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X-ray Resonant Magnetic Scattering Study of Magnetic
Proximity Effect in Pd/Co/Pd and P1/Co/Pt Trilayers

Dong Ryeol Lee"’, Dong-Ok Kim', llwan Seo’, Yongseong Choi?, Jun Woo Choi®

'Department of Physics, Soongsil University
*Advanced Photon Source, Argonne National Laboratory, USA
3Center for Spintronics, Korea Institute of Science and Technology

We present an element and depth resolved x-ray resonant magnetic scattering(XRMS) study of the magnetic
proximity effect in nonmagnetic/ferromagnetic/nonmagnetic (NM/FM/NM) trilayers. In specific, the top and
bottom Pd(Pt) moments in Pd/Co/Pd and Pt/Co/Pt thin films, which is the archetypical film structure in
spin-orbitronic devices, have been measured with x-ray magnetic circular dichroism (XMCD) and x-ray resonant
magnetic reflectivity (XRMR) at the Pd L3 (3.174 keV) and Pt L3 (11.56 keV) edges. We found form a
quantitative analysis of XRMS curves that the induced Pd(Pt) magnetic moments at the top Co/Pd(Pt) interface
are significantly larger than the Pd(Pt) moments at the bottom Pd(Pt)/Co interface.[1] Since interfacial spin
transport properties in the NM/FM/NM structure are known to be largely affected by the magnetic proximity
effect, such asymmetry in magnetic proximity effects could be important for understanding spin transport

characteristics in FM/NM systems and its potential application to spin devices.

Reference
[1] Dong-Ok Kim et. al., Scientific Report 6, 25391 (2016).
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[1T A. Hubert and R. Schifer, Magnetic Domains. (Springer, Berlin, 1999)
[2] F. Cheynis et al., Phys. Rev. Lett. 102, 107201 (2009)
[3] A. Masseboeuf et al., Phys. Rev. Lett. 104, 127204 (2010)
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Investigation of micro-magnetic structures by using
scanning transmission X-ray microscopy

Wondong Kim"#
'Center for Nanometrology, Division of Industrial Measurement, KRISS
*University of Science and Technology

X-ray magnetic circular or linear dichroism(XMCD/XMLD) has been the representative magnetic measurement
technique utilizing synchrotron radiation for last three decades due to its element specific magnetic sensitivity.
Recently, the traditional simple XMCD/XMLD measurement technique is evolved into more advanced techniques
with additional functionality. Scaning transmission x-ray microscopy(STXM) is recently emerging as a powerful
advanced technique to investigate various mangetic phenomena such as heavy metal/ferromagnetic metal bi-layer
system and magnetic two-dimensional materials due to its nanoscale spatial resolution combined with element
specific magnetic sensitivity based on XMCD and XMLD. By using STXM, we successfully measured the
microscopic magnetic domain structure of Co/Pt bilayer systems. By applying external magnetic field in
out-of-plane direction, we observed the evolution of magnetic domain from maze-type structure to skyrmion—like
bubble structures. We also investigated the changes of thess bubble domain structures under the influence of
in-plane external magnetic field to identify the character of domain-wall of bubble type magnetic domain. In case
of locally oxidized graphene layers where the ferromagnetic order was observed with magnetic force microscopy,

we identified the origin of ferromagnetism based on element specific measurement with STXM.
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Direct domain structure observation depending on
relative ratio of metal (FM) and metal-oxide (AFM) in
mixture phase film

Min-Seung Jung"’, Mi-Young Im?® and Jung-Il Hong"%"
'Department of Emerging Materials Science, DGIST, Daegu 42988, Korea
Research Center for Emerging Materials, DGIST, Daegu 42988, Korea
3Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Strong interface coupling at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) can cause
anomalous spin configuration leading to unexpected magnetic properties. In terms of film structure, nanomixtured
multi-phase film consisting of nanograins of magnetic heterophases may show advantages when compared with
conventional bi- or multi-layer films. In other words, when FM and AFM phases are mixed to form
nanocomposite structure with grain boundaries distributed randomly in the film, the interface density increases
significantly compared with the flat interfaces between layers in the bi- or multi-layer structure film and the
interface property can be regarded as the representative property of the nanocomposite structure.

In the present study, we fabricated two-phase nanomixture film with various relative ratios of FM and AFM
phases by reactive sputtering. Coexistence of nano-crystalline FM and AFM phases in the film was confirmed
by XRD and TEM characterizations. We report interesting results that are thought to be from the internal interface
structures of film through magnetic property measurement. The shape anisotropy is reduced as the degree of
oxidation in the nanomixture film increases. When the degree of oxidation in the film is approximately 50%, the
shape anisotropy of the FM film is almost suppressed and exchange bias effect can be set in both in-plane and
out-of-plane directions. In addition to magnetic properties measured by M-H loops, magnetic domain structures
of the patterned film were directly observed using a soft x-ray full-field microscope (XM) in Lawrence Berkeley
National Laboratory (LBNL). Magnetic domains in the nanomixture film showed multi-domain structure unlike
the Landau patterns in the pure metal films. We further confirmed distinctly different trend of domain structure

changes depending on degree of oxidation of films through statistical analyses using 40 patterns.
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Fig. 1. Hysteresis loops of metal and metal-oxide mixture

films measured along in-plane and out-of-plane directions.
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in the array of squre patterns of various sizes and degree of oxidations.

To sum up, in the AFM and FM phase nanomixture film, nano-grains are mixed and entangled that
enormously high density of grain boundary forms to effectively block the dipole interactions between FM grains.
Therefore, shape anisotropy is ignorably small and exchange bias effect can be set in random direction with regard

to the film geometry due to the randomly oriented internal interfaces.
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Exploring Quantum Emergent Properties using Resonant
Inelastic X-ray Scattering

Seo Hyoung Chang'’, Myung Joon Han?, Jungho Kim?
'Department of Physics, Chung-Ang University, Seoul 06974, Korea
*Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
?Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
“cshyoung@cau.ac.kr

Exploring quantum emergent properties of correlated systems will overcome the conventional trial-error
approach. Recently, some researchers suggested an innovative way to search for the properties via controlling
‘spin-orbit coupling’ rather than the conventional physical picture (charge-spin-lattice). However, understanding of
the new picture is yet incomplete due to experimental limitations.

In this project, we propose a new experimental approach based on resonant inelastic x-ray scattering (RIXS)
and strong spin-orbit coupling systems. Specifically, we will demonstrate new quantum emergent properties (jes
system) of lacunar spinel (GaTas;Ses), which is a newly proposed material in theory.

Our project offers a creative and unique approach based on the realization of theoretically-proposed model
systems combined with an advanced hard x-ray RIXS. RIXS is a powerful tool to unveil the detailed mechanisms
and to detect elementary excitations related to spin-orbit coupling. Furthermore, we will present in situ RIXS
combined with high pressure and electric field, which can generate new phases and quantum emergent physical

properties.
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In-situ X-ray diffraction on switchable low energy
geometric multiferroic single crystal

Yoon Seok Oh"?* Rongwei Hu?*, Young Hoon Jeong*,
Fei-Ting Huang?®® and Sang-Wook Cheong?®*
'Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
*Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ 08854, USA
Department of Physics & Astronomy, Rutgers University, Piscataway, NJ 08854, USA
*Laboratory for Pohang Emergent Materials, Pohang University of Science and Technology, Pohang 790-784, Korea

Geometric ferroelectrics are called as improper ferroelectrics where geometric structural constraints, rather than
typical cation-anion pairing, induce proper ferroelectric polarization. Among the geometric structural distortion,
trimerization of MnOS5 bipyramids in hexagonal manganites induces most intriguing multiferroicity such as
topological vortex-antivortex, angle dependent conducting domain walls, enhanced magnetoelectric coupling at
domain walls, etc. The ferroelectric transition induced by incorporation of trimerization and ferroelectricity in
hexagonal RMnO3 (R=Ho, Er, Yb, Lu, Y) occurs at very high temperature 1120 - 1435 C. Because of the high
transition temperature, it has been unavailable to study thermodynamic behavior of trimerization and polarization.
Here, we present in-situ x-ray diffraction in structural and polarization evolution near the transition temperature
of the improper ferroelectric in order to clearly understand the fundamental thermodynamics of improper

ferroelectric correlated with trimerization and polarization.
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Current induced skyrmion dynamics observed by
transmission x-ray microscopy

Jun Woo Choi"", Seonghoon Woo', Kyung Mee Song'?

'Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea
*Department of Physics, Sookmyung Women’s University, Seoul 04130, Korea

Current induced chiral magnetic skyrmion motion was studied using x-ray magnetic circular dichroism based
time-resolved transmission x-ray microscopy. Real-time skyrmion dynamics was measured while nanosecond
current pulses were applied. In ferromagnetic Pt/CoFeB/MgO multilayers, we first show that skyrmions can be
generated by a bipolar current pulse. The so made skyrmions could be moved along a magnetic strip at velocities
up to ~10m/s with current pulses of amplitude ~1.5%x10A/m”. It is also found that distinct dynamic behavior of
magnetic skyrmions, such as a breathing-like motion or a translational motion, appear and can be reliably tuned
depending on the magnitude of the current pulse. We also show the first ever experimental observation of
antiferromagnetically coupled skyrmions stabilized in ferrimagnetic GdFeCo multilayers. Similar to ferromagnetic
skyrmions, the ferrimagnetic skyrmions could also be translated along a magnetic strip with electrical current.
More importantly, the ferrimagnetic skyrmions show a much smaller skyrmion Hall effect, which indicates that

ferrimagnetic skyrmions might be better suited for skyrmion based device applications.
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. J. Nelson, et al., “Microrobots for Minimally Invasive Medicine”, Annual Review of Biomedical
Engineering, Vol. 12, pp. 55-85, 2010.

[2] S. Tottori, et al., “Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo
Transport”, Advanced Materials, Vol. 24, No. 6, pp. 811-816, 2012.

[3] S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon, L. Zhang, B. Nelson, and H. Choi Advanced Materials,
Vol. 25, Issue 41, pp 58635868, Nov. 2013.
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High Resolution Magnetic Nano-Particle Analyzer

The most important issue for magnetic materials is an understanding of the magnetic and physical properties
of a nanometer-sized particle because the use of magnetic nanoparticles (MNPs) in many applications depends
predominantly on their inherent magnetic properties. In the case of biomedical applications, the forces that
influence the translational, rotational, and vibrational motion of a MNP- tagged biomolecule are the magnetic
force due to the magnetization of an individual MNP and the external magnetic field under a given condition.
Popular magnetic biosensing platforms such as giant magneto-resistance (GMR) sensors, Hall sensors, and
magneto-optical sensors that are used to quantitatively analyze the existence of target molecules are based on the
detection of a stray field from a single MNP . Furthermore, structural assemblies of MNPs form various recording
media and permanent magnets.

Recently, there have been many attempts to quantitatively analyze a biomolecule by magnetically manipulating
the motion of magnetic beads in a microfluidic system because magnetic interactions are generally not affected
by changes in the surface charges, pH, or ionic concentration of the surrounding medium, contrary to electrical-
driven manipulation.

To precisely manipulate the motion, we should know the characteristics of the MNP, e.g., the size, charge
state, and magnetism. There are well-established techniques for investigating the physical and electrical properties
of a nanoparticle. For instance, the size and surface charge state of a nanoparticle can be routinely characterized
by dynamic light scattering (DLS) and zeta-potentiometry, respectively. These methods can provide information
on the distributions and the average values of the size and charge number of each particle. Magnetic
characteristics have been usually determined by a superconducting quantum interference device (SQUID) and by
a vibrating sample magnetometer (VSM). Unlike DLS and zeta-potentiometry, these techniques, although they
have excellent sensitivities, are limited to the average properties of a large number of MNPs. To the best of our
knowledge, the resultant data from these techniques do not provide sufficient information on the magnetism of
a MNP, which may be considered as a critical bottleneck in facilitating the use of MNPs in various industrial
applications. Therefore, the need to characterize a single MNP has been increasingly recognized.

In this work, we investigate the motion of MNPs, 30 nm in diameter, that are driven by both magnetic and
electric forces in a nanopore membrane. In this investigation, we measured the velocity of the MNPs passing
through the nanopore using an ionic current blockade. We found that the magnetic force enables the MNPs to
move more rapidly and that the velocity is linearly proportional to the magnetization of a MNP. Thus, we were
able to measure the magnetization of a single colloidal MNP and to acquire hundreds of data points on the

magnetization within a few minutes.
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Spintronics Devices for Bio-medical Applications

Byeonghwa Lim, Xinghao Hu, Sri Ramulu Torati, Kun Woo Kim,
Jonghwan Yoon and Cheol Gi Kim’
Department of Emerging Materials Science, DGIST, South Korea

The manipulation and monitoring of cells has gaining more importants towards gene sequencing, single cell
analysis and cell separation technology. Although, several single cell techniques are exit, there is still challenging
and complex to collect rare cells and their digital manipulation in large-scale operation. Recently, the flexibility
of magnetic transport technology using nano/micro scale magnets for the magnetophoresis has experienced
excellent advances and has been used for a wide variety of single cells manipulation tasks. The magnetic transport
technology, which can be integrated within microfluidic channels, relies on both magnetic energy and force
tunability and remote control implemented by micro-and nano-patterned magnetic structures. Here, we have
demonstrated a class of integrated magnetic track circuits for executing sequential and parallel, timed operations
on an ensemble of single particles and cells. The magnetic circuitry tracks are designed by conventional lift-off
technology and were used for the passive control of cells/particles similar concept to electrical conductor, diodes
and capacitor. When the magnetic tracks are combined into arrays and driven by rotating magnetic field, the single
cells are precisely control for multiplexed analysis. The concentric cell transportation and separation were
performed by the assembly of this magnetic track into a novel architecture, resembled with spider web network
consisted of several radii and spirals, where all the particles/cells are concentrated into one position and then
transported to apartments array for the single cell analysis (Fig. 1). In addition, a planar Hall resistance (PHR)
sensor is integrated with the web networks, and the manipulation and detection are achieved via
superparamagnetic particles with dual functions as a biomolecule carrier for transportation and labels for
monitoring (Fig. 2). This allows the efficient collection of low-density biomolecule carriers to one specific point

and monitors the accumulated carriers.

Converging

S(-nml'Q
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Fig. 1. Collection of bio-agents using the magnetic spider web.
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An On-chip Micromagnet Frictionometer Based on
Magnetically Driven Colloids for Nano-Bio Interfaces

Sandhya Rani Goudu’, Xinghao Hu, Sri Ramulu Torati,
Byeonghwa Lim, Kunwoo Kim and Cheol Gi Kim
Department of Emerging Materials Science, DGIST, Daegu, 711-873, Republic of Korea

A novel method based on remotely controlled magnetic forces of bio-functionalized superparamagnetic colloids
using micromagnet arrays was devised to measure frictional force at the sub-picoNewton (pN) scale for
bio-nano-/micro-electromechanical system (bio-NEMS/MEMS) interfaces in liquid. The circumferential motion of
the colloids with phase-locked angles around the periphery of the micromagnets under an in-plane rotating
magnetic field was governed by a balance between tangential magnetic force and drag force, which consists of
viscous and frictional forces. A model correlating the phase-locked angles of the steady colloid rotation was
formulated and validated by measuring the angles under controlled magnetic forces. Hence, the frictional forces
on the streptavidin/Teflon interface between the colloids and the micromagnet arrays were obtained using the
magnetic forces at the phase-locked angles. The friction coefficient for the streptavidin/Teflon interface was
estimated to be approximately 0.036 regardless of both vertical force in the range of a few hundred pN and

velocity in the range of a few tenths of pum s-1.

- 33 -



O-1-2

Magnetism in Rutile-Type Oxides

Purev Taivansaikhan and Dorj Odkhuu’
Department of Physics, Incheon National University, Incheon 22012, Republic of Korea

While rutile-type transition metal oxides (TMO,) have been widely used in a variety of important applications
such as an active catalyst, supercapacitors, batteries, and fuel cells, an existence of intrinsic magnetism in RuO,
has recently drawn much attention in spintronics. In this talk, we will present results of our first-principles density
functional theory plus U (DFT+U) calculations on magnetism and magnetic anisotropy energies (MAE) of RuO,
and OsO,. These oxides are identified to favor an antiferromagnetic phase, which is a result of mutual
mechanisms of Kramer-Anderson superexchange interaction and Jahn-Teller effects. More remarkably, we found
very large MAE up to an order of 10 meV per transition metal atom in bulk, which are four orders of magnitude
greater than those of the conventional transition metals. This anisotropic phenomenon further exhibits a

persistently increasing dependence of film thickness, which is very uncommon in thin film materials.
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2D Semiconductor, Transition Metal Dichalcogenides
Growth and Its Applications

Yong Soo Kim", Chinh Tam Le', Farman Ullah', Joon. I. Jang?

'Department of Physics and Energy Harvest Storage Research Center (EHSRC),
University of Ulsan, Ulsan 44610, South Korea
*Department of Physics, Sogang University, Seoul 04107, South Korea

Graphene, a single atomic layer of carbon atoms, has attracted grated attention because of its novel physical
properties and potential for electro-optical technology. Recently this interest has expanded to the wide class of
two-dimensional materials that occur naturally as 2D layers of van-der-Waals crystals. While preserving graphene’s
flexibility and tenability by external perturbations, atomically thin layers of this broader set of materials provide
access to more varied electronic and optical properties, including semiconductor and insulating behavior.

In first part of this presentation, we will discuss some distinctive properties and large area continuous growth
of atomically thin 2D semiconductor, especially transition metal dichalcogenide (MX, where M=Mo,W and X=Se,
S)[1-3]. We also demonstrates monolayer Mo(S,Se), is next generation nonlinear optical material for its strong
optical nonlinear properties with second harmonic generation characteristics[4-7].

In second part of this talk, we will demonstrate the in-plane heterostructure (HS) of monolayer MX2,
especially MoSe2 and WSe2. From synthetic prospective, unlike vertical HS, the lateral HS can only be created
by direct growth method. Here, we present the growth of three-atom-thick lateral HS consisting of MoSe, and
WSe, monolayers by a pulsed-laser-deposition-assisted (PLD-assisted) selenization method.[2] The monolayer
lateral HS flakes (size: ~15 mm to ~40 mm) were obtained by controlling the growth temperature profile. The
sharp interface of the grown monolayer lateral HS was verified by morphological and optical characterizations.
Interestingly, the photoluminescence spectra acquired from the interface showed clear signatures of pristine MoSe;
and WSe, with no intermediate energy peak related to the formation of the Mo,W,..Se, alloy or excitonic matter

across the HS, thereby confirming the sharp interface.
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Our work is focused to the study of magnetization reversal processes in synthetic antiferromagnets based on
two perpendicularly magnetized CoFeB layers of different widths separated by non-magnetic Ta interlayer.
Magnetic hysteresis loops at three temperatures corresponding to three different modes of magnetization switching
are presented in the fig.1. The full map (7-H phase diagram) of the different states and switching between them
for studied system is shown in the fig.2. The sequence of magnetization reversals of the magnetic layers in this
trilayer structure is temperature dependent. In high-temperature mode (150 — 300 K) magnetization reversals are
governed by dipole-dipole interaction magnetic layers [1]. Three transitions were resolved: magnetization flop of
thin layer magnetization (M, — M, transition) at H = 200 Oe, flip-flop transition of thick and thin layers, both,
at H = + Hc (M, — M; transition), and flop transition of thin layer at H = - 200 Oe (M5 — M, transition).

a) 2
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= H w 0
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= s \ 2 )
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Fig. 1. Magnetic hysteresis loops at 300 K (a), 100 K (b) and 2 K (c).

Long and short arrows correspond to thick and thin layers magnetizations, respectively.

In low temperature mode (2 — 80 K) exchange interlayer coupling dominates dipole-dipole interaction between
magnetic [2] layers and the sequence of magnetization switching is governed by magnetic anisotropy of the layers.
The sequence contains only two transitions correspondent to independent flop transitions of the thin and thick
layers. At the intermediate (80 — 150 K) temperature range the hysteresis loop is most complicated. Competition
between dipole-dipole interaction, interlayer exchange coupling and anisotropy of the layers results in the shift

of magnetization states M, and M5 and results in a butterfly shape of the hysteresis loop.
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Fig. 2. Phase diagram of different magnetization states existence in the CoFeB/Ta/CoFeB trilayer

in H-T space. Denotations M;, M, etc correspond to areas of existence of a single possible state independently
on thermal and magnetic prehistory, the denotations M; or M,; M,, Ms, M4 etc correspondent to possibility to

observe several different states dependently on thermal and magnetic prehistory.

This work was supported by the DGIST R&D Program of the Ministry of Science, ICT and Future Planning
(17-BT-02) and Ministry of Education and Science of the Russian Federation (grant 3.1992.2017/PCh).
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1. Introduction

The perovskite oxide SrRuO; (SRO) has been in the light of many researchers due to its strong correlated
properties with other materials and its metallicity. Much fundamental research focused on the growth of single
crystalline SRO epitaxial thin film on SrTiO3(001) substrates to study the under line behavior in both physical
as well as magnetic properties[1,2]. In contrast, more fascinating properties were observed in thin film form than
the bulk sample like thickness dependent metal to insulator transition, antiferromagnetism in ultra-thin films, spin
glass behavior and spin transitions[3-5]. As we know SRO is aferromagnetic metallic material whose
ferromagnetism originates from a narrow #,, band. The band width can be drastically changed doping at Bsites
which might give some interesting physical as well as magnetic properties. Different 3d elements were introduced
at B sites of SRO and their physical properties were examined. Li Pi ez. al. studied transport as well as magnetic
properties of doped SRO [6]. They showed that, doping Zn*", Ni*', Co*", Cr*’, and Mn’" into Ru sites might
help to know the lattice distortion, variation in ferromagnetic 7¢, metal to insulator transition and other intriguing
properties. In our previous repot we had shown that, doping Fe into Ru site significantly changes the
ferromagnetic T¢ as well as resistivity of the thin film.[7]. In thisr eport, we studied the doping effect of Fe on

Structural, magnetic and transport behavior of SrRug;Fe(30; epitaxial thin film.

2. Experimental

Fe doped SRO polycrystalline target was prepared by conventional method. The target was put inside the high
vacuum chamber for laser ablation. Fe doped SRO epitaxial thin film was grown on SrTiO3(001) substrates by
KrF excimer laser. The substrate temperature was maintained at 750°C. The oxygen partial pressure was kept
around 175 mTorr. The thickness of the as deposited thin film was measured by using Field emission scanning
electron microscope (FESEM) and was found to be 60nm. Crystal structure and surface morphology of the thin
film was characterized by X-ray diffraction (XRD) and atomic force microscope (AFM). The magnetic property
of the thin film was measured by superconducting quantum interface device-vibrating sample magnetometer
(SQUID-VSM). Hall bar pattern was made on the thin film by photolithography technique in order to measure
the magneto-transport behavior.The resistivity and magnetoresistance measurement was carried out using a cryogen
free cryostat (7 = 2-300 K, Field sweep, H = -9 T to +9 T) (CMag Vari9, Cryomagnetics Inc.) with a dual

channel source-measure unit (Keithley 2612A Standard Measurement Unit).

3. Results and Discussion
High resolution X-ray diffraction (HRXRD) studies showed that the as deposited thin film showed excellent
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c axis orientation. As reported previously, we had stabilized the single crystalline by using epitaxial strain without
co-doping at Sr site [7]. The calculated lattice constant of the thin film was found to be 3.955 A. The reciprocal
space mapping showed the coherently growth of thin film with that of STO substrate [8]. Excellent step in terrace
observed from the atomic force microscope measurement. The surface roughness of the thin film was as low as
0.24nm. We have shown that by doping higher concentration of Fe at Ru site, the resistivity of the thin film
can be dramatically enhanced. As reported previously, [7] we had shown that with increasing Fe doping
concentration (from x = 0.05 to 0.20), the film resistivity at low temperature (at 2 K) increased from metallic
to semiconducting state. The disorder induced by Fe doping at Ru site might be responsible for the increase of
zero filed resistivity at low temperature [9]. We had also performed field dependent resistivity study for Fe doped
(x = 0.30) SRO thin film. It can be noted that, with application of external magnetic field, the film resistance
decreased and Tmin shifts towards left side. Magnetoresistance (MR) measurement of the thin film was carried
out and a large MR (~ 20%) was observed for the thin film. The field was sweep from -9 T to +9 T. The
observed high MR in our thin film might be comes from the spin fluctuation of mobile electronic carriers. It
should be emphasized that MR of our coherently grown epitaxial thin film has much less contribution from grain
boundary compared to MR of poly-crystal. The higher value of MR in the polycrystalline sample for x = 0.30
may be attributed to the grain boundary and defects which are absent in our epitaxial thin films [10]. The
temperature dependence MR at 9 T also showed similar value of MR (~ 20%) down to 10K. The saturation of
magnetization (Ms,) value of SrRug;Fe3;0; was found to be 0.6pB/Ru.
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Asymmetrical domain wall propagation in
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1. Introduction

Domain wall (DW) propagation is one of the methods for local magnetization switching in memory and logic
device applications."” The perpendicular magnetic anisotropy (PMA) materials are being investigated for utilizing
the narrow DWs having Bloch and Neel configurations in higher density memory devices. The asymmetric film
stack comprising of the PMA material has been caused to lead interfacial Dzyaloshinkii-Moriya interaction (DMI)
wherein Néel DW configuration is favored.>® DMI stabilized Neel DW has been reported to have higher speed
as the Walker breakdown is shifted to higher external fields.>®” In addition, the DMI stabilized Neel DW
configuration have been shown to propagate via a tilting of the DW surface. A tilt DW drives a dynamical effect
of magnetization spin configuration in a bifurcated junction structure. The DW tilting leads to a field interval
between DWs to arrive at Hall bar in the individual branch. Spin configuration and effective torques acting on
the Neel DW play a decisive role in the motion of DW in the structure. Micromagnetic simulation results further
reveal that control of DW dynamics in the PMA complex network structures can be achieved by tailoring the
strength of DML

2. Experiments and Results

A thin film, multilayered Ta(5nm)/ Pt(Snm)/ [Ni (0.25nm)/ Co (0.5nm)]x4/ Co(0.5nm) with a Ta (5nm)
capping layer were deposited on Si/SiO2 substrate using sputtering deposition technique. The structure is
asymmetric with respect to the spin Hall angle of the bottom Pt and top Ta layer.¥ A 2-um-wide Y-shaped wire
structure with a Hall bar at each branches has been fabricated using a combination of electron beam lithography
and Ar ion milling techniques. Fig. 1 shows a Kerr microscopy images of the Y-shaped structure, which comprises
of an 8-um-long straight wire connected to a curved structure with an 8 pm radial curvature. The creation of
DW via injection line has been investigated with a current pulse injection method. Anomalous Hall effect (AHE)
measurements were further performed to detect the DW propagation and pinning in the structure. The effect of
DMI on the DW splitting at the junction and its configuration changes were investigated using micromagnetic
simulation. The results of micromagnetic simulation were compared with Kerr microscopy images. The measured

SOT effective fields in the Hall bar structure was evaluated to be, ~ +25 Oe at Jac =~ +5 x 10"°4/m*.
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Fig. 1. Kerr images of field induced DW motion in a PMA network structure.
(a) A DW nucleated as a current pulse was applied via the injection line.
(b) The nucleated DW propagated to the junction of the network structure.
(c) and (d) The injected DW splits into two DWs and each propagated into separated branch, B1 or B2.

3. Summary

Direct observation of the DW dynamics in a bifurcated wire reveals that the propagation is via the splitting
of DW at the junction, resulting in individual DW in each branch. The DMI induced DW tilting leads to
quasi-selective propagation through the network structure, with favored branch determined by the tilting angle of
the DW surface. This results in the DW in the individual branches having different depinning fields. Our work

shows that by tuning the DMI constant in a material, selective DW motion through a network can be achieved.
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1. Introduction

Nontrivial spin textures such as magnetic vortices [1] and skyrmions [2] have been intensively and extensively
studied. Novel spin dynamic features including the gyration, azimuthal, and radial modes of vortices in magnetic
elements [1] as well as the precession and reversal of vortex cores in nanospheres [3] and half-spheres [4] have
been identified. Another distinctive geometry is spherical shells that have been experimentally synthesized [5] and
studied on their static spin configurations using micromagnetic simulations [6]. However, the dynamic properties
of magnetic vortices in spherical shells have yet been unveiled. In this study, we report on spin dynamic features
of intrinsic eigenmodes found in spherical nano-shells, which are different from those of planar disk or square

dots.

2. Results and Discussion

Using finite-element micromagnetic numerical simulations of permalloy spherical shells with an outer diameter
of 100 nm and a shell thickness of 15 nm, we found two different magnetization states of parallel and anti-parallel
vortex-core orientations in two vortex states placed on the north and south poles. Upon relaxing the two cores
shifted from their equilibrium positions under external magnetic fields in the case of the parallel vortex cores,
translational motions of the coupled two cores on the surface of the spherical shell appear. The two cores
represent an out-of-phase motion about the static field direction with a large orbit distance and simultaneously
a relatively fast in-phase motion about the core position with a small orbit distance. Using the
Fast-Fourier-Transformations (FFTs), we found that the two vortices show two distinct eigenmodes at 80 MHz
and 1.5 GHz that represent, respectively, a precession-like motion as in nano-spheres [3] and a gyration-like
motion as in planar disks [7]. For the other case, anti-parallel vortex cores, the core motions show complex
trajectories of the two vortices. Their FFTs reveal that both cores have their intrinsic gyration frequencies
depending on the relative orientation between the core and the direction of static magnetic fields. However, there
exist irregular trajectories because the two opposite cores have the same chirality about each core. This
configuration is magnetostatically unfavorable in the simultaneous excitation of the two cores’ resonant modes.

This work provides a further understanding of dynamic-coupled motions of magnetic vortices in spherical shells.
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Reconfigurable Spin-orbit torque based logic-in-memory
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Intrinsic spin orbit forque in antiferromagnets with
weak ferromagnetic order
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We report a property of antiferromagnet(AFM)-generated spin-orbit torque(SOT) which is absent in its
ferromagnetic counterpart. AFM consists of at least two sublattice magnetizations. For instance, in case of AFM
with two sublattcie magnetizations, says, Ma and Mg, there are two independent degrees of freedom, which are
Néel order n=(Ms-Mg)/2 and ferromagnetic order m=(Ms+Mg)/2, unlike FMs with only one degree of freedom.
Although m vanishes in equilibrium, two sublattice magnetizations become noncollinear to each other during the
AFM magnetization dynamics[1] and the resulting non-vanishing m may endow AFM with qualitatively different
properties from FMs[2]. Earlier theoretical calculations[3, 4] of SOT in AFM ignore the m degree of freedom.
Here we show that the m degree of freedom can qualitatively modify properties of SOT in pure AFMs.
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Analysis of Red Blood Cell by Using a Highly Sensitive
GMR-Spin Valve Film Device and p-Coil and Channel

Jong-Gu Choi"", Su-Hee Kim', Ho-Dae Lim', Do-Gwun Hwang',
Jang-Roh Rhee? and Sang-Suk Lee’

'Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 26339, Korea
Dept. of Nanophysics, Sookmyung Women’s University, Seoul 04310, Korea

The giant magnetoresistance(GMR)-spin valve(SV) device having a high linearity and a low hysteresis for was
developed by the biosensor to analyze the detection property of red blood cell(RBC). The properties for the
dual-type GMR-SV film as glass/Ta/NiFe/Cu /NiFe/FeMn or IrMn/NiFe/Cu/NiFe/Ta include a magnetoresistance
ratio (MR) of 8.5%-10.0%, a magnetic sensitivity (MS) of 1.0%/Oe -1.5%/Oe, and a coercivity of 1.0 Oe-1.5
Oe for the free NiFe layer applying to the artificial isotropic magnetic property in-plane of film. The multuilayer
structure with in-plane orthogonal easy axes controlled by the post annealing temperature of 105°C was included
of the free and the pinned ferromagnetic layers for applying biosensor. The RBC coupled to the magnetic beads
can be captured on the 10 turn p-coils, which maintain an enough magnitude of magnetic field for the detection
of magnetic beads attached to RBC. When RBCs coupled to several magnetic beads passed on the micro channel
with a diameter of a few pum, the movement of those is controlled by the electrical AC input signal applied to
the 10 turn p-coils. The RBCs captured above the GMR-SV device are changed as the output signals for detection
status. It implies that this device as biosensor can analyze the coupling force between hemoglobin and magnetic
beads for the deformed features of RBCs to pass the narrow capillary. Also, the dual-type GMR-SV device and
p-coil and channel can be applied to analyze a new property of the membrane's deformation of RBC coupled

to magnetic beads.

1. Experiments

The coil-channel-composite structure for a modular device was of a type for controlling it as it flows along
with the biomolecule passage of red blood cells in the micron size. The first substrate Corning glass (#7059)
was deposited over the thin-film GMR-SV. First the photolithographic process and ECR-ion milling process
through the width and length are respectively 1 um and a size of 20 pm was produced gateun GMR-SV devices.
Through a second photolithography process to pattern the electrode made of Cu GMR-SV electrode element for
the biosensor. Developed GMR-SV Bio edge devices other than the center portion of the electrode material of
all PR was coated only on the SiO, insulating layer while leaving a thin film by rf sputtering method. GMR-SV
p- coil electrode so that the electrode passageway and passage is not connected to each other of the insulating
layer was deposited by 100 nm thick SiO, thin film by rf sputtering. After each step lithography process for
forming a composite structure, the actual shape of the patterning results showed a photograph in Fig. 1. Fig. 1
is the actual shape of the coil wound p- once patterned by lithography, the Cu thin film was coated on the

substrate.
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Fig. 1. Three steps of GMR-SV device with a size of 1x18 pm® with 10 turn p-coils.

2. Results and Discussion

Fig. 2 shows that (a) real photograph of the motion of RBC + pBeads through out the PR channel above
GMR-SV device; (b) visualization of the flow for a RBC + pBeads inside the PR p-channel positioned on the
center of GMR-SV device. A RBC +uBeads flows in three steps with moving (A), stop (B), and moving (C)
controlled by using input AC ignal applied to one turn p-coil. Fig. 3 shows that the response of the output signals
for the input signals (a) Vpp = 200 mV : 20 kHz and (b) Vpp = 120 mV : 20 kHz. This input signal has enough
amplitude and frequency, which is induced on RBC + pBeads and applied to one p-coil.

(a) PR channel, 1Coil, and RBC+uBeads

(a) Vpp(input) =200 mV

—_—

(b) Motion of RBC+uBeads

Capturel(stop)

X:10 uslpiv

X : 10 ps/Div

Fig. 2 Fig. 3
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The role of elasticity on intrinsic anomalous
Hall effect in Ni
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The anomalous Hall effect (AHE) is commonly observed phenomena in magnetic systems, where 3d
ferromagnetic metals are epitomic exampels[1-4]. In last decade, the intrinsic anomalous Hall effect (AHE) is well
formulated in the framework of Berry phase formalism. In this study, the role of elasticity on AHE in fcc Ni
has been investigated using first-principles calculations, where Wannier functions are fully exploited. Different
lattice distortions along the (001), (110), and (111) are taken into account while volume is kept constant. The
resulting AHE, more specifically, the Berry curvature for different lattice strains are discussed, where exhaustive

analysis in Brillouine zone is provided regarding level degeneracies, changes in momentum matrices, and so forth.
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Dynamic Symmetry Breaking in a Gyrotropic Motion of a
Magnetic Vortex by DC-Spin-Polarized Current
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1. Introduction

A magnetic vortex has been attracted many interests owing to its applications to data storage and logic
devices. Especially, it has been studied a spin-torque nano-oscillator based on self-sustained gyrotropic motion
[1-3]. It is well-known that the initial magnetic vortex state influences only the shift of eigenfrequency for
gyrotropic motion when a spin-polarized current is applied [2]. Recently, it is reported that the magnetic vortices
are easily deformed along the thickness in relatively thick nanoelements [3-4]. In this work, we shows the
symmetry breaking in the gyrotropic motion of magnetic vortex driven by spin-transfer torque (STT)
accompanying with the Oersted field, which is completely different from well-known gyrotropic motion in thin

nanoelements [2].

2. Simulations

In this work, we used a mumax’ code [5] which is one of the micromagnetic simulation code to calculate
the Landau-Lifshitz-Gilbert (LLG) equation including STT term: dm/dt =-|y|[mxHeg]+o[mx(dmvdr)|+Tsrr, where
yi- y/(1+a’), which describes the dynamic motion of normalized magnetization m, with the gyromagnetic ratio
y, the effective field Hey, the saturation magnetization M, the Gilbert damping constant o. The STT term is given
by Tsrr = mx[mx(u * V)m]+ f mx(u * V)m where u = -Pjug/eM,(1+”) where with non-adiabatic constant /3
= 0.04, the current density j, Bohr magneton x5, electron charge e, and the degree of spin polarization P =
0.5669. To apply out-of-plane spin-polarized current into an isolated permalloy (Py, NigFes) disk of diameter
2R = 300 nm and thickness L = 80 nm. The perpendicular polarizer which have downward spin-polarization is

positioned below the disk.

3. Results and Discussions

We observed the deformation of the vortex core (VC) in an initial transient regime and it was affected by
the chirality, the in curling direction of in-plane magnetization (M) of the magnetic vortex structure. For the case
of clockwise (CW) chirality, VC is shrunk while it is expanded for the counter-clockwise (CCW) chirality. During
the steady gyrotropic motion, a symmetry breaking was significant: the VC structure with CCW chirality was
elongated much larger than it with CW chirality as shown in Fig. 1. Such a nontrivial dynamic symmetry breaking
might comes from the difference of M configurations along the thickness direction according to the CW and CCW

chiralities, which would affect the adiabatic STT. We will discuss deeply in the presentation.
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Fig. 1. The current-driven magnetic vortex dynamics for the CCW chirality.
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Terahertz Spin-Wave Emission from
Ferrimagnetic Domain walls
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Recently, antiferromagnetic spintronics has attracted much attention due to spin excitation in the terahertz
(THz) ranges [1]. It has been recently predicted that spin-orbit torque (SOT) combined with interfacial
Dzyaloshinskii-Moriya interaction effectively drives an antiferromagnetic domain wall which can emit THz spin
waves [2]. Because of the immunity of antiferromagnets to external magnetic fields, however, it is experimentally
challenging to create and detect antiferromagnetic domain walls. In this talk, we report theoretical and numerical
results on field-driven THz spin wave emission from a ferrimagnetic domain wall which is easy to manipulate
thanks to net non-zero magnetic moment. In addition, we show that THz spin wave emission is realized by SOT
as well. We focus on a class of ferrimagnets composed of antiferromagnetically coupled two inequivalent
sublattices having different Lande-g factor. In this class of ferrimagnets, the angular momentum compensation
temperature 7 is different from the magnetic moment compensation temperature 7). Because of this difference
between two compensation temperatures, the field-driven antiferromagnetic spin dynamics is realized for
ferrimagnetic domain walls at 7, [3], opening the possibility for field-driven THz spin-wave emission. In the
presentation, we will show detailed theoretical and numerical results for field- and SOT-driven dynamics of

ferrimagnetic domain wall.
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Domain wall motion at a step of
Dzyaloshinskii-Moriya interaction
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*Department of Materials Science and Engineering, Korea University

To realize logic and memory devices using magnetic domain walls (DWs), it is important to control the DW
position [1]. Recently, the interfacial Dzyaloshinskii-Moriya interaction (DMI) has attracted considerable interest
[2]. By changing interface between ferromagnet and heavy metal, it is possible to control the interfacial DMI.
We assume that two regions have different DMI, called DM step. In this work, we studied about DW motion
at a DM step driven by an external field and a spin-orbit torque (SOT).

We performed one dimensional micromagnetic simulations with the following parameters; the exchange
constant A=110 erg/cm, the uniaxial anisotropy constant with easy axis K=110" erg/cm’, and the spin hall angle
=0.3. First we studied field-driven domain wall motion at a DM step. An effective field at DM step written as,
where indicates a DM vector of which direction is in. When a Bloch type domain wall moving through the DM
step, the effective field is almost zero [3]. In the absence of effective field, a Bloch type domain wall easily
passes the DM step. On the other hand, the center magnetization of a Néel type domain wall is along the x
direction, so that the effective field of DM step is always in z direction, the opposite sign of the external field.
It makes a Néel wall difficult to pass the DM step. In the case of SOT-driven domain wall motion [4], the energy
barrier of DM step depends on the sign and magnitude of DMI constant. Difference of two DMI constants builds
up a potential barrier. We find that a threshold current density of DM step depends on the height of energy barrier.

We propose for domain wall device that it is possible to control the position of domain wall by a DM step.

Using a DM step, it is possible to increase the retention of DW devices.
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Department of Materials. Science and Engineering, Seoul National University, Seoul 151-744, South Korea

1. Introduction

Magnetic skyrmions, topological solitons with an integer topological charge, have been found in magnetic bulk
materials of non-centrosymmetry as well as in magnetic thin films with large spin-orbit coupling at inversion-
symmetry-broken interfaces [1,2]. It is known that this anti-symmetric coupling, known as Dzyaloshinskii-Moriya
interaction (DMI), plays a crucial role in stabilizing skyrmion formation. Skyrmions’ topological stability is
advantageous in applications to memory devices, owing to both their nano-scale dimensions and ultra-low critical
current density. In this light, reliable manipulation of magnetic skyrmions by electric currents or magnetic fields
has attracted great interest. Very recently, skyrmion motions also have been found to be driven by spin waves
(SWs) propagation in nanostrips [3, 4]. This alternative approach is of special interest in terms of the promise
of all-magnetic control of skyrmions in geometrically constricted elements. However, the underlying physics of

SW-skyrmion interactions are still lacking.

2. Methods and Results

In the present study, we employed micromagnetic numerical simulations to examine SW-driven skyrmion
motions and elucidate their underlying physics. We found interactions between propagating spin waves (SWs) and
a single skyrmion in perpendicularly magnetized nanostrips with DMI. Incident SWs from one end interact with
the skyrmion located at the center, giving rise to considerable forward skyrmion motions for specific SW

frequencies.

3. Discussion
The frequency-dependent interaction originated from the robust coupling of the SWs with the internal modes
of the skyrmion. Here we present correlations of the SW propagation and skyrmion modes. This work provides

further understanding of the interactions between magnons and topological solitons in constricted geometries.

4. Conclusion

We studied the propagations of spin waves in W/CoFeB/MgO thin-film nanostrips and their interactions with
a skyrmion in the waveguides. It was found that propagating spin waves lead to the rotation and linear motions
of the skyrmion. In addition, the rotation sense of the skyrmion and the speed of its linear motion depend on
the excitation frequency of spin waves. As reported in Refs [5,6], DMI leads to asymmetric spin waves
propagations in the spin-wave guides, thus this effect seems to affect such skyrmion motions as found from this

work.
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!Center for Spintronics, Korea Institute of Science and Technology
*Graduate School of Electrical Engineering, Korea University
*KU-KIST Graduate School of Converging Science and Technology, Korea University
*Graduate School of Materials Science and Engineering, Korea University

Ferrimagnetic materials have multiple sub-lattices having antiferromagnetic coupling with different magnitudes
of magnetization. Especially the amorphous ferrimagnetic GdFeCo alloy, a rare-earth transition-metal (RE-TM)
ferrimagnetic alloy, have attracted large interest over the past few years for academic research and spintronic
application. Gd has 4f states of half-filled spin electrons, so their orbital momentum and spin-orbit coupling are
zero. [1] Therefore it is expected that, little contribute when are Gd were doped to ferromagnetic alloys, the
increase of magnetic damping would be negligible [2].

In this study, we investigated magnetic properties, magnetic damping, and spin Hall angle in Pt/GdFeCo/MgO
layers using vibrating sample magnetometer (VSM), x-ray photoelectron spectroscopy (XPS), and spin-torque
ferromagnetic resonance (ST-FMR). We prepared Si/SiOx/Ta(l nm)/Pt(5 nm)/GdFeCo(3~20 nm)/MgO(1,2.7 nm)/
Ta(2 nm). All samples were deposited by DC & AC magnetron sputtering with base pressure ~210™ Torr at room
temperature. The saturation magnetization (M;) of the samples decreases exponentially with the thickness of
GdFeCo. In addition, the saturation magnetization depends on the thickness of MgO. In this presentation, we shall
show the detailed results from our VSM, XPS, and ST-FMR measurements.
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Magnetic recording media with higher storage density may require patterned magnetic elements. It has been
known that the elements have single-domain state as their dimensions decrease down to nanoscale. For arrayed
elements with specific structure such as a chain, a further collective feature of the arrayed elements is observed
due to the magnetostatic interaction among magnetic elements, which possibly allows a logic operation[1-2]. In
this work, micromagnetic simulations have been performed to investigate magnetization reversal mechanism in a
discrete magnetic nano-block chain, where each element shape has been varied to be square, circular, and
elliptical. Particularly, the nano-block chain with square elements is found to exhibit a shape anisotropy, with easy
axes along the diagonals of square, which makes the reversal behaviour significantly different from the reversal

in the nano-chains made of circular or elliptical elements.
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This work is focused to the time-resolved measurements of magnetization reversals in artificial antiferromagnets
based on two perpendicularly magnetized CoFeB layers of different width separated by Ta non-magnetic interlayer
(fig.1, right insert). The following measurement sequence was used: 1) the sample was magnetized in Hs = 1
kOe magnetic field exceeding saturation field, perpendicular to the film plane (i.e. along easy magnetization axis);
2) magnetic field was switched to H* < Hs and immediately after stabilization of the H* value, recording of
the time dependence of the magnetic moment M was started. This measurement cycle was repeated for different
H* fields +600 Oe and -600 Oe. Magnetic relaxation curves are presented in the Fig.1. Four stable magnetic states
F', AF', AF and F correspond to four stable mutual orientations of CoFeB magnetization in trilayer structure.
Flip transitions F* to AF" and AF to F are reversible and give no magnetic after-effect (fig.1). AF" to AF flip-flop
transition (simultaneous remagnetization of thin and thick CoFeB layers) is irreversible. Threshold magnetic field
initiates gradual leaving of magnetization from AF" state until it reaches AF state. The straightening of the (In
4M); t) curves (fig.1, left insert) reveals exponential dependence AM(f) ~ exp (- [?). Accordingly with [1],
exponential relaxation of the magnetic moment is typical of the crossing of a potential barrier by an assembly
of quasi-identical and independent objects. The field dependences of the relaxation frequencies I (fig.2) were

described in terms of the model proposed in [2]:
Tin(I'o/I) = AEy - (1 — H*/Hp)* (1),

Iy is frequency factor, AEy, - (1 — H*/Hp)* is activation energy of domain wall pinning, AE, is height of
potential barrier in the absence of magnetic field, Hp is threshold magnetic field of pinning, o = 3/2 is constant.
We have considered typical values 7, = 10° Hz and o = 3/2 mentioned in the literature [1,2]. Pinning field Hp
was determined from approximation of field dependence 7In(1/I") by formula (1) for each temperature separately.
The temperature dependence of the pinning field is shown in the fig. 2, left insert. The height of potential barrier
AEy, = 0.72 eV was temperature independent.

In contrast with previous works [2], pinning field was temperature dependent in our experiments. For that
reason, field dependence of the 7TIn(/y / I) value was plotted versus H*/Hp to normalize magnetic field at
different temperatures. Straightening of the T7In(//) vs H*Hp dependence (Fig.2, right insert) confirms
correctness of chosen approach. Thus, exponential dynamics of the flip-flop transition corresponding to single
barrier depinning of the domain walls was revealed. The temperature dependence of critical field of domain wall
pinning as well as height of the potential barrier were determined.

This work was supported by the DGIST R&D Program of the Ministry of Science, ICT and Future Planning
(17-BT-02) and Ministry of Education and Science of the Russian Federation (grant 3.1992.2017/PCh).
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Fig. 1. Time dependences of the magnetic moment M of the sample recorded at 7 = 300 K in reversal magnetic
fields H* lying in the range from -210 Oe till +210 Oe. Blue and red arrows on the right panel indicate directions

of magnetizations of the ferromagnetic layers in different magnetic states. Left insert: time dependences AM(¢)

in semi logarithmic coordinates. Right insert: scheme of CoFeB/Ta/CoFeB trilayer structure.
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1. Introduction

The study of light-matter interaction is a central subject in quantum information and communication science
and technology. In order to be useful for quantum application, a proposed technology has to be able to exchange
information with preserved coherence [1-3]. Recently hybrid systems consisting of resonantly coupled spin
ensembles and microwaves have been received much attention [4-5]. In the present work, we report on the
exploration of the interaction of magnetic resonances in YIG films with microwave photon resonances in a

complementary split ring resonator (CSRR) structure.

2. Methods and Results

A CSRR structure along with microstrip line has been fabricated using lithographic techniques on a standard
duroid (TLC RF Substrate) substrate of a dielectric constant of 3.2.The dimensions of the CSRR are: size = 5
mm, width = 0.6 mm and split gap = 0.4 mm. The CSRR is capacitively coupled to a microstrip feeding line
of a width of 1.85 mm. For the measurements, coaxial connectors have been soldered at the two ends of the
stripline. The characterization of this structure has been carried out using a calibrated two- port vector network
analyzer (VNA).

In our measurements, an epitaxial YIG film (grown on a GGG substrate) with a dimensions of 3 mm x 3
mm % 25 pm is placed on the top of the microstrip line with the YIG layer facing the strip line. A dc magnetic
field (H) is applied (using electromagnet) in the plane of the film in the direction perpendicular to the microstrip
line (along X direction). The input and the output of the microstrip feeding line have been connected to the ports
of a VNA and the transmission (S,;) characteristics have been measured as a function of microwave frequency
and the strength H of the applied field. When a microwave current flowing through the microstrip feeding line
(along Z direction) the CSRR essentially behaves as an electric dipole and excited by an axial electric field.

The microwave transmissions |S21| are measured as a function of microwave frequency (f) for different
applied magnetic field strengths. At H=0 Oe only one resonance mode (which is purely SRR resonance mode)
was observed. When the magnetic fields were applied, two peaks (F, and F,) were observed, one with low dB
and the other with high dB. Out of these two modes, one resonance mode is strongly dependent on the applied

field and continuously shifts towards the higher frequency side with increasing magnetic fields.

3. Discussion
The variation of resonance peak positions are plotted as a function of applied magnetic field. This clearly
shows strong anti-crossing of the two lines, which suggests strong coupling between two modes. Importantly, far

away from the “anti-crossing” the frequencies are almost the same within and the line slope is practically
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vanishing. This identifies the almost horizontal sections of the line as uncoupled (pure) CSRR resonances (“photon
modes”). The sections of these lines with significant slopes (close to the anti-crossing area) are CSRR resonances
coupled to the magnon mode of the YIG film. The strong anti-crossing between the photon and magnon modes
suggests a strong coupling between them.

At the resonant condition of H=Hggs, the frequency gap, Fgap, between F; and F, is directly linked to the
coupling strength of the system (Fgap/2=g.s/2m). The coupling strength of the SRR and the magnon mode can
be determined using the harmonic oscillator model of two coupled resonators [5-6] for which we can define the
upper (F;) and lower (F,) branches

FLQZ%“FBJFFT)i (Fy— B AREL | oo, (1)

where Fy and F, are the resonance frequencies in the absence of coupling. Fy: CSRR resonance mode or
photon mode and F,;: FMR frequency or magnon mode (modelled by the Kittel equation) which describes the
precession frequency of the uniform mode (without taking into account spin wave distribution) [5]. The parameter
k used in Eq. (1) corresponds to the coupling strength, which is linked to the experimental data g.p/2m by the
equation: Foap = F, — F; = KFy. From the fit, we obtain g.w/2n = 180 MHz and k = 0.31. The value of k obtained
from the present study is significantly higher than the 3D-cavity/YIG sphere systems [2-4].

4. Conclusion

Using the frequency-domain VNA-FMR spectroscopy we have demonstrated a strong coupling regime of
magnons and microwave photons in the planar geometry of a lithographically formed complementary split-ring
resonator loaded on a single-crystal epitaxial YIG film. This interaction manifests itself as a strong anti-crossing
between the photon and magnon modes. This thin film/CSRR hybrid geometry can be integrated with other planar
electronic and optical devices and therefore is a very promising candidate as an information transducer that

connects MHz, GHz, and THz frequencies.

5. References

[1] R. J. Schoelkopf and S. M. Girvin, Nature 451, 664 (2008).

[2] M. Goryachev, W. Farr, D. Creedon, Y. Fan, M. Kostylev, and Mi. Tobar, Phys. Rev. Appl. 2, 054002
(2014).

[3] Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, Phys. Rev. B. 5, 094423 (2014).

[4] M. Harder, P. Hyde, L. Bai, C. Match, and C.-M. Hu, Phys. Rev. B, 94, 054403 (2016).

[5] B. Bhoi, T. Cliff, I. S. Maksymov, M. Kostylev, R. Aiyar, N. Venkataramani, S. Prasad, and R. L. Stamps,
J. Appl. Phys. 116, 243906 (2014).

[6] M. Harder, L. Bai, C. Match, J. Sirker, and C. Hu, Science China Physics, Mechanics & Astronomy,
59117511 (2016).

- 98 -



MD06

MnoO| X|&& BazCo,xMnFe,,04; (X=0.0 10) Z-’rype
hexaferritel] £XI& £ %11

spml AT 1 1 = 2 Sz
HH2" AME, Mol HeF? YAy
Riteta 225w
25 9lt) st £2)ats)

1.4 &
Z-type hexaferrite:= spinel ferrite 2T} =2 2}7]| o]HAd o OJ&f 1 GHzo| A 43t EAS H o] RF tjHfo]A
o Tak ATk A Foll YUtk B AT HHTAME 0]851o] A2 E BaCorxMnFerOn (x=0.0, 10)
Eéﬂ/ﬂ 2714 EAo sl At st} sttt AAsHA 4 27)1F EAZS x-A F)A7|(x-ray diffractometer),
SA R A}EHe-=4 7](vibrating sample magnetometer)2} 2 AHFQ-0] E317](Mossbauer spectrometer)S A1 of
0]%—’6}01 AF5IH oM Agilent AF2] E5071C Network AnalygerE ©]-835to] =454t

2. Ay
Z-type hexaferrite?] Ba;CorxMn,Fe 04 (x=0.0, 1.0) thAA B4 A2E ™34 ¥ (soild-state reaction
method)S AF&5to] A28 &9 E2 2 BaCO;, CoO, MnO3, Fe,0; & ©]-8319 01, o]& ball millE &
3 20417 BoF S shgih. AA| A ABE 24X 7F B9 A% A7 3 1000°Co| A kA 3 Fof T
2H(1200°C, 1250°C)of] A% &~Z = BasCorxMnFey 04 (x=0.0, 1.0) 2 A 2E AT A= H A|59
AAsHA EAQS &elslr] 3l Cu-Ka A9 o83t x-A 3]d AE (XRD)E #8 & Rietveld BH o= H4
btk WEAR Askg 24 (VSM) AWS B A A7 B4S selskgon], ujxzel
3¢ SHUSH) o) B B AU AU Ao Fokiol e RS 98 51
Agilent AF2] E5071C Network AnalygerE 50 MHz ~ 4 GHz H{Jo|A] o] &35lo] EXES =435}t

Ol

Jl

19

[ I’
18 | //
B &

17

14 |

Permiability(p')

13

@
12

BagCoyMng gFey 4041 BagCoyFeyyOyy BajCoMnfFe, Oy

Fig. 1. Fe, Co 09| Mn o] X|3to] w2 £A-8 u]iL

- 90 -



Ao 2 A 2% Ba;CorxMniFe 0y (x=0.0, 1.0) A|Z2] XRD H|©|E]E Fullprof &4 T2 7307
AT AT T A ZaypedS FH SHAT 2 AR Mn A v go] U2 2 PRl o ¢ 5 22

S|
x=0.02] #< 586 A, 5191 Aojglomn, x=1.0 ¢ A< 586 A, 51.86 Ao] =& itk VSME o] £5}o]
Ba:CosxMnFesOu (x=0.0, 1.0) A|20] &3} ApshMs)et ®ate] (HO)S =4 3 A7 x=0.02 A< 50.90
emu/g, 37.10 Oe, x=1.0%1 7% 60.30 emu/g, 185.74 OeZ YUEF O™ o]:= Mn ©]-20] up spin site=2 *]&HS
Sl 1A A7I S4E SO A AN Aol 3 UHE T Ak e howferic
Yol 23 1 107)2] 227ke] AHES 6sextets Feh2 BATHYL, RE RARA Fe' Al sela)
At} Network AnalygerE ©]-8-3}o] =23 BaCoMnFeu04 9] tand L2 0.013227} Lt

Mn ©] &5 Fed} Co o|2of X|&st= ZAof Wg FAE Apo|& H|wgh 23} Mno]&5 Cool2of #|ghgt
A7t Bl 7H =4 Utk

O

nﬂi

4. 312
[1] Jian Er Bao, Ji Zhou, Zhen Xing Yue, Long Tu Li, Zhi Lun Gui, Materrials Science and Engineering
B99 (2003) 98-101

- 100 -



MDo7

Precession torgue induced dynamic skyrmion creation on
a circularly confined magnetic nanostructure

June-Seo Kim"#%’
'DGIST-LBNL Research Center for Emerging Materials,
Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
“Intelligent Devices and Systems Research Group,
Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
*Global Center for Bio-Convergence Spin System,
Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea

1. Introduction

Skyrmionics, the nucleation and manipulation of individual skyrmions in magnetic structures for future logic
applications and non-volatile memory devices, has been demonstrated by J. Sampaio and colleagues in 2013 and
they have introduced a new concept of the magnetic racetrack memory based on the individual skyrmion motion
induced by means of spin-polarized currents [1]. After this remarkable progress, various approaches to manipulate
individual skyrmions for many other applications are extensively investigated [2,3]. However, extremely low
energy consumption and ultrafast operation are strongly required for all kinds of applications based on skyrmions.

In this study, we numerically demonstrate a totally new method to nucleate magnetic skyrmion states on a
nanoscale disk by applying in-plane magnetic field pulses with varying the Dzyaloshinskii-Moriya interaction

(DMI) energy density [4-7] and the uniaxial anistropy energy density.

2. Simulation Details

The simulations are carried out by performing the object-oriented micromagnetic framework (OOMMEF)
simulator including DMI. The material parameters are chosen as follows: The saturation magnetization Ms = 1.1
MA/m, the exchange stiffness A=16 pJ/m, the uniaxial magnetic anisotropy Ky=1.0 MJ/m’, the DM energy
density D = +5.0 mJ/m. The profile of the in-plane field pulse is following: pulse amplitude B, = 10 mT, rise
time RT = 10 ps, duration time DT = 10 ps, fall time FT = 10 ps and the total simulation time = 10 ns. For
systematic investigation of the precessional torque induced skyrmion creation, we vary the magnetic damping
constant from 0.05 to 0.20 and the uniaxial magnetic anisotropy from 0.7 MJ/m® to 1.0 MJ/m® and the DM energy
density from 2.0 mJ/m to 5.0 mJ/m.

3. Results and Discussion

The precession torque introduced by in-plane magnetic field pulses exert to rotate the magnetization on a
confined structure [8,9] and the position dependent precession torque is utilized as the source of skyrmion
nucleation. Due to the damping torque, the precession torque is diminished as a function of time and then the
topologically stable skrymion state as the final state can be formed. From the systematic simulations, the multiple
skyrmion states, which depends on the diameter of nanoscale disk and the magnetic damping constant of the

system are observed. We highlight that ultrafast Oersted field pulses in picosecond regime are enough to arise
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the dynamic skyrmion nucleation process. This new method to create skyrmion states can open a new path to

fabricate ultrafast logic devices and non-volatile memory devices based on skyrmions.

4. Conclusion
In conclusion, an ultrafast skyrmion creation by applying an extretemly low (< few mT) in-plane external
magnetic field pulse is numerically achieved. Due to the stray field as a function of the diameter of the disk,

multiple skyrmion state (pi, 2pi, 3pi, and 4pi states) are also observed.
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Owing to its ability to manipulate the magnetic moment of materials electrically, the spin transfer torque (STT)
effect has made magnetic nanodevices realistic candidates for a variety of spintronic applications, such as STT
magnetic random access memory (MRAM), racetrack memory, STT oscillator, STT diode, STT memristor and
so on”. We note that all these devices operate in GHz, which is limited fundamentally by the physics of STT.

Physical background of STT has been established based on the spin angular momentum conservation during
the exchange interaction between conduction electron spin and magnetization. Another important mechanism in
the interaction, i.e., energy transfer based on the energy conservation, has been ignored so far, though it is
physically rightful to consider it. Here, we would like to raise a question on this physically important issue.

In this work, we provide experimental evidences of energy transfer. In ferromagnet/heavy metal bilayers, we
observe in-plane current-induced asymmetric magnetoresistance depending on the relative direction of current and
magnetization. Combined with electron-magnon scattering, current-induced excitation of magnons by the energy
transfer can naturally explain all experimental features of the asymmetry, including characteristic time scale,
angular dependence and temperature-dependence, whereas the STT cannot. From the thorough theoretical approach
and experimental magnetic field dependence of magnetoresistance, we found that magnons in THz range can be
excited by the energy transfer mechanism. Hence effects of the energy transfer mechanism are widely separated
in frequency from the corresponding effect of the STT mechanism in GHz range. Our results therefore unveil
another aspect of current-induced magnetic excitation, and open a channel for the dc-current-induced generation

of THz magnons®.
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A controlled creation, propagation, and detection of magnetic domain wall (DW) is the core process of the
DW-motion-based racetrack memory". Several technical issues on the device performance of racetrack memory
have been raised during last decade, and many parts of the technical issues have been successfully resolved owing
to the in-depth understanding of the mechanisms involved. However, there still remain several urgent issues, e.g.,
the reduction of the power consumption in the writing process and the confirmation of real time multiple DWs
motion.

Here, we provide two novel domain writing schemes that consumes power at least an order of magnitude
smaller than that of the conventional writing technique. In the first scheme, we use current-induced DW
propagation to create an arbitrary domain instead of current-induced local Oersted field”. The key advantage of
this scheme is that the current required for propagating a domain is much smaller than that for nucleating a
domain. The other scheme relies on the deterministic switching based on the spin Hall effect and
Dzyaloshinskii-Moriya interaction (DMI). In this scheme, the role of writing current is to provide an in-plane
longitudinal field to trigger the deterministic switching and therefore, the required power can be reduced.

By employing the proposed scheme, we then demonstrate the real time detection of current-driven multiple

magnetic DWs motion, which directly shows the operation of magnetic domain wall shift register”.
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The simultaneous achievement of a larger spin-Hall angle and a lower magnetic damping is of importance
to implement successful spin-orbit torque (SOT) devices. Recent works have proposed that the interface
transparency of the spin current between a heavy metal and a ferromagnetic layer plays important roles in
determining the effective magnitude of the spin-Hall angle; e.g. Osu(Pt|Co)~0.11 vs Osu(Pt|Py)~0.05 [1,2].
Unfortunately, the enhancement of spin-Hall angle with a higher spin transparency will be counteracted by the
increase of the magnetic damping due to the spin pumping so that the variation of the transparency would not
be much helpful; e.g. Aog,(Pt|Co)~2 - Aag(Pt|Py) [1,2].

For relieving this issue we utilized ferromagnetic bilayers instead of a single ferromagnetic layer on top of
a Pt layer. We used DC/RF magnetron sputtering to deposit two series of multilayer films having different stack
orders, Pt|Co[Py or Pt|Py|Co, on a thermally oxidized Si substrate at room temperature. The multilayers consist
of, from the bottom to the top, Ta(1)/Pt(5)/Co(f)/Py(5-t)/MgO(2)/Ta(2) and Ta(1)/Pt(5)/Py(5-t)/Co(t)/MgO(2)/Ta(2)
(thickness in nm) where the thickness of cobalt (¢c,) layer was varied from 0 to 5 nm.

We investigated spin-Hall angles and magnetic damping in ferromagnetic bilayers by utilizing the spin torque
ferromagnetic resonance technique (ST-FMR) [3]. The properties (spin-Hall angle and magnetic damping) of
ferromagnetic bilayers critically depend on the stacking order and bilayer thickness. We find that the spin-Hall
angle is dominated by the ferromagnetic layer in contact to the Pt layer. On the other hand, the magnetic damping
dominated by another factor, and the magnetic damping has exactly opposite dependence of spin-Hall angle.

In this presentation, we shall show the detailed results from our ST-FMR measurements for the various
stacking order and thickness ranges, and will discuss possible damping mechanisms dependent on the stacking

order and thickness.
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Effect of annealing in low PO, on the structure and
magnetic properties of M-type Sr-hexaferrite

M-type Sr-hexaferrites are one of the most utilized materials in permanent magnets due to their low price,
outstanding chemical stability, and characteristic hard magnetic properties. [1] It has been shown that Ca-La-Co
[2] substitutions are one of the most successful approaches, leading to significant enhancement in the crystalline
anisotropy without reducing the Ms. In this research, the effects of annealing atmospheres, air and N, on the
crystalline phase, microstructure, and magnetic properties are comparatively studied for the non-substituted SrM
and the Ca-La-Co-substituted SrM. The correlations of the cation substitution ratio of [La’")/[Co®'], phase stability,
and formation of oxygen vacancy are discussed. It is also clearly revealed that the effect of oxygen vacancy on
the magnetic properties of the M-type Sr-hexaferrites through thin film experiment.

Non-substituted StM (SrFe;019) and La-Co substituted SrtM (Sro7Lag3Fe; 7C003019) and La-Ca-Co substituted
StM (Sro.1CagasLagasFe117C003019) samples were prepared by conventional solid state reaction process. The SrM
thin film with thickness of 130 nm was prepared on Si/SiO, substrate by pulsed laser deposition (PLD) and
subsequent ex-situ annealing process at 970°C in air. Ex-situ annealing on the films was performed in the vacuum
at 300-500°C for lh. Analysis by X-ray diffraction and field emission scanning electron microscopy (FE-SEM)
were performed for phase identification and microstructural observation, respectively. Magnetic hysteresis curves
were measured using a physical property measurement system-vibrating sample magnetometer at room temperature
(300 K) with sweeping magnetic field within + 5 T.

During annealing in N, at 1200°C, the Ca-La-Co-substituted SrM decomposed to the three different ferrite
phases of orthorhombic, spinel, and hexagonal structures while non-substituted StM and La-Co SrM maintained
the M structure as the primary phase. It is suggested that the charge-imbalance substitution of La®" - Co®', with
the ratio of [La’"]/[Co®"] = 1.5 induces the phase instability of the hexaferrite structure, which cause oxygen
vacancy formation and subsequent phase transformation during the low PO, annealing. In the thin film
experiment, polycrystalline SrFe;019 (t = 130nm) films were prepared on the SiO,/Si substrate by pulsed laser
deposition and post-annealing processes. After annealing in vacuum at 500°C, the films showed 80% increased
magnetization value at the applied magnetic field of H = 15 kOe with a significantly reduced coercivity without
microstructural change. The softer magnetization behavior with the increased MS over the theoretical limit of StM
is attributed to the formation of oxygen vacancies in the hexagonal structure, which is accompanied with Fe

valence change from Fe’* to Fe'.
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Exchange coupling behaviors between Sr-hexaferrite
and LaSrMnO3; composites

A large number of studies have been performed on magnetic hard-soft composites for not only improving their
hard magnetic performance, but also for studying the origin of this phenomenon because of their potential
applications in high-performance magnets, magnetic recording devices, and sensors. [1-4] Although both the
M-type hexaferrites and perovskite manganites have been studied intensively, the magnetic coupling behavior of
composites of the two phases has been rarely reported.

In this study, composites consisting of a magnetic hard StM and a magnetic soft LSMO were prepared by
conventional solid-state reaction methods using two different routes. In the first route (route A), the SrM and
LSMO powders, synthesized by calcination (1100°C), were first mixed in a 1:1 ratio (wt%). Then, the mixed
powder was ground, pelletized, and calcined at 1200 °C for 2 h. In the second route (route B), the precursor
powders of SrCOs, La,0s, Fe,Os, Mn3O4 were weighed such that they had the same cation ratio as the composite
made by the first route (50 wt.% StM + 50 wt.% LSMO). The weighed mixture of the powders was ball-mixed,
and subsequently calcined at 1100°C for 4 h and at 1200°C for 2 h. Analysis by X-ray diffraction (XRD-7000,
Shimadzu) and field emission scanning electron microscopy (FE-SEM, JSM-7610F) were performed for phase
identification and microstructural observation, respectively. Magnetic hysteresis curves were measured using a
physical property measurement system-vibrating sample magnetometer (PPMS-VSM, Quantum Design) at 300 K
with a sweeping magnetic field (H) within £2 T.

When the LSMO-SrM composite was synthesized directly from the initial precursor powders, it shows a single
hysteresis where the hard-soft phases are exchange-coupled. On the other hand, clear double hysteresis without
magnetic coupling was observed in the composite prepared by calcination of the mixtures of LSMO and SrM
powders. It is suggested that microstructural and compositional differences between the composite samples may

give rise to such a difference in the magnetic behaviors.
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Exchange-spring magnetic behavior in
Sr-hexaferrite/MnZn-ferrite composites for permanent
magnet applications

Tae-Won Go'", Kang-Hyuk Lee’, Sang-Im Yoo
'Department of Material Science and Engineering, Research Institute of Advanced Materials (RIAM),
Seoul National University, Seoul, Korea

Since the proposal of exchange-spring magnet in 1991 by Kneller and Hawig [ref], powder and layered films
have mostly received attention for its applications. However, the exchange coupling effect in bulk permanent
magnets has never been reported. In this study, the exchange-spring magnetic behavior in bulk hard/soft magnetic
composite was investigated. The hard/soft composite magnets were composed of strontium hexaferrite/manganese
zinc ferrite, which were synthesized via conventional solid-state reaction. Raw materials were SrCOs, Fe,Os for
strontium hexaferrite, and Mn,;0;, ZnO, Fe,Os for manganese zinc ferrite. They were ball-milled and uniaxially
pressed into precursor pellets. The strontium hexaferrite precursor was calcined at 1150C for 12 h in air, and
manganese zinc ferrite at 1200C for 8 h in air. The calcined pellets were crushed and sintered at 1300°C for
2 h in air. The samples were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM),

and scanning electron microscope (SEM). Further results will be presented for a discussion.

Keywords : Exchange-spring magnet, magnetic composite, strontium ferrite, manganese zinc ferrite
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Phase fransformation and
magnetic properties of Mns4Al46Six

Hui-Dong Qian'?’, Ping-Zhan Si'", Chul-Jin Choi'", Jihoon Park’, Kyung Mox Cho?
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The metastable nature of ferromagnetic MnAl usually results in its decomposition during prolonged annealing
or high temperature processing. The doping of carbon to MnAl has been proved to be effective in improving
the stability of ferromagnetic MnAl In this work, we systematically studied the effect of silicon doping on the
magnetic properties and phase transformation of MnAl. We prepared the MnssAlySix alloys by using traditional
induction melting method and subsequent optimized annealing processes. It is found that the addition of silicon
to MnAl increases the triggering temperature for massive phase transformation of MnAl, while the magnetization
of the samples is decreased. Several samples with varied atomic percent of silicon were prepared and analyzed

by using XRD, SEM and PPMS.
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Fig. 1. Magnetic properties of MnssAlySios and MnssAlsSi samples after 482°C heat treatment
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Layer-number dependence
of the magnetic properties of MnBi films

Hongjae Moon, Sumin Kim, Hwaebong Jung, Hyun-Sook Lee  and Wooyoung Lee’
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"Corresponding Author E-mail: wooyoung@yonsei.ac.kr
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Ferromagnetic low-temperature-phase (LTP) of MnBi has attracted much attention because it has a higher
coercivity than that of Nd-Fe-B at high temperature (~ 200°C) and it has been a desirable material as
rare-earth-free permanent magnets that can be used in such high temperature. We present the effect of multilayer
deposition on the magnetic properties of MnBi thin films. The multilayered MnBi films were fabricated with
alternating deposition of Bi and Mn with N (N = 2—-10) layers (L), followed by in situ thermal annealing. As
N increases, the even-layered and odd-layered films show a similar layer-number-dependence of the magnetic
properties, such as an increasing behavior for H, and a concave-up behavior for M; and (BH)m.x. According to
the results of the electron microscopy analyses, the MnBi films show changes in the microstructure and elemental
distribution with an increase in the number of deposition layers. (i) The 2L and 3L films grew with c-axis oriented
LTP-MnBi having the largest area and the most flat surface, but unreacted Mn remained near the top surface
as well as large unreacted Bi islands. (ii) The 4L and 5L films have the relatively smaller fraction of LTP-MnBi,
which was obstructed with large amounts of Bi and Mn islands. (iii) The 9L and 10L films grew like
nanocrystalline LTP-MnBi with less of the unreacted elements. The higher H. can be explained by the prevented
nucleation of the reversed domain because of the isolated MnBi islands. The higher M, can be explained by the
high volume fraction of LTP-MnBi with less unreacted Bi and Mn. From the results, we found that the changes
strongly affect the variation in the magnetic properties and the number of deposition layers is important for
obtaining higher magnetic properties. In particular, the element of top layer does affect the magnetic properties

and the Bi element at the top layer plays an important role in improving M.

Keywords : MnBi, magnetic thin film, multilayer deposition, hard magnetic properties
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Effect of quenching wheel speed on the magnetic
properties of melt-spun NdFeM (M=B, Ti)
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*Department of applied physics, Sookmyung Women’s University, Seoul 04310, Republic of Korea

1. Introduction

In last 60 years, the magnetically compounds composed of rare earth and 3d elements have been developed
as high performance permanent magnets such as SmCos, Sm;Co;; and Nd,Fe;4B. In the 1960s, SmCos compound
appeared as the first rare earth high-performance magnets. This magnet has magnetic properties such as a large
uniaxial magnetocrystalline anisotropy, a relatively high saturation magnetization, a high Currie temperature and
very hihg maximum energy product. Subsequently, the Nd,Fe;sB compound was produced either by
powdering/sintering in 1984 and the maximum energy product of this compound reached 36.25 MGOe. This
Nd,Fe ;4B magnet has been rapidly developed and then the magnet which has the maximum energy product value
of 59.25 MGOe was produced. This magnet is the best permanent magnet in the present industry. Recently,
permanent magnets are essential components in the many industries because of their ability to provide a magnetic
flux and the magnetically hard alloys of nanocomposites with rare earth elements especially have attracted rapidly
increasing interest. Nanocomposite magnets consisting of a soft magnetic o—Fe or Fe;B phase exchange-coupled
to a hard magnetic Nd,Fe;4sB phase have been extensively studied due to their remanence enhancement effect,
high energy product, and low cast. In this paper, we simultaneously investigate the hard magnetically compound
and nanocomposite in one type compound by changing quenching wheel speed. We produce the NeFe-based

compounds with various quenching wheel speed in order to study a transition from soft phase to hard phase.

2. Experiment

In order to ensure a homogeneous composition, ingots of NdFeM (M=B, Ti) were repeatedly melted and
solidified under Ar atmosphere four times. These alloys were fabricated by melt spinning onto a cupper wheel
at speed of 800 ~ 3000 rpm for rapid solidification. Melt spinning was carried out in an chamber with highly
purified Ar atmosphere. The microstructure of the samples were characterized by XRD. The hysteresis loops was

obtained a VSM due to study magnetic properties.

3. Result and discussion

Figure 1 and 2 display the XRD patterns and hysteresis loops of Nd,Fe ;4B powders for wheel speed values
of 2500 and 3000 rpm, respectively. 2500 rpm sample shows only Nd,FesB phase, small coercivity and high
saturation magnetization. The XRD pattern of 3000 rpm sample exhibits Nd;Fe;; and Fe phases, 3000 rpm sample

has large coercivity and low saturation magnetization.

- 119 -



Nd2Fel4B

2500 rpm + Nd2Fel 4B 0.3
—— 3000 rpm * Nd2Fel?
frary *Fe
= . 02
= . =
8 S
- _g 0.0
I 3
g M S .01
2 g
£ = 2b —— 2500 rpm
— 3000 rpm
u L L L ! L -0 3 ) )
20 30 40 50 60 70 80 30 5 0 5 10
Zimeteided) H field(kOe)
Fig. 1. XRD patterns of Nd,Fe;sB powders Fig. 2. Hysteresis loops of Nd;Fe;4sB powders
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We investigated the additional (secondary) cooling effect of casted strips on magnetic properties of Nd-Fe-B
sintered magnets. The Nd-Fe-B sintered magnets were fabricated with the casted strips prepared without and with
additional cooling. The additional cooling was performed by blowing Ar gas with various pressures (0.1, 0.3, and
0.6 MPa) on the free-side surface of the strips during strip-casting process. The higher magnetic properties of
H., B, and (BH)max of the final Nd-Fe-B sintered magnets were obtained for 0.1 MPa rather than for 0.0 MPa.
The best microstructure of columnar grains in the casted strips was produced with the aid of lower gas cooling
at the free side. It was found that the microstructure of the strips affects the distribution of grains grown in the
sintered magnets. This is the first report of demonstrating improved magnetic performance in Nd-Fe-B sintered

magnets by additional gas cooling.

Keywords : permanent magnets, Nd-Fe-B sintered magnet, strip casting, additional cooling, magnetic properties

- 121 -



HM11

Magnetic properties of large-scaled MnBi bulk magnets

Sumin Kim"", Hongjae Moon', Hwaebong Jung', Su-Min Kim?, Hyun-Sook Lee'",
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The high performance MnBi bulk magnet has been required for real applications of hybrid and electric
vehicles since the low-temperature-phase (LTP)-MnBi has been attracted much attention as a good candidate for
high temperature applications. Much work has reported in MnBi powders because there was a problem to
overcome the difficulty of LTP formation. The magnetic properties of bulk magnets are strongly dependent on
the details of the synthesis process and should be measured from large-scaled samples. However, the reported
values of (BH)max of MnBi bulk magnets were obtained from only a part of an original bulk sample using a
vibrating sample magnetometer (VSM) or a superconducting quantum interference device magnetometer (SQUID).
In particular, (BH)max of bulk magnets obtained by VSM, MPMS, and PPMS can be misled or overestimated due
to different sample preparations from that for a B-H loop tracer. It is well known that the B-H loop tracer is
a general and reliable apparatus for measuring the magnetic properties of large-scaled bulk hard magnets. In this
paper, we investigated the magnetic properties of large, compacted, sintered MnBi bulk magnets with dimensions
of 20.3x15.3x10.3 mm’. We have tried a new procedure for the preparation of high-quality precursor powder to
attain high LTP content: melt-spinning, cold-pressing, annealing, magnetic separation, and grinding. By adopting
the new process, the amount of LTP obtained was ~98 wt%, which is the highest value compared to that
presented in the literature for precursor powders. The improvement of coercivity was accomplished by controlling
the particle size using different milling techniques. The magnetic properties of the hot-compacted MnBi bulk
magnets were investigated using the entire as-prepared bulk sample without cutting. The highest maximum energy
product, (BH)max, obtained among our samples was 7.3 MGOe. This is the first report of demonstrating high
performance in large-sized MnBi bulk magnets. Our results show that our process can yield high-performance

in MnBi bulk magnets with larger dimensions

Keywords : permanent magnets, MnBi bulk, rapid-solidification, magnetic properties
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Nonmetal N-doped BiFeO nanoparticles with enhanced
room temperature magnetization

Yuefa Jia and Chunli Liu’

Department of Physics and Oxide Research Center,
Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea

Bismuth ferrite BiFeOs; (BFO) belongs to the perovskite structured (ABOs) family, which is a widely studied
multiferroic material having interesting properties with potential technological applications. In this work, N doped
BFO(N-BFO) nanoparticles have been synthesized by a conventional solid state reaction. The influences of N
doping on the magnetic properties of BFO was investigated systematically. XRD patterns of the prepared samples
exhibit presence of BFO crystalline phase. HRSEM images of the N-BFO show that particles are mostly spherical
with size in the range of 50-100 nm. The XPS data further confirmed that the nonmetal N element was
successfully doped in the BFO nanoparticles. Particularly, the N concentration was found to dramatically affect
the room temperature saturation magnetization of N-BFO. In 17 wt% N-doped BFO, the maximum saturation
magnetization was measured to be as high as 0.35emu/g, which is much higher than that of pure BFO(0.07

emu/g).

Keywords: N, BiFeOs;, saturation magnetization
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Fig. 1. Mossbauer spectra of Sr;sBa;sCox(Fel- Alx),404 (x = 0.00, 0.05) at 295 K.
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Table. 1 Saturation magnetization (Ms) and coercivity (Hc) of CoFe,O4 with reaction time(10, 15, 30, 45, 60 min).

Reaction Time (min) 10 15 30 45 60
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Fig. 1. Hysteresis loops measured CoFe,O4 with reaction time(10, 15, 30, 45, 60 min).
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We have investigated microscopic magnetic saturation process for a series of [CoFeB (4-A)/ Pd (10-A)], (n
= 2, 4, 8 and 16) multilayers with a perpendicular magnetic anisotropy by means of magneto-optical Kerr
microscopy [1,2,3]. Under a cyclic external filed during the major hysteresis loop measurement, we find that the
magnetic hysteresis loss shows a strong tendency of logarithmically increasing with respect to the repeat number
n of multilayer number. By quantitative analysis of magnetic domain patterns at the nucleation state (represented
as black in the following figure), it has found that the magnetic domain areas was found to increase exponentially

with respect to n, compared to the domain area for the case of n = 2 sample.
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Fig. 1. The magnetic hysteresis loops of samples with exponentially increased multi-layer numbers.
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Effect of Metalloid Ge Addition on the Magnetic
Properties of Fe-based alloys
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1. Introduction

Magnetic materials play an increasingly important role in modern industry as essential components of
commercial products. Fe-based amorphous alloys have attracted tremendous attention due to their excellent soft
magnetic properties including low coercivity and high saturation magnetization. It is necessary to develop
Fe-based amorphous alloys with high saturation magnetization using low cost constituent elements. A series of
Fe-P-C alloys, which exhibit good soft magnetic properties and low cost have been developed. It has been
demonstrated that the contents of metalloid elements play an important role in the glass-forming ability and
properties of the Fe-based amorphous alloys. The purpose of this work is to investigate the effects of Metalloid
Ge substitution for P on the magnetic properties of the Fe-P-C alloys.

2. Experiment

Alloy ingots were prepared by induction melting mixtures of high purity Fe (99.95%), Ge (99.999%), C and
industry-grade pre-alloys of FesP (99 %) in an argon atmosphere. Ribbons of each composition were fabricated
using the melt spinning under argon atmosphere at a roll speed of 56.3 m/s. Phase structures of the specimens
were identified by X-ray diffraction with Cu-Ka radiation. Thermal property of melt-spun alloys was evaluated
with a differential scanning calorimetry at a heating rate of 0.33 K/s under an argon flow. The saturation
magnetization and coercivity were measured by a vibrating sample magnetometer and a dc B-H loop tracer.

respectively. Additionally, the density of the specimens was determined using a helium pycnometer.

3. Result and discussion

For the Fe-metalloid type amorphous alloys, the valence electrons (sp electrons) of the metalloid elements
greatly influence the saturation magnetization of them. Generally decreasing sp electrons results in higher
saturation magnetization. The numbers of sp electrons in P, C and Ge are 5, 4 and 4, respectively. Thus the

substitution of metalloid element Ge for P is expected to increase the saturation magnetization of the alloys.

4. References
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1. Introduction

Many soft magnetic alloys have been researched as promising materials. Especially, amorphous alloys can be
good candidates in several application industries therefore many research groups have studied various
combinations of alloys recently. [1-3] Adding the 4 at. % Ta alloying to the Co-Fe composition enhances the
glass forming abilities (GFA) [4]. Our group has studied the thermal and the magnetic properties of Co-Fe based
alloys by making a small quantity of Mo, Nb, Cr and Ta addition [5-7]. In this research, we examined the thermal

and magnetic properties of the (CojxFey)72B192SissTas (0<x<1) alloys more specific than previous study.

2. Experiment

In this examination, multi-component ingots were made of pure elements and total mass is 6 g. Co-Fe-B-Si-Ta
alloy systems were made by vacuum arc melting furnace under argon atmosphere and re-melted at least six times
for homogeneity of alloys. The ribbons were rapidly solidified by a copper roller vacuum melt-spinning method.
After preparing of ribbons, we identified the thermal, mechanical and magnetic properties of alloys by using
various measuring equipment. First, the structure of alloys is confirmed by X-ray diffraction (XRD). Second, the
thermal properties, such as crystallization temperatures (Tx) are measured by using differential scanning
calorimeter (DSC). Third, mechanical properties are measured by using Thermo Mechanical Analyzer(TMA) and
Nanoindentation. Finally the magnetic properties are established by vibrating sample magnetometer (VSM) and

dc B-H loop tracer.

3. Result and discussion

In this study, we conducted more research on Co-Fe-B-Si-Ta system than earlier research in order to study
deep into the thermal and magnetic properties of Co-Fe based alloys. In XRD results, the curves have broad hump
trace of amorphous phase. The thermal stabilities of melt-spun ribbon samples are revealed from the increase of
the Tx and the detection of two exothermic peaks. The mechanical properties of the melt spun ribbons are
indicated by nanoindentation hardness(Hpanoindentation) and elastic modulus(E). The soft magnetic properties of the
Co-Fe-B-Si-Ta ribbons are indicated by the shape of hysteresis loop. So these melt-spun ribbons are suitable for

various applications which require the good thermal stability and good soft magnetic properties.
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1. Introduction

Fe-based amorphous alloy systems have attracted interest for the low material cost, and good soft magnetic
properties [1-3]. Particularly, improving the soft magnetic properties and glass forming ability of Fe-based
amorphous alloy systems has been studied for the several applications [4,5]. These (Co, Fe)-B-Si alloy system
was developed in 1974 and used in field of application development for its good soft magnetic properties and
high-strength compared with other Fe-B-Si systems [6,7]. Therefore, we have selected this system. Adding Mo
in the Fe-B-Si systems enhances glass-forming ability (GFA) and thermal stability. In this study, we researched
on effects of replacing Co by Fe and the part of small Mo additions, in Fe-Co-B-Si-Mo alloy system. We

examined the thermal and magnetic properties of (Co;xFex)72B192SissMos (0<x<1) by amorphous ribbons in detail.

2. Experiment

(CoixFex)72B192SissMoy (0<x<1) alloys were prepared by an arc-melting furnace with high purity metals under
Ti-gettered Argon atmosphere. In addition, these ingots were re-melted four times respectively, in order to be
homogeneous alloys. Then, these samples, ribbons with width of 3mm were prepared by single copper roller melt
spinning machine in 39.27m/s. After processing of ribbons, we identified ribbons' thermal and magnetic property
by multiple measuring equipment. The structure of amorphous is confirmed by X-ray diffraction (XRD). We
conducted an analysis of the results by differential scanning calorimeter (DSC)) to identify the thermal properties
such as the crystallization temperature (Tx). The saturation magnetization (M;) at room temperature was measured

by vibrating sample magnetometer(VSM) with a maximum applied field of 800kAm™.

3. Result and discussion

In this research, we performed diverse study on Co-Fe-B-Si-Mo system in order to identify that adding Mo
element enhances glass-forming ability and thermal stability. Also we want to study into the thermal and the
magnetic properties for Co-Fe based amorphous alloys with Mo in depth. (CoixFey)72B192SissMos (0<x<1)
amorphous ribbons showed the crystallization temperature (Ty) were decreased with decreased the ratio of Co.
Furthermore, the amorphous ribbons of these composition exhibited good soft magnetic properties. Thus Fe/Co
ratio in (CojxFex)72B192SissMoy alloys will be related with the thermal stability and soft magnetic properties and

the addition of a small quantity of Mo have beneficial effects on magnetic properties.
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Magnetic and Thermal Properties in the Fe-based
amorphous alloy with Zr and Nb
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1. Introduction

It is widely known that Fe-based amorphous alloys have good soft magnetic properties which cannot be gained
for crystalline magnetic alloys. Besides, the addition of Co improves soft magnetic properties such as high
saturation magnetization (M), low coercivity (H), and glass forming ability (GFA) in Fe-based amorphous alloys.
It is well known that metalloids (such as B, P, and Si) play an important role in the GFA in Fe-based amorphous.
In this study, we added B to improve the GFA and thermal stability. Similar to the B, Zr improves thermal
stability. The famous alloy system with nanocrystalline microstructures known as HITPERM, Fe-Zr-B alloy, is
likely to exhibit high M, and low H.. Furthermore, we added small Nb to improve the structural properties and
the thermal stability.

The purpose of this work is to find alloys that have good soft magnetic properties such as high M, low H,
by analyzing magnetic properties in (Fe, Co)-(Zr, Nb)-B alloys with appropriate machines.

2. Experiment

For this research, ingots which weigh 6g were prepared by using arc-melting under a Ti-gettered Ar
atmosphere mixture of Fe slug (99.95%), Co slug (99.95%), Zr pieces (99.95%), Nb slug (99.95%), and B pieces
(99.5%). Each of them transformed into ribbons with width of 2mm by melt-spinning under Ar atmosphere at
a wheel speed of 56.3 m/s. The amorphous structure with no crystalline peak could be confirmed by X-ray
diffraction (XRD) using a Cu-Ka radiation. Thermal properties were obtained by Differential scanning calorimeter

(DSC). Magnetic properties were obtained by vibrating sample magnetometer (VSM).

3. Result and discussion

In this study, we analyzed the magnetic and thermal properties of the (Fe, Co)-(Zr, Nb)-B alloys, and found
the optimized composition that has good soft magnetic and thermal properties. HITPERM alloys (such as Fe-Zr-B
system) have high M; and low H.. Therefore the addition of Zr and Nb in Fe-based amorphous alloys is expected

to have good magnetic and thermal properties.

4. References
[1] K. Suzuki, N. Kataoka, A. Inoue, A. Makino and T. Masumoto, Material Transactions, JIM 31, 743 (1990).
[2] Baolong Shena and Akihisa Inoue, Appl.Phys. Lett. 85, 4911 (2004)
[3] Wenbiao Zhang, Qiang Li,a, and Haiming Duana, Journal of Appl. Phys. 117, 104901 (2015)
[4] Sumin KIM and Haein Choi YIM, JKPS, 67, 2120 (2015)

- 145 -



SM17

Fe-Si 7|12t magnetic alloy core®| 1131} CHS
power inductor £450]| LT 17

2e5’ 0| M3, UM, 0|85

| [ ==

=97 & *@r% TANE, fh= ) =roj e st

L AufEE LB BT} At AYs) Hof uka), power inductor- core A7 EIF =& EXEy =
A 3}2}3E ZF= magnetic metal composite &2 W2 A A =2 Qlt} 3}FX]HF magnetic alloy] -2 resonance
frequency@} resistivity= Q18] IFab oA As0] AT He= EAJo] BiE il Itk Carbonyl iron
powder (CIP)= EXx}&0] b4 W xp7|AF Halof o3 ebg A o]al, 2 eddy current loss ¥ hysteresis lossE
LUEMH o] radio frequencyt| S application®] = 2 AFE-E| 1 Qlt} o]of £E]= Fe-6.5Si¢] 4= micro size2] CIP
5 =33t (10-x)Fe-6.5Si—(x)CIP core®] 1Fuk4> thd power inductor -5 sl Attt ZeFu]of o}
2} &35} Fe-6.5S11} CIP mixture®]] epoxy resing &35t & pressing W F 4 2]E 53| toroidal e Q] coreS
Az sFATE Al 27 core®] MH)9F p(f) S4S &l 23pAkat © aabg o4 o] Fxls Hals g4l
516, B-H analyzer 24 E3)] 240 W2 core loss M35 &9l 514t} ESF SEME ©]-83tF core body
9] cross-sectional image =742 £33 core2] micro structure®} FI S AA57Ho] AdadAof dhsl A5ts)
At

- 146 -



SM18

Effect of Boron Additions on Magnetic Properties of
Fe-based Amorphous alloys

Jihye Kim", Sumin Kim', Bo Kyeong Han' and Haein Choi-Yim'
'Department of Physics, Sookmyung Women’s University, Seoul 04310, Republic of Korea

1. Introduction

Fe-based ferromagnetic metallic glasses are known as excellent soft magnetic properties including high saturation
magnetization (M), low coercivity (H), and high permeability. Also, Fe-based alloys have low material cost and
ultrahigh strength, and high corrosion resistance [1]. In general, it is well known that the metalloid contents improve
to glass forming ability (GFA) [2]. In particular, the suitable ratios of B to transition metals leads to the enhancement
of its GFA and thermal properties of amorphous alloys. It is important to find optimization component between
B and transition metal, because the addition of transition metal component lead to brittle. In this study, we reported
the soft magnetic properties of Fegrx.,)CoyTi7ZrsBx (x=2, 4 and y=20, 25, 30, 35, 40) alloys [3.4].

2. Experiment

The ingots of Fegr..y)CoyTi7ZrsBy (x=2, 4 and y=20, 25, 30, 35, 40) alloys were prepared by vacuum arc
melting furnace under argon atmosphere and re-melted four times for homogeneity of alloys. After the arc melting
process, ingot re-melted and rapidly cooled by melt spinning at a wheel speed of 56.3m/s. Then, we obtain the
ribbons 2 mm in width and 20-30 um in thickness. Then, we measure the magnetic and thermal properties via
various measuring equipment. The structure of amorphous phase was established by X-ray diffraction (XRD). The
saturation magnetization (M) at room temperature was established by vibrating sample magnetometer (VSM).
Thermal properties related of the glass transition temperature (Ty) , crystallization temperature (Tyx) and
supercooled liquid region (ATy = Ty — T,) was measured by using differential scanning calorimeter (DSC) and

thermo mechanical analysis (TMA).

3. Result and discussion

In this experiment, we studied on the effect of Boron additions on magnetic properties of Fe-based amorphous
alloys. The ribbons of Feg7.«y)CoyTi7Z1sBx (x=2, 4 and y=20, 25, 30, 35, 40) showed fully amorphous phase in
the XRD patterns except for FessCosTizZreB, (x=2 and y=40). From the hysteresis loop of these amorphous
ribbons, the highest value of Ms was 1.59 T. The DSC and TMA curves notice the GFA of these alloys. The
largest values of ATy were obtained as the B content of 4 at.%. This means, the B contents are influence on
ATy. In conclusion , the Fe-Co-Ti-Zr-B alloys have excellent soft magnetic properties and it can be expected to

improve their properties after annealing process.
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The spin field effect transistor (spin-FET), proposed by Datta and Das [1], is one of the most popular concepts
for next generation devices due to low power consumption, high speed, and nonvolatility. The main operation
of spin-FET is that the control of spin-procession angle by a gate electrode in a semiconductor quantum well
[2]. In this device, the spin-polarized current is injected from a ferromagnetic source and detected by the other
ferromagnetic drain. While travelling spin polarized current from the injector to the detector in a semiconductor
quantum well, the angle of spin-procession angle is decided by Rashba field which is controlled by a gate
electrode. To be utilized for the logic gate, we should operate spin transistor without external magnetic field and
parallel- and antiparallel types of spin-FET (P-ST and AP-ST) which can replaced conventional n- and p-MOS.

The Rashba field arises along the y-axis, so the magnetization direction of source and drain should be along
the x- or z-axis, i.e. perpendicular to the Rashba field (Bg,), to induce spin precession. In this experiment, we
choose the ferromagnetic electrodes (FM) with magnetization along the x-axis. The lateral sizes of FMs are 0.5
pm X 15 pm and are 0.8 pum x 15 pm, respectively. Since the shape anisotropy would lead to a FM magnetization
along the y-axis, we employ an exchange bias field along the x-axis using CossFe ¢/IrxMnsg bilayers. During the
sputtering of CogsFejs and Ir,;Mnzg, we applied magnetic fields of +20 mT and —20 mT along the x-axis,
respectively. Due to interfacial exchange interaction between the CogsFeq and Ir,Mnys, the first interfacial layer
of Ir;Mnss has the same magnetization direction as the CogsFejs layer. The antiferromagnetic order of Ir,Mnsg
causes subsequent layers to have alternating magnetizations. The antiferromagnetic order is very stable, so that
the ferromagnetic CossFejs layer retains its magnetization direction even without a magnetic field. The
ferromagnet/anti-ferromagnet bilayers have +35.5 mT and —36.3 mT of exchange bias. We also calculated the spin

transistor operation using those parallel and antiparallel types spin-FET.
References
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Dzyaloshinskii-Moriya interaction (DMI) has been extensively studied nowadays due to academic curiosity as
well as technological opportunity toward spin-based nanodevices. It is now well known that the DMI appears at
interfaces with inversion symmetry broken structure [1,2]. However, detailed relation between the DMI strength
and the nature of the interface remains elusive. Here, we examine an empirical relation between the DMI strength
and the work function W of the materials at interfaces, since a large difference of the work function between
the interfacial materials may generate a large DMI due to a large electric field at the interface. For this
examination, we fabricate a series Pt/Co/X (X=Pt, Pd, Au, Ru, Al, Ta, W, Ti, and Cu) films. The films basically
have the same structure except the upper layer material X and thus, one can compare the contribution from the
upper Co/X interfaces among the films. Figure 1 plots measured Hpwv, DMI-induced effective magnetic field, with
respect to W, where W is from the material table in Ref. [3]. The figure shows a clear correlation between Hpm
and W. Though the exact value of Hpwm in real films largely depends on the crystalline structures and orbital

mixing, the present observation provides a good guideline to design the film structure for optimal Hppi.
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Fig. 1. Plot of the work function with respect to measured Hpmi,

for Pt/Co/X films with various materials X as denoted in the figure.
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1. Introduction

Amorphous alloys are being developed for use in motors, sensor, and electromagnetic shielding applications.
Especially, Co-based amorphous alloys with nearly zero magnetostriction are the suitable characteristic for
magnetic cores. However, amorphous structure is in a metastable state due to rapid quenching, so further
annealing treatment is necessary to optimize magnetic properties. The effect of annealing has been investigated
for a number of amorphous alloys and been found that the annealing cause reduction of coercivty and losses.

In this study, the annealing effect on the magnetic properties of Co-based amorphous ribbon was investigated

2. Experiment

Alloy ingots with the composition C07,B9,SissCrs and CoessFe72B192S145Crs were prepared by arc-melting
mixtures of high purity constituent elements under a Ti-gettered argon atmosphere. Amorphous ribbons with 2
mm width and 20-30 pum thickness were produced by melt spinning in an argon atmosphere. The melt-spun
ribbons were subjected to annealing treatments at various temperatures below glass transition temperature for 15
minutes in a vaccum. The composition and structure of ribbons identified by X-ray diffraction with Cu-Ka
radiation. Thermal stability associated with the crystallization temperature and glass transition temperature were
measured using a differential scanning calorimeter and thermomechanical analysis under a flowing argon
atmosphere. The magnetic properties including saturation magnetization and coercivity at room temperature were
measured in a maximum applied field of 20,000 Oe by using a vibrating sample magnetometer with field

resolution of 1 mOe.

3. Result and discussion

The annealing effect on the magnetic properties is reported for the Co-based amorphous ribbons. All of the
ribbon with or without heat treatment was identified as a fully amorphous alloy in X-ray diffration patterns. We
confirmed that heat treatment contributes to soft magnetic properties. The lowest value of coercivity was 0.082

Oe after annealing for 15 minutes at 450°C for CoessFe72B192SissCry.

4. References
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[3] S. Kim, Y.J. Kim, Y.K. Kim, H. Choi-Yim, Curr. Appl. Phys. 17 (2017) 548-511.
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Multilayer structures of dilute magnetic semiconductor (DMS) have been extensively studied in semiconductor
spintronics. In magnetic multilayers, the spin-dependent transport properties, such as the giant magnetoresistance
(GMR), is highly dependent on the spin configuration of each magnetic layer. Since the interlayer exchange
coupling (IEC) between the individual magnetic layers in such systems results in nontrivial magnetizations, since
it is important to understand the magnetic configuration of the multilayer system [1,2].

In this study, the laterally averaged structural and magnetic properties of the (Ga;xMnxAs/GaAs);y multilayer
is investigated using X-ray Resonant Magnetic Reflectivity (XRMR). XRMR is very useful tool for such studies
because of its sensitivity to surface and interface properties. At zero field, the change in intensity at the two
different Half-Bragg peaks indicate that all magnetic layers are antiparallel due to the antiferromagnetic (AFM)
IEC [1,3]. With a strong applied magnetic field, the Zeeman energy overcomes the AFM IEC and all magnetic
layers are parallel. When the magnetic field is gradually decreased to zero field, it is found that the top-most
magnetic layer retains its magnetization direction, while the magnetic layer beneath flips its magnetization. The
subsequent layers follow the magnetic configuration of these first two layers resulting in antiparallel spin
configuration. Such reversal process is consistently observed in the antiparallel spin configuration regardless of
direction of applied magnetic field. We believe these results will help us understand spin-dependent transport in

(Ga,;xMn,As/GaAs);p multilayer systems.
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In a charge current flowing 2DEG channel, Rashba spin-orbit coupling generates local and bulk spin
polarization through spin Hall effect and Edelstein effect, respectively. Spin Hall effect accumulates opposite spins
at both edges of channel, so spin current is induced perpendicular to charge current direction. On the other hand,
Edelstein effect induces spin polarization with a direction of Rashba effective magnetic field and it makes charge
current itself spin polarized. Spin polarization is the most important value in spin related phenomenon, however,
it is not easy to quantify the spin polarization experimentally.

In this research we measured anisotropic magnetoresistance (AMR) to determine the spin polarization induced
by Edelstein effect. External magnetic field is applied and rotated in 2DEG plane, and AMR is measured for
various currents and gate voltages. In 2DEG structure, Rashba effective field is constant for a current, so direction
of spin polarization is also fixed unlike AMR in ferromagnetic materials. It makes difference in resistance level
(AV,) for parallel and antiparallel ordering between external magnetic and Rashba effective field. Finally we
could find out that spin polarization can induce AMR without ferromagnetism and measured AMR (AV,) agrees

with spin polarization predicted by Edelstein.
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For the monolayer MoS,, we calculate the Berry curvature, which generates the intrinsic spin/valley Hall effect
in the material. By using k -p perturbation theory, we investigate the effect of mirror symmetry breaking in
monolayer MoS,. Unlike the earlier calculation[1], it depends on the gate voltage, which breaks the mirror
symmetry and induces the Rashba spin-momentum coupling. We find that the coupling enhances Berry curvature
significantly. We calculate the spin/valley Hall conductivity from our result and it can explain recent experimental

results.[2-4] Then we extend this analysis to bilayer MoSa.
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Recent discovery of spin-orbit torque (SOT) provides a new route to control the magnetization of nano
magnets, and the control of magnetization with SOT becomes a very important part of the spintronics. SOT have
shown interesting features, for instance, such as unusual angular dependence, that cannot be simply explained by
spin Hall effect. In order to understand SOT, it is important to quantitatively measure the magnitude, symmetry,
and angular dependence of SOT. Among the several measurement schemes of SOT, harmonics measurements are
frequently used for determining the magnitude of SOT because of its simplicity [1]. If a temperature gradient
exists in the sample, thermoelectric artifacts can be included in the SOT harmonics measurement.

Here we have studied those thermoelectric artifacts in SOT harmonics measurements, and considered how to
exclude them. The samples consisting of Ta (5 nm)/ Pt (3 nm)/ Co (0.6 nm)/ MgO (2 nm)/ Ta (2 nm) were
patterned into a Hall bar geometry (5%5 pm"2) by ion milling and photolithography. The first and second
harmonics signals are measured by a lock-in amplifier. A nominally measured Hall signal can be influenced by
several artifacts such as Seebeck, Nernst, Ettingshausen, Righi-Leduc effects as well as misalignment and Ohmic
offsets. It turns out that the second harmonics signals corresponding to the field-like torque and damping-like
torque are contaminated by considerable thermoelectric artifacts. We have shown that those artifacts, which
deteriorate a correct Hall measurement, can be eliminated by considering the current and field symmetry in the
2nd harmonics. The elimination of thermoelectric artifacts enables us to correctly measure the magnitude and

angular dependence of SOT, and thereby to properly interpret the physics of SOT.
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The crystallographic and magnetic properties of single phase garnet Y; RiFesO;, (R= La, Nd, and Gd) were
studied using x-ray diffraction, Mdssbauer spectroscopy, and vibrating sample magnetometer (VSM). The lattice
constants increase when substituting rare earth ions of Nd and Gd in YIG. The Curie temperature was slightly
increased when substituting rare earth ions such as Gd, Nd and La, with a relatively larger ionic radius than those
of Y. It is known that Y>*cation consists of inert krypton core with the 4p (no f-electron) layer fully filled with
six electrons of paired spin. So, it has no permanent magnetic moment (0 pB). However, both Nd**and Gd*'ions
have a magnetic moment. The ionic radius doped in 24(c) site have a more immediate and vital influence on
the magnetization, though super-exchange interaction between 16(a) and 24(d) site is weaken due to heavy rare
earth Gd*'ions substituted in 24(c) site. At room temperature, the three sub-lattices are aligned along the [111]
direction. Therefore, the net magnetic moment is following equation of M = M-[M¢-M,].

It is well known that the La®" ion is non-magnetic same as Y>" ion. However, the results of magnetic property
show that the M; is decreased. This is because the substitution of La®" affects to a distortion of the 16(a) and
24(d) site to different degrees, and the length and angle of the Fe-O-Fe linkage are changed. The ionic radius
doped in 24(c) site have a more immediate and vital influence on the magnetization, though super-exchange

interaction between 16(a) and 24(d) site is weaken due to heavy rare earth Gd*" ions substituted in 24(c) site.
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Coexistence of semimetallic phase and
semiconducting phase in Wle; alloy

Jeehoon Jeon"?, Tae-Eon Park', Joonil Cha®®, Hyun Cheol Koo', Jinki Hong?,
In Chung®®, Joonyeon Chang®
'Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul, Korea
’Department of Applied Physics, Korea University, Sejong, Korea
*Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Korea
*KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
>Post Silicon semiconductor Institute, Korea Institute of Science and Technology, Seoul, Korea
6School of Chemical and Biological Engineering and Institute of Chemical Processes,
Seoul National University, Seoul, Korea

The layered semimetal WTe, has been received a lot of attention because of the observation of a
non-saturating and extremely large positive magnetoresistance, which can be one of the excellent candidates for
magnetic memory and spintronic device. In order to apply to tunable high-performance device effectively, WTe,
is required to demonstrate band-gap engineering by alloying different materials like bulk semiconductor. WTe,
is distinguished from other transition-metal dichalcogenides (TMDs) by the existence of an exceptional
semimetallic distorted octahedral structure (Td). Therefore, we can take advantage of region, which has the
coexistence of the Td phase and the H phase, in various aspect such as easy to make ohmic junction and tune
for the transport properties by band-gap engineering.

In this research, we introduce W M,Te; (M = Re, Mo) and WSey.gTeyy crystals to confirm coexistence
possibility of coexistence phase. We obtained ohmic contacts between Ti/Au metal electrodes and the layered
WTe, alloys by chemical and physical surface treatments. In transport measurement, we observed that
magnetoresistance is decreased dramatically, and transverse resistivity tendency is changed. These results indicate
that the electron-hole concentration symmetry is broken, which illustrates the first step of making coexistence
state. This coexistence phase can open up an exciting opportunity not only for developing devices induced by
gate-controlled phase transition but also for understanding their fundamental physical properties of Wyle

semimetals.
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Phase locking of mulfiple spin-torque nano oscillators

Hee Gyum Park’, Chaun Jang and Byoung-Chul Min

Center for spintronics, Korea Institute of Science and Technology, Seoul, Korea

Spin-torque nano-oscillator (STNO) is based on the transfer of spin angular momentum to the local
magnetization of nano-magnetic structures, which generates a microwave signal under certain conditions of
external magnetic field and DC current [1]. The STNO raises prospects for a microwave generator, but critical
disadvantages such as lower power and broad linewidth hinders the real applications of STNO for wireless
communications [2]. The synchronization of multiple STNOs is one of solutions to overcome those
disadvantages [3].

Here, we have studied the phase locking of multiple STNOs consisting of nano-scale magnetic tunnel junctions
by injecting an external microwave signal. The microwave response of an STNO, which shows a broad oscillation
peak at 3.1 GHz, is measured with increasing the power of the external microwave signal (P.). The broad
response of the peak is unchanged when P, is small, gradually decreased from P, = -25 dBm, and almost
disappeared at P.,, = -10 dBm. This indicates that the oscillation of the STNO is locked to the injected external
signal. As the frequency of external signal is varied from 1.5 to 8.3 GHz, the injection locking is observed in
a wide range of frequency from 1.8 GHz to 2.7 GHz. Next we have investigated the injection locking of two
STNOs connected in parallel, which show two distinguished oscillation peaks at 2.0 and 3.1 GHz, respectively.
The phase locking of two STNOs to the injected external signal is observed in an unexpectedly wider range of
frequency. This wide-range phase locking of multiple spin-torque nano oscillators will be extremely useful for

constructing microwave transceivers for wireless communications.

References
[1] S. I Kiselev et al.,, Nature 425, 380 (2003).
[2] H. S. Choi et al., Sci. Rep. 4, 5486 (2014).
[3] B. Georges et al., Phys. Rev. Lett. 101, 017201 (2008).
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Substrate-Free YsFes0O4; (YIG) Spin-Thermoelectric (TE)
Module Prepared by the Sol-Gel Synthesis

Min-Sun Jang"¥, Im-Jun Roh?, Jungmin Park®, Chong-Yun Kang®°, Won Jun Choi*,
Seung-Hyub Baek?®°, Kyoung Jin Choi', Sung Soo Park®, Jung-Woo Yoo®, Ki-Suk Lee""
'KIST-UNIST Ulsan Center for Convergent Materials, Ulsan National Institute of Science and Technology (UNIST),
Ulsan 44919, Republic of Korea
*Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
*School of Materials and Science Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
*Center for Opto-Electronic Materials and Devices,

Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
’Department of Nanomaterials Science and Technology,

Korea University of Science and Technology, Daejeon, 34113, Korea
SKU-KIST Graduate, School of Converging Science and Technology, Korea University, Seoul 02841, Korea

1. Introduction

Recently, magnetic materials and magnetic phenomena continuously have been highlighted as prominent
resource for a future green energy [1, 2]. The ferrimagnet insulator-YsFesOp, (YIG) that is the one of the magnetic
material with metal oxides has been taken center stage owing to its prominent applications to eco-friendly
spin-caloritronics [3, 4]. During the past decade, most of the studies on the spin Seebeck effect (SSE) have been
done on well-grown single crystal sample of YIG by pulsed laser deposition (PLD) method [5]. Here, we report
on the SSE of YIG prepared by a sol-gel method, a conventional method for metal oxide materials [6, 7]. In
this presentation, we reveal that the temperature of heat treatment and effect of the external mechanical pressure
can play a critical role for the magnetic properties of YIG. Furthermore, we demonstrate that considerable spin

thermoelectric voltage can be generated successfully by the poly crystal — YIG prepared by the sol-gel method.

2. Experiments

We prepared the YIG precursor by mixing yttrium nitrate (Y(NOs);.6H,O, 99.99%) and iron nitrate
(Fe(NOs);.9H,0, 99.99%) powders in a stoichiometric ratio of 3: 5, and adding citric acid (C¢HsO7.H,0O). The
precursor mixture was dissolved in distilled water (100 mL) by stirring (300 rpm) at 27 °C for 18 hours. The
solution of the citric acid was maintained at 1pH. The resulting solution (sol) was then stirred for 24 hours at
80 °C to obtain a homogenous gel. Next, a gel was obtained from the sol by drying the solution, which was
decomposed at 100 °C for 5 hours to form a dry material. The YIG powder was obtained by grinding the
completely dried gel for 30 min. The calcination process was carried out at 850 °C in the air for 2 hours at
a heating rate of the 7.7 °C /min to get rid of residual impurities and the crystallization. After, we did the pressing
process to produce the substrate-free YIG by pushing 1.5 ton for 5 minutes and to check out the influence of
external mechanics for magnetic properties. Lastly, sintering has been done at 1400 °C for 4 hours. After
produced the substrate-free YIG, we designed the platinum (Pt) on the surface of the YIG because of observing
the longitudinal SSE. The 15 nm-Pt layer was deposited on the disk-shaped YIG with 1.8 mm thickness and 14
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mm diameter. And 400 Oe magnetic field applied parallel to the disk plane and the temperature gradient was
formed along out-of-plane direction. We produced not only the substrate-free spin-TE module but also investigated

various materials properties of the YIG.

3. Results & Discussion

After pressing, the microstructure resembled a continuous network of almost hexagonal bubble-shaped particles
with no vacancies. The field-emission scanning electron microscopy (FE-SEM; Hitachi, S-4800) images indicate
that mechanical pressing after the heat treatments results in grain growth with high densification and a remarkable
reduction of impurities in the microstructure. The particles become coarser as the sintering time was increased.
Moreover, we found from X-ray diffractometer (XRD; Bruker AXS, D8 ADVANCE) and X-ray photoelectron
spectroscopy (XPS; ThermoFisher, K-alpha) measurements that the extra surface energy induced by the pressing
and sintering process allows the complete crystallization of polycrystalline YIG to be achieved by increasing the
degree of oxidation. Consequently, the Mg was enhanced from 10 emu/g to 26.5 emu/g after the pressing process.
From the measurement of the spin-TE module, we observed that the considerable spin thermoelectric voltage was
generated successfully. This research might be suggested how to make easily and inexpensively YIG with

enhanced magnetic properties as well as the applicable spin-TE module.

4. References
[1] M. Hatami et al., Phys. Rev. Lett. 99, 066603 (2007).
[2] X. Yu et al., Nat. Mat. 15, 383 (2016).
[3] K. Uchida et al., Nat. Mat. 9, 894 (2010).
[4] K. Uchida et al., J. Phys.: Condens. Matter 26, 343202 (2014).
[5] N. B. Ibrahim et al., J. Magn. Magn. Mater. 220, 183 (2000).
[6] R. Kuchi et al. Nanosci. Nanotechnol. Lett. 7, 738 (2015).
[7]1 H. Adachi, Phys. Rev. B 83, 094410 (2011).
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Invited O-II-1

Spin-orbit entanglement and spin-momentum coupling

Hyun-Woo Lee’
Department of Physics, Pohang University of Science and Technology

Spin-momentum coupling plays important roles in spintronics in various context including spin generation,
spin transistor, and spin-orbit torque. Here we show that for the spin-momentum coupling to arise, the
entanglement between spin and orbital degree of freedom is indispensible. We also discuss implications of the

spin-orbit entanglement on spin split energy bands.
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Soliton-like magnetic domain wall motion induced by the
interfacial Dzyaloshinskii-Moriya interaction

Kab-Jin Kim"", Yoko Yoshimura?, Yoshinobu Nakatani®, Teruo Ono?

'Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.
“Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
*University of Electro-communications, Chofu, Tokyo, 182-8585, Japan

Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions start to play an important
role in modern magnetism due to their extraordinary stability which can be hailed as future memory devices.
Recently, novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI),
has been uncovered and found to influence on the formation of topological defects. Exploring how the DMI
affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamics of
the magnetic domain wall (DW) under a DMI by developing a time-of-flight measurement scheme which allows
us to measure the high DW velocity for magnetic fields up to 0.3T. For a weak DMI, the trend of DW velocity
follows the Walker’s model which predicts that the velocity of DW increases with field up to a threshold (Walker
field) and decreases abruptly. On the other hand, for a strong DMI, velocity breakdown is completely suppressed
and the DW keeps its maximum velocity even far above the Walker field. Such a distinct trend of the DW
velocity, which has never been predicted, can be explained in terms of magnetic soliton, of which topology can
be protected by the DMI. Importantly, such a soliton-like DW motion is only observed in two dimensional
systems, implying that the vertical Bloch lines (VBLs) creating inside of the magnetic domain-wall play a crucial

role?.

Reference
[1] Y. Yoshimura et al. Nat. Phys. 12, 157 (2016).

- 176 -



Invited O-II-3

Heusler alloy based magnetoresistive devices

K. Hono
Research Center for Magnetic and Spintronic Materials,
National Institute for Materials Science (NIMS), Tsukuba, Japan

The hard disk drive industry is making continuous efforts to increase the areal density of magnetic recording.
To realize the areal density of higher than 2 Tbit/in’, the shield-to-shield spacing of read sensors must be smaller
than 20 nm with low device resistance (resistance-area product RA~0.1 Qum?), which is very challenging goal
for MgO-based TMR devices. There are two approaches to achieve low-RA high-MR devices; one is to reduce
RA of tunneling magnetoresistive devices using low resistance barrier and the other is to enhance MR output of
current-perpendicular- to-plane giant magnetoresistive (CPP-GMR) devices using half-metallic ferromagnetic
layers. We explored several Co-based Heusler alloys with high spin polarization for ferromagnetic layer
applications and new barrier and spacer layers that can enhance MR outputs in TMR and CPP-GMR devices.
To extract the highest MR outputs that can be expected intrinsically from the combination of the ferromagnetic
and nonmagnetic materials, we characterized the interface structures of layered devices using aberration corrected
STEM with a near-atomic resolution to understand the structure-property relationships. In this talk, I will overview

the current status and perspectives of low-RA high-MR devices for reader applications.

Kazuhiro Hono received the BS and MS degrees in Materials Science from Tohoku University in 1982 and
1984, and a Ph.D. degree in Metals Science and Engineering from Penn State in 1988. After working as a post
doc at Carnegie Mellon, he became a research associate at the Institute for Materials Research, Tohoku University
in 1990. He moved to the National Institute for Materials Science (NIMS) as a senior researcher in 1995, and
is now a NIMS Fellow and the Director of the Research Center for Magnetic and Spintronic Materials. He is
also a professor in Materials Science and Engineering at the University of Tsukuba. His current research interest

is materials science in magnetic and spintronics materials and their devices.
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Effect of Solvents and Relative Humidity on
(CsHs(CH2)2NH3)2(Mn,Cu)Cl, thin films

Ki-Yeon Kim’
"Neutron Science Center, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea

Layered two-dimensional organic-inorganic perovskite thin films (A,BX4, A= a monovalent organic cation, B=a
divalent metallic cation, X=a halide anion) have been proposed for a variety of industrial applications such as
semiconducting channel in thin film transistors ((C¢HsC,H4NH3),Snly) [1] and multiferroics((C¢HsC,H4sNH3),CuCly)
[2] and optoelectronics devices((CsHoNH;3),PbBry) [3]. Particularly, (C¢Hs(CH;),NH3),CuCl, (shortly, Cu-PEA) and
(C6Hs(CH,):NH3,MnCly (shortly, Mn-PEA) belong to a family of layered two-dimensional K,NiF, perovskites
where the inorganic part comprises a two dimensional network of corner-sharing BCls> octahedron. The interesting
point is that they crystallize in the same space group (No. 61 P 2,/b 2,/c 2,/a) at room temperature and show
the almost same lattice parameters (a =7.187 A, b= 7344 A, ¢=38.549 A for Cu-PEA, a =7.207 A, b =7.301
A, ¢c=39.413 A for Mn-PEA), but different magnetic behaviors. Cu-PEA is a ferromagnet (Tc =9.5 ~13 K) [2],
while Mn-PEA is a canted antiferromagnet (7y = 44 K) [4]. It has been reported that organic-inorganic layered
perovskite thin films can be readily prepared by a number of simple and versatile techniques such as sol-gel and
spin-coating and Langmuir-Blodgett and evaporation. Even though the perovskite layers in all the previous cases
were ultrathin (few to tens of nanometers), unencapsulated, and exposed to the air, structure stability of layered
perovskite thin film against moisture has been rarely addressed so far. In this talk, the influence of organic solvents
and relative humidity on structural and magnetic properties of unencapsulated Cu-PEA and Mn-PEA perovskite

thin films synthesized by spin coating technique will be presented.

References

[1] C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulolos, Science 286, 945 (1999).

[2] Alexy O. Polyakov, Anne H. Arkenbout, Jacob Baas, Graeme R. Blake, Auke Meetsma, Antonio Caretta,
Paul H. M. van Loosdrecht, and Thomas T. M. Palstra, Chem. Mater. 24, 133, (2012).

[3] Letian Dou, Andrew B. Wong, Yi Yu Minliang Lai, Nikolay Kornienko, Samuel W. Eaton, Anthony Fu,
Connor G. Bischak, Jie Ma, Tina Ding, Naomi S. Ginsberg, Lin-Wnag Wang, A. Paul Alivisatos, Peidong
Yang, Science 349, 1518 (2015).
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Trans. 41, 1237 (2012).

- 181 -



Z0O-III-2

Filtering spins at optical-field-induced charge transfers:
petaheriz spin diode

Jae Dong Lee’
Department of Emerging Materials Science, DGIST, Daegu 711-873, Korea

A superb manipulation of the optical-field-induced petahertz (PHz, 10"{15} Hz) charge processing driven by
a strong few-cycle optical waveform enables an exploration of spin processing at the same speed. In a proposed
model of the two-dimensional (2D) ferromagnetic (FM)-nonmagnetic (NM) heterostructure, net spins are found
to be filtered down to the NM layer at the optical-field-induced charge transfers oscillating between FM and NM
layers. A phase retardation is also found to be caused in the charge transfer by the spin-orbit coupling. This
finding introduces a petahertz spin diode, broadening horizons of the spintronics up to the subfemtosecond time

span.

- 182 -



a
o

KMS 2017 Summer Conference

special Session IV
AAHIOIAIL] KITHE 2

Talig 3T 257’






SMEA I|I0 ML XM LTS

oy

T

SKC

S 2l 71719 BRI W A K3l A

20k E, GEH POSY NS BAgeks

G ohujeh B2 ANlE £8 $402 43 A48 H3 A 21 o]
jui

2
[O) eIy ]
rRE T =

i
T
b
=
fru
nich
ofo
i)
=

(NFC, Near Field Communication), MST (Magnetic Secure Transmission) ¥ FAZ=H 7|50 Qlo] A&
ge gatH o ALsly] 95t W4 AR AFE = 9ot
Ae] olF FANFC), MSTF FAHFHL FA oA Zd Fef ] eyl ARE SHFUS o 24
%l

!

He
A7 ol ool 415 8 A e Hd, ol SR o sk 2715 el

il
5 U2 andgoz [Adstr] ¢ske] application AR
o _1,54xl.03q. go Exlaile 7 % A AN E 7T HIEA] Q5

oflM= AN HA7|ae] FEj= 459k AEs HAEsh= NFC, MST, FAF oA A3k
gpo A - FAEY B FARRAS 2 AdARY S H Y 3l s dopH iz}

}of| A

W

= T = =]

, SKCOlA 7t At Ao thsf Arfsharx; gt

N

N

~

o B
E%NH

- 185 -



ZS-IV-2

QA4 (soft magnetic) At ThREe] A71AZ 71714, Aol A W Bt peAE sRe| REoR
AR glom, oA ] AT Bl U SPYH FFL BFs Bek 4G A4 Ao ot
A7 AR 71719 a2 ARsh FHoU Aol U BEd A4S % ARE AU de] A
of Wast 8o Bhgat/] Slstel MALBIL FAb O R R ek 24 FYRES §Istel A2
o 2 EoA4UE 2 o B nESeld A9 5 g AA7F R FET QLo LELIE 9Iste] LAl
U8 we a7t aEs gk

O QA 2 AHgIHE EALSERL Qe B9,
s}42 ol EopEAEsL 2 A S AAT 5
¥ FPUAL GUS T2 AeARp PGS U et 7

ot BESTHE SO Pebow AeAl AAAS Aol ol T gleh A2y Arel gloiH] ik
of MY % FFE AAY 279 A5k (magnetization)o] 1) o]l A|A Fzel, o] AP ALGEE
NUA L ALgelA AGEE o2 BAGe] AHE U EUE tehbA Hrk 2, oux9]
A AGS ISHE of Astabgel A WA A 29 EAS Folof sl AEEE Ay &
Aol s}, At wlAlsk AR G ol T wol @ 4 ek 433l os) Az v o
A e 7129 Axby 2ol vlmstel £ uAY W wwe} So s wjS e NS ey
gors 7% 71719 DELHE FE 5 gk

DEIAASUE U ALY EAS 2 YA A2 RS 915kl 44U Fe, Co,
Ni, A LA Cu, HFA A7|Ao] YA Y, Zr, Nb, Mo, Hf, Ta 2 H]F&A A LX< B, C, N, Si,
PO T4 YA TS BASl] HAIE TF 2N WAL AAR FIFRY vet FES S
olgstol T 25 m o v Fe|E Ay 24F Azsto] FHel wet Lol VA © AHY FHL
Foto] AYTolR AHUAt AGE AYTolE TIASLUE 18 T o4, £4 028 Whke (@ S0Hz 17)
olskel A7) M E4& vk gk

il

M A= e dolA, vt A, & HAAY7), SMPS, 1151 e, A& a5u ER
23EW, 314 A9YF] 5o tefRt AbYgEofe] 582 AR YdiEoh
Hn2U

[1] Akiri Urato, Hiroyuki Matsumoto, Shigeyoshi Yoshida, and Akihiro Makino, “Fe-Si-B-P-Cu nanocrystalline
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Monte Carlo Simulation of X-ray beam design
for multi-energy imaging with charge-integrating
detector Using GATE

Cheol-Ha Baek'**, Daehong Kim*

'Department of Radiological Science, Dongseo University
*Center for Radiological Environment & Health Science, DongseoUniversity
*Department of Health Science, Dongseo University
*Department of Radiological Science, Eulji University

Multi-energy X-ray imaging systems have been widely used for clinical examinations .In order to enhance
the imaging quality of these X-ray systems, a dual-energy system that can obtain specific information has been
developed in order to discriminate different materials. Although the dual-energy system shows reliable
performance for clinical applications, it is necessary to improve the method in order to minimize radiation dose,
reduce projection error, and increase image contrast. The purpose of this study is to develop a triple energy
technique that can discriminate three materials for the purpose of enhancing imaging quality and patient safety.
The X-ray system tube voltage was varied from 40 to 90 kV, and filters (that can generate three X-ray energies)
were installed, consisting of pure elemental materials in foil form (including Al, Cu, I, Ba, Ce, Gd, Er, and W).
The X-ray beam was evaluated with respect to mean energy ratio, contrast variation ratio, and exposure efficiency.
In order to estimate the performance of the suggested technique, Monte Carlo was conducted, and the results were
compared to the photon-counting method. As a result, the density maps of iodine, aluminum, and polymethyl
methacrylate(PMMA) using the X-ray beam were more accurate in comparison to that obtained with the
photon-counting method. According to the results, the suggested triple energy technique can improve the accuracy

of the determination of thickness of density. Moreover, the X-ray beam could reduce unnecessary patient dose.
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Exchange coupled hard
(LTP MnBi)/soft (FessC035) composites

Jihoon Park’, Hui-Dong Qian, Ping-Zhan Si, Jong-Woo Kim and Chul-Jin Choi

Powder & Ceramic Division, Korea Institute of Materials Science, Changwon, Korea

1. Introduction

Ferromagnetic low temperature phase (LTP) MnBi possesses a moderate magnetization of 8 kG [1] and the
Curie temperature (7;) of 613 K [2], and positive magnetic anisotropy coefficient [3]. However, its maximum
energy product, (BH)mx, 1s about 17 MGOe at 290 K [1]. This maximum energy product is not enough for
high-energy magnetic device applications. Therefore, we have proposed core (LTP MnBi hard magnet)/shell (soft
magnet) structure to enhance the (BH)max-

2. Experiment

We have synthesized LTP MnBi micron-powder by arc-melting technique and manual grinding, and FegsCoss
nano-powder by chemical reaction. The synthesized LTP MnBi and FeesCoss powder were mixed using low energy
ball milling. The volume fraction of hard magnetic phase (f;) dependences of magnetizations and intrinsic coercivities
were measured by vibrating sample magnetometer (VSM) and compared with theoretical values. The theoretical

fi» dependences of magnetizations [4] and intrinsic coercivities [5] were calculated as shown in Fig. 1.

3. Discussion

The magnetizations and coercivities of synthesized powder were 7 kG and 2.8 kOe for LTP MnBi powder
and 16.7 kG and 0.1 kOe for FegsCoss, respectively. It was found that magnetizations and coercivities of low
energy ball milled core(LTP MnBi hard magnet)/shell(soft magnet) composites follow theoretically calculated
values as a function of f, as shown in Fig. 1. This indicates that well controlled exchange coupled hard and soft
composite magnets can be a breakthrough of enhancement of (BH)max, as shown in Fig. 2, for permanent magnets

without rare-earth-elements.

4. Conclusion

The MnBi/FeCo composites were fabricated by mixing separately synthesized MnBi and FegsCoss powder. The
volume fraction of hard magnetic phase (f;) dependences of magnetizations and intrinsic coercivities of the
composites well follow the theoretical values, which indicates potential enhancement of (BH)ma, if one can

successfully synthesize perfectly exchange coupled composite.
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Characterization of Ca-La M-type
hexaferrites synthesized by solid state reaction

Kang-Hyuk Lee", Yan Wel', Sang-Im Yoo
'Department of Material Science and Engineering, Research Institute of Advanced Materials (RIAM),
Seoul National University, Seoul, Korea

Ca-La M-type hexaferrites were reported to exhibit high saturation magnetization (Ms) and coercivity (Hc)
comparable with M-type hexaferrites. In this study, we tried to synthesize Ca; LasFe;2019 and influence of the
iron content in the formation process of CagsLagsFeinyOio5 (0.75=y=2.15) hexaferrite prepared by solid state
reaction. Lanthanum oxide (La,0O;), calcium carbonate (CaCOs) and iron oxide (Fe,O;) were used as raw materials
for solid state reaction. In this case, the raw materials were mixed by ball- milling for 24h, and were uniaxial
pressed into disks. The precursor disks were calcined at 1200~1300C for 12 h in air and whole process was
repeated twice. The pellets were sintered at 1275~1325C for 4 h. The samples were characterized by X-ray
diffraction (XRD), vibrating sample magnetometer (VSM), and scanning electron microscope (SEM).

All XRD patterns of analyzed CagsLagsFeir,O19.5 (1.75=y=2.15) ferrite obtained in the calcined at 1250 for
12 h and 1300°C for 12 h have single phase hexagonal crystal structure. For the single phases of CagsLagsFe;20o.
s obtained at each sintering temperature, the lattice parameter a, ¢ and unite cell volume are decreased first and
increased when y is increased. The maximum M; value is 77.5 emu/g for the sample of CagsLagsFei; 250195
sintered at 1300C for 4 h in air. Detailed magnetic properties of M-type hexagonal ferrites will be presented

for a discussion.

Keywords : Ca-La ferrite, Hexaferrite, magnetic property
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The Effect of Shape Control of
a“-Fe 14N, Particles on Their Magnetic Properties

a“-Fe¢N> has been suggested as a one of the most promising candidate as a future rare-carth free permanent
magnet due to abundant amount of Fe and N on the earth, its large magnetocrystalline anisotropy, and large
saturation magnetization. Thus, researchers have developed the various synthesis methods such as wet chemical,
ball milling and plasma process etc. However, there is no report on the shape control of a“-Fe;¢N, particles and
its effect on the magnetic properties. In this study, we have fabricated o“-Fe (N, particles with various structures
and compared their magnetic propterties after ammonia nitriding process. This work was supported by the
Industrial Strategic Technology Development Program (10062130, Theory-driven R&D for non-centrosymmetric
structured rare-earth free Fe-based permanent magnet materials) funded by the Ministry of Trade, industry &
Energy (MI, Korea).
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Design of high-coercivity Fe4.xAlN2 alloy

Jinho Byun’, Taewon Min, Hyoungjeen Jeen, Sungkyun Park and Jaekwang Lee'
Department of Physics, Pusan National University, Pusan 46241, South Korea
"E-mail: jackwangl@pusan.ac.kr

Iron nitrides (Fe;¢N,) have recently attracted considerable attentions for the future rare-earth (RE) free
permanent magnets (PMs) due to its low cost and high magnetization compared to other RE-free magnetic
materials. In spite of such excellent magnetic properties, its application has been limited by relatively low
coercivity. Here, combining the first-principles density functional theory calculations and the alloy theoretic
automated toolkit (ATAT), we extensively investigated the structure evolution, stability and magnetic properties
of FecxAlkN, alloys as a function of Al contents. We find that substituting Fe by Al in Fe(N, with Co/Fe
ratio=0.14 can increase the coercivity by about 300% compared to the pristine Fe;sN,. We expect our findings

provide an important insight to fabricate optimal Fe c<AlN, alloy with high coercivity.

This work was supported by the Industrial Strategic Technology
Development Program(10062130) funded by the Ministry of Trade, industry & Energy (MI, Korea).
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O-VI-1

Magnetic Anisotfropy in
Canted Antiferromagnetic Sr,lrO4 single crystals

Muhammad Nauman', Yunjeong Hong', Hwan Young Choi?,
Nara Lee?, Young Jai Choi?, Younjung Jo"
'Department of Physics, Kyungpook National University
’Department of Physics and IPAP, Yonsei University

The magnetocrystalline contribution to magnetic anisotropy was studied in the canted antiferromagnetic state
of layered SrIrO4 single crystals. We performed torque measurements in magnetic fields up to 9 T under various
magnetic field orientations. The strong dependence of torque on the magnetic field revealed that the magnetic
easy axis is along the in-plane direction, and that the observed field-induced weak ferromagnetic order is
attributed only to the in-plane component of the external magnetic field. The dependence of torque on the angle
produces a two-fold symmetric sawtooth-like shape. A simple model consisting of canted antiferromagnetic and
magnetic induction terms showed good agreement with the measured torque. These results show that magnetic
anisotropy is closely related to the anisotropy of the exchange between antiferromagnetic moments whose canting
is mediated by the Dzyaloshinsky-Moriya interaction. Our study demonstrates that torque magnetometry can be

extended to the investigation of the magnetic anisotropy of complex magnetic phases.
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O-VI-2

Static and dynamic magnetic properties of
Srzane(z-X)Fe16027 [00 < X< 20) syn’rhesized
in a low oxygen pressure

Jae-Hyoung You™ and Sang-Im Yoo'

Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM),
Seoul National University, Seoul 151-744, Korea
w‘Sang—Im Yoo, e-mail : siyoo@snu.ac.kr

Strontium W-type hexaferrite (SrFe;sOy;, SrW) is a ferromagnetic material possessing high saturation
magnetization (M,) about 80 emu/g and high anisotropy field (H,) about 19 kOe. Due to its cost effectiveness
and suitable magnetic properties, W-type hexaferrite has attracted attention for permanent magnet application and
microwave application especially for microwave absorber in the large frequency range of 840 GHz. In this
report, we tried to prepare Zn-substituted SrW bulk samples with the compositions of SrZn.Fep.yFeisO2;
(SrZn,Fep. W) where x value was 0.0 < x < 2.0 for the first time in a reduced oxygen atmosphere, and identify
the effect of Zn®" substitution on their magnetic properties. Furthermore, static and dynamic magnetic properties
of SrZn.Fep. W with varying x were investigated. For these purposes, the samples with different x values were
annealed at the temperature region of 1125-1350°C for 2 h in the PO, of 10° atm. As a result, single phase
of SrZnFep.oW could be obtained for x values of 0.0, 0.5, and 1.0. Static and dynamic magnetic property
measurements revealed that anisotropy field value of the samples decreased with increasing x from 0.0 to 1.0.
In the contrast, saturation magnetization value increased with increasing x value. And also, It was found that real
permeability value increased and ferromagnetic resonance frequency decreased with increasing x value which is
attributable to increased saturation magnetization and decreased anisotropy field. Detailed properties of

SrZnFe., W will be presented for a discussion.
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O-VI-3

Core loss improvement of Fe metal powder Coated with
Alumina oxide by sol-gel method

Sung Joon Choi’, Sunwoo Lee, Jae-Hyoung You and Sang-Im Yoo

Department of Materials Science and Engineering, and Research Institute of Advanced Materials,
Seoul National University, Seoul 151-744, Korea

In recent years, the soft magnetic composites (SMC) have attracted great interest as the potential applications
in electromagnetic circuits, induction field coils and magnetic field shielding. Among AC losses of metal powder.
The eddy current loss has been effectively reduced by an insulation-coating to increase electrical resistivity on
the magnetic metal powder. For the same purpose, we have tried to fabricate a core-shell layer composed of a
Fe powder and Al,Os shell layer by the sol-gel method. In this study, we investigated the influence of coating
time on the magnetic properties of the Fe powder. To evaluate the core losses of samples, the toroidal cores were
fabricated by mixing AlOs-coated Fe powder with a resin. The microstructural analysis and the magnetic
properties of Fe powder coated with Al,O; were conducted using field emission-scanning electron microscope
(FE-SEM), transmission electron microscope (TEM) and Inductance analysis and B-H curve analyzer.

This work was supported by a Grant from world class 300 (0417-20160119).

Keywords : Eddy current, Insulation coating, Core-shell structure.
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O-VI-4

Sign Inversion of Anomalous Hall Effect in heavy
metal/permalloy bilayer structures

Mingu Kang", Seung-heon Chris Baek'?, Kab-Jin Kim® and Byong-Guk Park'

'Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Korea
*School of Electrical Engineering, KAIST, Daejeon 305-701, Korea
*Department of Physics, KAIST, Daejeon 305-701, Korea
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O-VI-5

Magnetic Properties and Hysteresis Loss Improvement of
Fe Alloy Powder by NH,OH Etching

Sunwoo Lee", Sungjoon Choi', Jae-Hyoung You' and Sang-Im Yoo'

'Department of Materials Science and Engineering, and Research Institute of Advanced Materials,
Seoul National University, Seoul 151-744, Korea

Fe based alloys can be represented one of excellent soft magnetic materials because of its high saturation
magnetization with very low coercivity. For this reason, Fe based alloys and their composites have been used
for core materials of electromagnetic applications such as inductors and converters operated under alternative
current (AC). However, because the applications are used under AC, core loss generation is unavoidable and
becomes more serious with increasing AC frequency. Since the operation frequency is required to increase for
high performance of applications, core loss improvement strategies must be considered such as composition and
microstructure control for hysteresis loss and insulation coating on powder for eddy current loss. In this work,
etching with NH4OH solution of Fe based alloy powder was applied to improve core loss of Fe based alloy
powders. As such an effort, Fe based alloy powders were dispersed in NH4OH solution by ultrasonication. To
optimize process parameters, pH, the concentration of NH4OH solution, and etching reaction time were controlled.
Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray
spectroscopy (EDS) were used for microstructure and composition analysis. Magnetic properties including
permeability and core loss were measured under various AC frequency using toroidal powder core samples.
Etched powder samples showed improved core loss values due to decreased hysteresis loss. Details will be

presented for a discussion.

Keywords: core loss, hysteresis loss, Fe powder, surface etching, NHsOH etching
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O-VI-1

Hallmarks of the Weyl semimetal: magnetotransport
properties in Sb-doped Bi

Y. W. Lee', D. Shin’, K.-S. Kim', Yoon H. Jeong"’, J. Kim', H. J. Kim?

'Department of Physics, POSTECH
*Department of Physics, Daegu University

Weyl fermions, massless chiral fermions in quantum field theory, are also realized in solid state physics; they
appear in certain crystals without time reversal or inversion symmetry called Weyl (semi)metals [1]. The electronic
band structure of a Weyl metal contains Weyl nodes, pairs of singular points separated in momentum space, at
nondegenerate band touch. Spin and momentum are locked except at nodes, and thus chirality is well defined.
Due to the existence of a pair of chiral Fermi surfaces, the electromagnetic properties of Weyl metals are
described by axion electrodynamics given by the topological E-B term.

Transport properties of Weyl metals, particularly their magnetoelectric and magnetothermal conductivities are
expected to show distinct behaviors of topological origin. Recent theoretical investigations of electrical (o) and
thermal (k) conductivities of Weyl metals, based on Boltzmann transport theory with Berry curvature and chiral
anomaly terms, predict that ¢ and x are enhanced proportional to B’ when the electrical or thermal current
direction and the B direction are parallel [2, 3]. In Weyl metals, Ohm’s law in electrical conductivity is expected
to break down and the Wiedemann-Franz (WF) law would also fail when a magnetic field is applied. Ohm’s law
indicates a linear /-V relationship while the WF law states that «/o6T = Ly, where Ly is the Lorentz number
depending on universal constants only, and holds generally in ordinary metals.

We have grown single crystals of bismuth antimony alloy, Bi;«Sby, which becomes a 3D Dirac metal with
time reversal symmetry at x ~ 0.03. When a magnetic field is applied, time reversal symmetry is broken and
the Dirac metal becomes a Weyl metal. We have measured ¢ and x without and with B up to 9 T. We indeed
observed the breakdown of Ohm’s law and the magnetic enhancements of o and x when B is in parallel with
electrical and thermal currents. We discuss the details of the measurements and compare the experimental data

with theoretical predictions. In particular, the status of Ohm’s law and WF law in the Weyl state is discussed.

References
[1] D. Shin,Y. Lee, M. Sasaki,Y. H. Jeong, F. Weickert, J. B. Betts, H.-J. Kim,6, K.-S. Kim, and J. Kim,
Nature Materials submitted
[2] S. Murakami, New J. Phys. 9 (2007), 356
[3] D. T. Son and B. Z. Spivak, Phys. Rev. B 88 (2013), 104412
[4] Ki-Seok Kim, Phys. Rev. B 90 (2014), 121108(R)
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O-VI-2

Spin Nernst magnetoresistance in ferromagnet/heavy
metal bilayer structures

dsz", A, 252", 0|xHL", Srivathsava Surabhi®, E g2 0| A ZI>*, wh 2
'Department of Materials and Science Engineering, KAIST, Daejeon 34141, Korea
*Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea
*Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
*KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
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O-VII-3

First-principles calculations of Berry curvature:
WTle2 and other heavy metals

Sung-Hyon Rhim’
Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Republic of Korea
sonny@ulsan.ac.kr

With rapid progress in spintronics, utilizing the spin Hall effect (SHE) or the interface spin phenomena has
become highly demanding for practical applications with high interests. In this sense, calculation of spin Hall
angle (Bsn) or Berry curvature (€2,) based on first-principles calculations is of great significance in exploration
for materials. Here, we adapt the method proposed by previous work, which has been implemented in FLAPW
method. As large spin Hall angle has been reported in tungsten, calculations on tungsten metals - for bec and
A1S5 structure are presented. Also results on WTe2 are shown further, where the nonsymmorphic feature of space

group plays some important role. Results of other heavy metals are also reviewed for reference.
References

[11 G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, Phys. Rev. Lett. 100, 096401 (2008).
[2] Kai-Uwe Demasius and et al. Nat. Comm. 7, 10644 (2016).
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O-VI-4

Coupled modes of
one-dimensional skyrmion lattices in nanostrips

Sang-Koog Kim, Junhoe Kim’, Jaehak Yang, Young-Jun Cho and Bosung Kim
National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory,
Department of Materials. Science and Engineering, Seoul National University, Seoul 151-744, South Korea

Magnetic skyrmions have been intensively studied because they are promising as a potential candidate for
information-storage and -processing devices owing to their robust features including nano-scale size, topological
stability, and ultra-low threshold current density necessary for their motions [1]. Also, the gyration and breathing
dynamic modes of single skyrmions are found[2-4]. Therefore, collective excitations of those modes in one- or
two-dimensional arrays of skyrmions are of increasing interest from both fundamental and technological aspects.
Here, we report on a delicate study, using micromagnetic numerical simulations, of dynamic coupling between
neighboring skyrmions in narrow-width nanostrips where two or more skyrmions are periodically arranged. We
found that there exist strongly coupled modes of both the gyration and breathing excitations that exhibit their
characteristic dispersions in nanostrips. Moreover, the application of perpendicular magnetic fields allows for the
control/modification of the dispersions of their coupled modes, thereby providing a means of controlling the fast
propagations of the gyration and breathing modes. This work might offer a new route towards developments of

a new type of efficient, reliable, fast, and low-power-consumption information-storage and -processing devices.
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[3] J.-V. Kim, F. Garcia-Sanchez, J. Sampaio, C. Moreau-Luchaire, V. Cros, and A. Fert, Phys. Rev. B 90,
064410 (2014).
[4] M. Mruczkiewicz, P. Gruszecki, M. Zelent, and M. Krawczyk, Phys. Rev. B 93, 174429 (2016).
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O-VII-5

Induced Magnetism and Giant Perpendicular
Magnetic Anisotropy of Transition Metal Doped
Topological Insulator Bi(111)

Juyoung Jung’, Youngjun Kim, Purev Taivansaikhan and Dorj Odkhuu'

Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
+ . .
E-mail: odkhuu@inu.ac kr

Exploring magnetism and perpendicular magnetic anisotropy (PMA) in otherwise nonmagnetic
two-dimensional structures such as graphene is at the heart of spintronics research. In this talk, we will present
the results of our first-principles electronic structure calculations on the possibility of reaching an atomic-scale
PMA by carefully exploring the large spin-orbit coupling, orbital magnetism, and ligand field in a suitable choice
of a two-dimensional structure of topological insulator Bi(111) with the Fe-, Ni-, and Co-group 3d, 4d, and 5d
transition metal adatoms. It is identified that the substitutions of Fe, Ru, and Os transition metals in a single-layer
Bi(111) have induced magnetic moments of 2.91, 0.71, and 0.65 pp, respectively, while the other Ni- and
Co-group elements have no net magnetism. More importantly, we found the PMA energies up to an order of 100
meV per atom in Ru and Os substituted Bi(111). The underlying mechanism for the induced magnetism and large

PMA will be discussed in terms of electronic structure analyses and ligand field theory.
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O-VI-6

Spin-Orbit Torques in Ferrimagnetic CoTb alloys

Soong-Geun Je'?, J-C. Rojas-Sanchez?, T. H Pham?, P. Vallobra?, T. Fache? M.-C. Cyrille®,
D. Lacour?, G. Malinowski?, M. Hehn?, G. Gaudin’, S. Mangin® and O. Boulle'

'SPINTEC, CEA-INAC/CNRS/Univ. Grenoble Alpes, 38054 Grenoble, France
“Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54506 Vandoeuvre 1és Nancy, France
3CEA-LETI, 38054 Grenoble, Franc

Spin-orbit torque (SOT) has been of great interest as an efficient means of manipulating magnetization in
heavy metal/ferromagnet bilayers. Recently, as a strategy of reducing the switching current density, ferrimagnetic
and antiferromagnetic materials are attracting attention due to the expectation of minimizing net magnetization
and hence reducing the angular momentum required to switch the magnetization. In addition, the immunity to
the external magnetic field really makes these systems promising materials for future spintronic memory devices.

Here we demonstrate the SOT-induced magnetization switching and the effective field in W(3nm)/CoxTbl-x
(3.5nm)/AlOx(3nm) perpendicular ferrimagnetic alloys. In order to see how the SOT changes as it passes across
the magnetic compensation point, a series of CoTb alloys with a wide range of compositions are prepared using
DC magnetron sputtering. The films are then patterned into Hall cross structure to exploit the anomalous Hall
effect as a means of probing the magnetization in this compensated magnetic system.

First, the SOT switching is achieved nicely in all samples. Particular, the SOT switching is accomplished even
in the sample which has an extremely huge coercive field and anisotropy field with a quite low current density
and a tiny in-plane field, suggesting the efficient SOT mechanism. After quantifying the SOT-induced effective
field, we find that the effective field scales with the inverse of magnetization, implying the angular momentum
conservation still holds in the CoTb system where the spin-orbit coupling is presumed to be large. Apart from
this, the effective spin Hall angle is found to increase with increasing Tb concentration, indicating there is an
additional influence of SOT coming from Tb atoms.

To conclude, the SOT can serve as a powerful method to encode information in ferrimagnetic materials,

enabling realization of highly stable memory devices.
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