZEE MLC= =59 oAl 20 em AThe] f1x]A]7] 1L

olf mulg Lokt FHlo FElE FA] = FEoA AFeHon, AJArE= P49 leafTt =
o] MhstA] == sHGiTh 235 MeV el AR WS A A|2HEE MLCo| GARste] FAHAbAS 24519
oy 712 A ARl S5t A A MLCO] A9 B A2 ©@7hE vlaskglch

ot

b4

>

w2 orlo

A3 : 235 MeV FAE FEo] 2ARIEES W AA| Al&eE MLCoF 9259 3 leaftt FARAR]
SRIFA] otk ABAE G vlaste] 7|E e 553 AA A2 MLC| F/d=-dollA 1 m 1]
o] Aol KAt A=A v]as) %*:I-tr'@r dole] Rl Aol AR ZH 1 % vgke] A= Abo]
HA. BF =50 AA| AR MLC A8 Blaskdls o of 50 % 97HE4d avs 23tk

_4
_4

3z g AE  AA AR MLCE @ AlAH9 B X&' REOA AREO] 7hsstes IBAAL 2o
Goto] AAIskAT: AA| AlAkgE FgA A28 MLC= &AFe] A= 7ejof d52o]al JostA WAk o]

Nerst Azjolct. 7tAo] 17l 712 BE A E-S o] 88t A9 THS st AR
SHHAE a&2 MLC ZAE Algstol FdA4 A= AR & o= = Aotk

- 169 -



ZS-VII-4

IR & 71571 AIZIUXIE 1B YT X 2°80l &gt 217

=1 = 2 =13 4 =145
AYS", SHEtA? HMER, QMIBY 2T
FREEEEAREDL S
- AehshaL ALl ot
STy AR 8 3}
‘ATt o 9ol st
PELEE AR

1. 11 =2

2 o] = ZAojk 5
N%NMVMHQ%N*Q %7PJM%41342%%%%ﬂ%@n%2%aﬂ%q”ﬂaﬂﬂi
& AF714719) FEAA B0 BI A A7 WA Az T wE gt o] ol A 1Y
oh1 olo] B Ato| i 72| BrhEA] GFdE AIAE nHd FFAEA HAYS BrpstuAl Fi

=

A7) st A 85 o7& 7H571Ql CLINAC-iX(VARIAN, USA)S th4o= BF3 Bl A4
(FLUKE, USA)& o]gsto] A 2d W A=th(A), 224 ZAE(B), vz J7HO), A= F(D) A A]
T2 AFES A3t ZAZR AL 10MV ZAA-ES 0]8-51H, Gantry angle2 0%, ZAPH 9= 40X40cr,
HFEE 600MUMminO.2 Sheh, T3k A4 ahol] e AFRS Bohsh] S1814, 2 A48 B4 244 £2
FRE 802710 BFAA MRS ZHV, ofu] FEAA HFE S AXAL /AL Yonw g
< 7153y 1 A 2AF FREYH ) 5027HR] FEAA AFEC] SA I
e
Nzo] ATER QR M MY BEYA AL TARAG) HE FFAAFE ST T
22 GBSk S ARl T2 aRE ol 3 BANAL A7H Aol %
B AR Aol A= A MRS eshA] Stk oo & AFtellA AIZHA TidE A8 S
shid stk shu B RE Al ol AREe Rt olzg HFstele 27 A6l dA
o, olof wE ofqA] AAL] oA Yl o] oo AlRtS 7HAA "k =R A2 Fhx 9 X
of Holh Qov, AsE ZHol oS EL AZ|el WS Tefsh Eajoh

w

YEG AT BEAA WAL AP AP Agstel Bk Aukh Al 5027 BEAA M

£ gl ZREgIth ol 712 A% AToNN A7 AW A 8ste] 27 AT AAElo Ao} & WS

A ek EE A R SOl B 9 PRI A4 olA AR AITEe] Aol el nhe
Sgash 9 %o] MAISIRE, /b A%A 28 9 AFAZE Aol Bag Aol

5. Xk 28]
[1] Ahn, Yong Chan. “Introduction of intensity modulated radiation therapy.” Journal of the Korean Medical

- 170 -



Association/Tachan Uisa Hyophoe Chi 54.11 (2011).

[2] NCRP, “Neutron Contamination from Medical Electron Accelerators”, National Council on Radiation
Protection and Measurements, NCRP Report No. 79 (1984).

[3] H. Ing, W. R. Nelson, R. A. Shore, “Unwanted photon and neutron radiation resulting from collimated
photon beams interacting with the body of radiotherapy patients”, Med. Phys., 9, 27-33 (1982).

[4] R. Nath, E. R. Epp, J. S. Langhlin, W. P. Swanson, V. P. Bond, “Neutrons from high-energy X-ray medical
accelerators : Anestimate of risk to the radiotherapy patient”, Med. Phys., 11, 231-241 (1984).

[5] S. Agosteo, A. Froglio Para, F. Gerardi, M. Silari, A. Torresin, G. Tosi, “Photoneutron dose in soft tissue
phantoms irradiated by 25 MV X-rays”, Phys. Med. Biol., 38, 1509-1528 (1993).

[6] Jao-Perng Lin, Tieh-Chi Chu, Sung-Yen Lin, Mu-Tai Liu, “The measurement of photoneutrons in the
vicinity of a Siemens Primus linear accelerator”, Appli. Radiat. Isotop., 55, 315-321 (2001).

[7] Francesco D'Errico, Ravinder Nath, Giovanni Silvano, Luigi Tana, “In vivo neutron dosimetry during
high-energy bremsstrahlung radiotherapy”, Radiat. Oncol. Biol. Phys., 41(5), 1185-1192 (1998).

[8] Eric J. Hall, Stewart G. Martin, Howard Amols, Tom K. Hei, “Photoneutrons from medical linear
accelerators-Radiobiological measurements and risk estimates”, Radiat. Oncol. Biol. Phys., 33(1), 225-230
(1995).

[9] M. Sohrabi, A. Mostofizadeh, “Measurement of photoneutron does in and out of high-energy X-ray beam
of a SATURNE-20 medical linear accelerator by ECE polycarbonate detectors”, Radiat. Measurem., 31,
479-482 (1999).

[10] Mala Das, T. Sawamura, M. Kitaichi, S. Sawamura, “Application of superheated emulsion in neutron
spectrometry at 45 MeV electron linac”, Nuc. Inst. Metho. Phys. Resear., A 517, 34-41 (2004).

- 171 -



=xS-VI-5

SAFSH ZBH EFT2A MRI AR X178 B0l [MET1
O[AA[ZI2] XtO|Of Bt 1A

.M &
e wER YMEgol Brust o £ 299 oRA|Y ] T T1 olgkAlzte] Holg 8
sk gk

2. NEwHL A
21718 A3 Aol AMaHE A4 A %A D(O.5SmmolimL)e} G(1.0mmolmL)E 22 Wt g A 4=e} 5]
A3t Immol/L, 0.5mmol/L, 0.25mmol/L, 0.125mmol/L 2] 3]A]-g-ofl "l L4231 HF AT R o]|F 0|2 SHE
o] WYL A&ste] ARSI o, 9F27]4 1.5T(SIGNA HDxt, GE)¢} 3.0T(SIGNA HDxt, GE)o] tha}o]
Inversion Time= 150ms, 300ms, 700ms, 1100ms, 2500ms= AAJ3}31 Z} WEHL scanning$ Tl mapping
(MRmap, v.1 402 4 §3 % BAjslo] 9RA7]g Fwe} Ao Bimo] uhg TI o]ghAHe 274
shi 1 Aol robmgleh

% 5o 294 BE Immoll HEe] WEE 1STHC} 30ToIA o B2 TI o|ghA7HS By o, o]2
Alole the E WEOAL 15TR 30Tel4 Tiolghilzko] 71 4TS Weleh 848 Fedn 2479
A EEEo] whE Tl o]¢hAIZEE] Zol= LSTOIA F23k Zho] 7} gllem(p 0.072) 3.0To A= ol & H A
Hp 0.0071).

SF SER 5|45 WA 15THT} 30TolA] T1 olghiizte] § Zojxli Aol 5
SER 54 WHoldE A48E YA 90 BeEo] WE TI o|gA7He] ol L5TolAE H9
o)Az go] & 30TOlA Folg Aolg weT.

oft

Q4 o= AAl A ofe] TR AR 2IAS
o} oA gl whel T1 o] ghAizke] Wstel Xjol7h WAstR o]
o AT & 5 QoBE, B oRA/IF] MR HH|E Ageks 45 Bl GAS giste] 2
2ymo] 29A| Ado] Fasthn ARgC,

A FE B43te] AT ekE £AA 9 1
Be R AT S A8

ot o

- 172 -



a1
1
International Symposium on Magnetism and
Magnetic Materials 2016







Invited O-III-1

Development of SmayFe;;N; Sintered Magnets

Kenta Takagi', Rikio Soda, Wataru Yamaguchi and Kimihiro Ozaki
Magnetic Powder Metallurgy Research Center, National Institute of Advanced Industrial Science and Technology,
Anagahora, Shimoshidami, Moriyama, Nagoya, Japan
E-mail: k-takagi@aist.go.jp

Sm,Fe ;N3 alloy has the potential to exhibit higher (BH)m.x than Nd,Fe;sB magnets under hot environments
such as driving motors of electric vehicles. However, it has been hampered by difficulty of producing sintered
magnets. The primary reason of this difficulty is a drastic degradation of coercivity during sintering. We recently
proposed that this coercivity degradation occurs due to the existence of surface oxide film of powder. Therefore,
this study constructed a low-oxygen process capable of producing SmyFe 7N; sintered magnets while avoiding the
oxidation of particle surfaces. As a result, the sintered magnets produced under the low-oxygen environment
successfully maintained the original coercivity of raw powder. In addition, it was proven that the coercivity was
gradually decreased as the oxygen content was increased. In conclusion, this study demonstrated that SmyFe;7N3

sintered magnets can be realized by avoiding surface oxidation of powder.
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Thermal and Electrical Controls of
Magnetization Reversal in FeRh films

Dorj Odkhuu’
Department of Physics, Incheon National University, Incheon 22012, Republic of Korea

Phenomena originating from spin-orbit interaction such as magnetic anisotropy, Rashba-type interactions, or
topological insulators have drawn huge attention for its intriguing physics as well as advences in practical
applications. In particular, it seems that modern spintronics relies on perpendicular magnetic anisotropy (PMA)
and its switching in an antiferromagnetic material. In this talk, I will present results of first-principles calculations
on viable routes, by means of thermal and electric fields, that can lead to the large but also switchable PMA
in FeRh films on MgO and BaTiO;.
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Cation redistribution of piezoelectric ferromagnetic
GagsFer1.403 (010) films by Co-doping

MG, ASEH, 2 M35, zay’

'Pohang Accelerator Laboratory, Pohang University of Science and Technology
*Department of Physics, Pohang University of Science and Technology
*Max Planck POSTECH Center for Complex Phase Materials, POSTECH
*Department of Physics, Ewha Womans University,

We have studied how Ga and Fe atoms distribute in the four different cation sites of GFO films by measuring
X-ray absorption spectra and X-ray magnetic circular dichroism spectra and comparing them with theoretical
models. The spectra were taken at Fe L;, and Co L;, edges of the Gage¢Fe 403 and 1.2 % Co-doped Gag¢Fe; 403
films. The X-ray absorption spectra on Co L;, edges reveal that doped Co-ions favor Oy sites. The X-ray
magnetic circular dichroism spectra on Fe L3, edges before and after Co-doping are different by far and they
show that the Td site occupation of Fe ions increases considerably after Co-doping, which implicates that the
Co-doping leads to the overall redistribution of the cation atoms. The Fe occupation ratio of T4 and Oy sites are
estimated by fitting the X-ray magnetic circular dichroism spectra with a cluster calculation. Finally the cation
distribution of these films were obtained by implementing Gilleo’s classical model which considers the presence
of magnetically dead sites. We found that the cation atoms redistribute entirely after small amount of Co-doping

and the total magnetization values of both films were well reproduced from the obtained distributions.
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Effects of MgO sputtering power and
thermal annealing on the perpendicular magnetic
anisotropy of Pt/Co/MgQO trilayer

Hyung Keun Gweon’, Sang Ho Lim and Seong-Rae Lee

Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea

Pt/Co/MgO is an imperative model system that requires more thorough understanding, since in-plane current
induced magnetization switching'?, chiral magnetic order’ and strong perpendicular magnetic anisotropy (PMA)”
have been demonstrated from this very brief structure. The interface contributions, arising from either Pt/Co
(bottom) or Co/MgO (top) interfaces, are known to be the critical source that bring about such anomalous
phenomena. Among these phenomena, we particularly focused on tailoring PMA, especially on the perspective
of oxdiation states and the degree of intermixing at the top Co/MgO interface. In order to manipulate the oxygen
induced PMA from the top interface (Co/MgO), we have grown Pt/Co/MgO under two different MgO sputtering
power, namely, 200 W and 50 W. When MgO sputtering power is relatively high (200 W), penetration of oxygen
atoms into the Co layer prevails. While in the opposite case (50 W), the penetration is kept to a minimum. As
a result, these two discrete samples exhibit disparate PMA properties, where each maximum value of effective
anisotropy energy density (Kei) from the two samples series (200 W, 50 W) show 1.64 x 107 erg/cm® and 1.98
x 10" erg/em’, respectively. Although it appeared that depositing oxide barrier with reduced MgO sputtering power
can remarkably improve the PMA properties, thermal annealing treatment seems inevitable to further optimize the
strength of PMA. This can be ascribed to the oxygen migration; the penetrated oxygen atoms, formed while the
oxide barrier deposition, migrate back to the oxide barrier due to thermal-assisted diffusion. This eventually leads
to interface smoothing and optimal oxidation at the interface, which are observed as improvements on PMA
properties. Figure 1(a) and (b) clearly manifest these trends where K. values gradually ascend with rising

annealing temperatures. The annealing treatments have been performed at 250°C and 300°C for 30 min at the
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Fig. 1. K. values plotted as a function of #c, for two different sputtering and annealing conditions: (a) MgO
sputtering power of 200 W and (b) 50 W at different annealing temperatures. (c) Comparison between MgO

sputtering power (200 W and 50 W) and #veo (1 nm and 2 nm) for as-deposited samples.
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base pressure of under 10° Torr. Moreover, as it has been shown in Figure 1(c), we have also monitored
increment of K.x values when #y,o are reduced to 1 nm. This is presumably due to an open structure of MgO
layer, where oxygen atoms continuously penetrate the MgO barrier and oxidize the Co layer during the deposition.
In other words, we can tentatively conclude that the degree of Co oxidation is proportional to fmgo, and it can

only be monitored specifically when #c, < 1 nm.

This research was supported by Creative Materials Discovery Program through the National Research
Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2015M3D1A1070465).
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Optical-helicity-driven magnetization dynamics in
metallic ferromagnets

Gyung-Min Choi’

Korea Institute of Science and Technology

We experimentally study magnetization dynamics of metallic ferromagnets (Co, Fe, Ni) driven by angular
momentum of light. With a thin film ferromagnet/Au or ferromagnet/oxide structure, circularly polarized light
imparts instantaneous torque on magnetization primarily into the direction of the cross product of magnetization
and the angular momentum of photons. When the ferromagnetic layer is capped with a thin layer of Pt, there
is additional torque into the direction of the angular momentum of photons. We interpret these different behaviors
in terms of inverse Faraday effect and optical spin transfer torque. Inverse Faraday effect is relatively insensitive
to the composition of the ferromagnetic material or capping layer; the coefficient that relates the optomagnetic
field to the intensity of the optical electric field is on the order of 10"® T m* V. The optical spin transfer torque

mostly comes from the Pt capping layer, which produces a spin polarization per photon of 0.03.
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Capping and strain induced modification on
magnetocrystalline anisotropy:5d transition metal/Fe/MgO

P. Taivansaikhan’, S. H. Rhim', and S. C. Hong'
Department of Physics and Energy Harvest Storage Research Center, University of Ulsan,
Ulsan 680-749, Republic of Korea
"Corresponding author e-mail: sonny@ulsan.ac.kr
"Corresponding author e-mail: schong@ulsan.ac.kr

Recently, magnetic tunnel junctions consist of transition metal capping/ferromagnetic metal/insulator
(capping/metal/insulator) have triggered an overwhelming interest because of its strong PMCA as well as huge
magnetoresistance. However, the origin of the PMCA is still poorly understood. Moreover, strain can be
considered as one factor to engineer MCA, since lattice mismatch occurs quite often. In this talk, first-principles
calculations of TM/Fe/MgO [TMs= Hf, Ta, W, Re, Os, Ir, Pt, and Au] reveal systematically that
magnetocrystalline anisotropy (MCA) is tremendously affected by the 54-TM capping as well as interfacial strain.
All TM/Fe/MgO except the W and Pt show perpendicular MCA. In particular, the cappings by Re (+3.25
meV/cell), Ir (+4.48 meV/cell) and Os (+8.52 meV/cell) enhance MCA gigantically. On the other hand, the MCA
is less affected by strain except for W and Pt. Interestingly, in W and Pt cappings, transition from in-plane to

perpendicular MCA occur at 4% compressive strain.
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Fig. 1. MCA energy of 5d TM/Fe/MgO under different strain. (a) early TMs on Fe/MgO and (b) late TMs on
Fe/MgO. Black, red, green, and blue-balls denote Hf (Os), Ta (Ir), W (Pt), and Re (Au) on Fe/MgO, respectively,
while grey-square represents Fe/MgO.
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Magnetic properties of tilted phosphorene nanoribbon
under electric field

M. Umar. Farooq’, Arqum Hashmi and Jisang Hong
Department of Physics, Pukyong National University, Busan 608-737, Korea.
Correspondence and requests for materials should be addressed to J.H. (hongj@pknu.ac.kr)

Study on phosphorene nanoribbon was mostly focused on zigzag and armchair structures and no ferromagnetic
ground state was observed in these systems. Here, we investigated the magnetic property of tilted black
phosphorene nanoribbons (TPNRs) affected by an external electric field. We also studied the edge passivation
effect on the magnetism and thermal stability of the nanoribbons. The pure TPNR displayed an edge magnetic
state, but it disappeared in the edge reconstructed TPNR due to the self-passivation. In addition, we found that
the bare TPNR was mechanically unstable because an imaginary vibration mode was obtained. However, the
imaginary vibration mode disappeared in the edge passivated TPNRs. No edge magnetism was observed in
hydrogen and fluorine passivated TPRNSs. In contrast, the oxygen passivated TPNR was more stable than the pure
TPNR and the edge-to-edge antiferromagntic (AFM) ground state was obtained. We found that the magnetic
ground state could be tuned by the electric field from antiferromagnetic (AFM) to ferromagnetic (FM) ground
state. Interestingly, the oxygen passivated TPNR displayed a half-metallic state at a proper electric field in both
FM and AFM states. This finding may provoke an intriguing issue for potential spintronics application using the
phosphorene nanoribbons.

This research was supported by Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science, ICT and future planning (2016R1A2B4006406)
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Magnetic properties of Fe metal powder coated with
alumina by the sol-gel method

Sungjoon Choi’, Sunwoo Lee, Jae-Hyoung Yoo, and Sang-Im Yoo
Department of Materials Science and Engineering, and Research Institute of Advanced Materials,

Seoul National University, Seoul 151-744, Korea

In recent years, the soft magnetic composites (SMC) have attracted great interest of many researchers because
of various potential applications for electromagnetic circuits, sensors, electromagnetic actuation devices, low
frequency filters, induction field coils, magnetic seal systems, and magnetic field shielding. It is well-known that
intolerably large high-frequency AC losses of magnetic metal powder can be effectively suppressed by their
surface with an insulation coating. As such an effort, we tried to fabricate a core-shell structure composed of
a Fe metal powder and layer of Al,O; by the sol-gel method. The conditions of Al,O; coating, such as reaction
time, were controlled in order to obtain a uniform coating layer. Furthermore, the solutions were carried out using
ultrasound treatment before alumina coating to avoid the agglomeration of Fe metal powder. To evaluate the AC
losses of SMC, the magnetic core was fabricated by mixing and pressing ALOs-coated Fe metal powder with
a resin. The analysis of the Fe metal powder coated with ALO; was carried out using field emission-scanning
electron microscope (FE-SEM), transmission electron microscope (TEM), inductance analysis, and B-H curve
analyzer. These results revealed that the Fe metal powder was uniformly coated with Al,Os, and thus AC losses

could be reduced by alumina coating.

Keywords: Eddy current, Insulation coating, Core-shell structure
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Core Loss Improvement of SiO, Coated Fe Alloy Powder

Sunwoo Lee’, Sungjoon Choi, Jae-Hyoung You, and Sang-Im Yoo
Department of Materials Science and Engineering, and Research Institute of Advanced Materials,

Seoul National University, Seoul 151-744, Korea

Fe based alloy metal powder has been used for alternative current (AC) applications such as inductors and
converters due to excellent soft magnetic property, high saturation magnetization with very low coercivity, of the
powder. However, because of high electrical conductivity of Fe powder, eddy current generation under AC
frequency is unavoidable and it becomes more serious with increasing AC frequency, leading to increased core
loss, which limits its applications in high-frequency regime. In this regard, insulation—coating on the surface of
Fe powder was utilized to block inter—particle eddy current paths so that reduces the eddy current loss. As such
an effort, SiO, coating layer on the surface of Fe alloy powder was fabricated by the sol-gel process using
ultrasonication, employing Tetraethyl orthosilicate (TEOS) as its precursor, in this study. TEOS concentration,
coating time and ultrasonication condition were controlled for an optimization of processing parameters.
Transmission electron microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDS) results revealed that
SiO, coating layer was formed core/shell structure of Fe alloy/SiO,. Magnetic properties including permeability
and core loss were measured under AC frequency using toroidal powder core samples. Even though SiO,
insulation coating decreased permeability, SiO,—coated powder samples showed much improved core loss values

due to decreased eddy current loss. Details will be presented for a discussion.

Keywords: Fe powder, SiO, coating, insulating coating, eddy current loss, core loss
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Electron beam-induced magnetism on
MoS, surface along 1T phase transition

Sang Wook Han" and S. C. Hong

Department of Physics and Energy Harvest-Storage Research Center (EHSRC),
University of Ulsan, Ulsan 44610, Korea

In this presentation, we propose a simple method to improve transport property and induce room-temperature
ferromagnetism through the optimal electron irradiation on the MoS, surface. The magnetic moments are found
to be attributed to the unpaired spins of Mo*" ions induced by exotic defects, which form a specific shape of
concentric circles on the surface region along the 2H/1T phase transition.

The natural-single crystalline MoS, samples (SPI) were snipped from a large piece and, after a several
exfoliation to take the clean surface, irradiated with different exposure times at the electron acceleration energy
(ELV-8 linear accelerators) of 0.7 MeV and 2.0 MeV, respectively, in ambient conditions at room temperature.
The area of the electron irradiation at the specific point of 400 = 50 mm was of width 600 + 20 x length 20
+ 5 mm’ with beam diameter of 25 ~ 35 mm. The stability of the beam energy and dose was less than + 5
%. The electron dose was checked by the dosimeter films.

In comparison with the diamagnetic susceptibility' of the pristine MoS,, the electron dose of 300 kGy induces
the diamagnetic to a ferromagnetic phase transition. Interestingly, along the out-of-plane (the c-axis) direction, the
diamagnetic behavior still remains for higher magnetic fields than +10 kOe. The saturated magnetizations along
the in-plane (the ab-plane) and out-of-plane directions are 0.057 emu/g (1.634x10° pg/Mo ion) and 0.030 emu/g
(8.60x10™ pp/Mo ion) at the H = 35 kOe and 1 kOe, respectively. These weak ferromagnetic states persist up
to room temperature, but the saturated magnetizations of 5 K are significantly reduced to 0.011 emu/g (0.315x107
ps/Mo ion) and 0.008 emu/g (0.229x10° pg/Mo ion) at the H = 2 kOe along the in-plane and out-of-plane
directions, respectively. The coercivities (0.2 kOe) of both directions at 5 K are also reduced to 0.1 kOe at room
temperature. On the other hand, the higher electron dose of 600 kGy induces the diamagnetic to a paramagnetic
phase transition along the in-plane direction while the out-of-plane direction still remains diamagnetic.

The electron irradiation with the electron dose of 300 kGy (6.70 x 10' electrons/cm?) and the acceleration
energy of 0.7 MeV creates the 1T-phase-like (Vs;) and 1T-3Vs defects on the MoS, surface. These defects reduce
the bandgap and improve the transport property. The undulating magnetic domains of the MFM image due to
weak ferromagnetic state are considerably related to the 1T-3Vs defects. This optimal electron irradiation to
improve the magnetic and transport properties at the atomic-layer scale is a key step for the successful integration

of 2D TMDs into possible device applications.
Reference
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110, 247201 (2013).
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Current driven nanosecond skyrmion dynamics
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"Department of Physics, University of California, Santa Cruz, California 94056, USA
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Magnetic skyrmions are topologically-protected small cylindrical swirling spin structures with fascinating
physical properties. Its predicted small size, high mobility, and small current required to displace suggests that
magnetic skyrmions are suitable for high-density and low-power spintronics device applications. Magnetic
skyrmions can be stabilized in materials with strong spin-orbit coupling and large Dzyaloshinskii-Moriya
interaction (DMI). Recent studies have shown the creation of chiral magnetic skyrmion at room temperature in
metallic thin film heterostructures [1-3] and their static motion on nanotracks [4]. However, the experimental
observation of ultrafast dynamics of the chiral texture in real space has so far remained elusive due to the
difficulty of experimentally obtaining nanosecond time resolution and sub-100nm spatial resolution simultaneously.

In this work, nanosecond-dynamics of a 100 nm-size magnetic skyrmions driven by current-induced spin-orbit
torque is revealed. By using a time-resolved pump-probe soft X-ray imaging technique, the skyrmion dynamics
during a current pulse application is measured. By changing the magnitude of the current pulse, the dynamic states
of magnetic skyrmions, such as the breathing mode or the translational mode, can be reliably tuned. This shows
that the dynamics of magnetic skyrmions can be controlled by the applied current density. We believe these

observations open the door to versatile and novel skyrmionic applications.

References
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Magnetotransport and Seebeck coefficient of epitaxial
FeGe film grown on GaAs(100)

Anh Tuan Duong”’, Yooleemi Shin?, Van Thiet Duong® Van Quang Nguyen?, and Sunglae Cho?

!Center for Nano sciences and Technology, Hanoi University of Education, Hanoi, Vietnam
*Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan,
Ulsan 680-749, Republic of Korea
3School of Engineering Physics, Ha Noi University of Science and Technology, Hanoi, Viet Nam

Skyrmions are small magnetic vortices, which was firstly discovered in manganese silicide thin film. FeGe
thin film is one of magnetic materials with skyrmion state. [1, 2] Skyrmions could form the basis of future
hard-disk technologies because they might be made much smaller to create storage devices, resulting in much
higher density than the disks using magnetic domains. [3] Here we report the magnetism and anomalous Hall
effect of FeGe epitaxy thin film grown on GaAs (100) substrate by molecular beam epitaxy (MBE). A hexagonal
structure of FeGe thin film was confirmed by XRD pattern. Metallic behavior of film was confirmed by
temperature dependence of resistivity. Ferromagnetic ordering was observed in temperature range from 20 to 400
K. Magnetic moments at 20 K and room temperature are 0.76 mg/Fe and 0.71 mg/Fe. The anomalous Hall effect

(AHE) originating from asymmetric scattering in the presence of magnetization was observed.

References
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