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=28 ST UMl 12 & LSPM S| &4
Design of High Efficiency Line Start Permanent Magnet
Motor for Blower

Atatza| 3, M, 22, 07|
AR FAT A5l 71 ERY 2 AT AE]

Small three phase Induction Motors (IMs) are widely used in many industrial applications, such as a blower,
due to its lower cost, robustness and line start capability. However, IMs suffer from overall lower efficiency due
to excitation penalty and higher rotor losses. As the energy saving concern is gaining momentum, improving the
efficiency of the vast number of IMs installed in the industry is of particular. Furthermore, various legislation
has made it necessary for the motor manufacturers to improve the efficiency of motors up to super premium class,
ie., IE4.

On the other hand, Permanent Magnet Synchronous Motor (PMSM) can achieve higher power factor and
efficiency as compared to IM. However, it lacks the line starting ability like IM. Line Start Permanent Magnet
(LSPM) motor is developed to combine the advantages of direct line start ability and higher efficiency. LSPM
motors can start directly from the grid due to the electromagnetic induction in the rotor cage bars, which produces
cage torque during the asynchronous starting operation. Furthermore, rotor cage also damps the oscillations
produced by fast load change, while the buried magnet under the rotor cage produces the torque in the steady
state condition. Therefore, once the motor achieves rated speed, cage torque vanishes, and it behaves like PMSM.

In this paper, an LSPM motor is developed by modification to the small scale IM rotor with the aim to
achieve almost unity power factor and operational efficiency to an IE4 or higher class motor. In general,
small-scale (7.5 kW<) 4-pole LSPM model development is simpler as compared to 2-pole model, as in the former,
it is not required to cover the shaft with PMs to for better performance. However, there is more space for
efficiency improvement in small-scale IM due to a higher percentage of rotor losses.

The 2-pole LSPM model is developed by inserting PMs in an off the shelf IM, HHT-05, considering minimum
manufacturing cost. PM shape was kept rectangular to reduce the manufacturing cost associated with the
unconventional shapes. Stator outer dimension and slot design are kept same as in the basic IM model. Two
LSPM models have analyzed in this work has the same stator while different rotor magnet design. Both models
showed performance improvement in terms of efficiency and power factor. However, one LSPM model did not
have any reluctance torque component due to the geometry of the rotor, therefore showed poor synchronizing
ability at higher inertia load. In the other, LSPM model synchronizing ability was improved by designing the flux
barrier to producing maximum reluctance torque while maintaining the same output performance. Both developed
LSPM models showed IE4 class efficiency and also showed a power factor of 13% higher than the basic IM

model. LSPM model cost is higher than the IM; however, it will recover the cost in the form of lesser tariffs.
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Spectro-microscopic study on
two-dimensional magnetic materials

Wondong Kim’

Quantum Technology Institute, Korea Research Institute of Standards and Science

We investigated layer-dependence of the electronic structures of transition metal phosphorus tri-sulfides
(TMPS;, TM = Mn, Fe, and Ni), which are known as magnetic Van der Waals materials, by using scanning
transmission X-ray microscopy (STXM). X-ray absorption spectra (XAS) at transition metal L-edge and Sulfur
L-edge were measured for TMPS; flakes which have lateral size of a few-micrometer and thickness range from
a few atomic layers to several hundred atomic layers. MnPS; and NiPS; showed typical features of 2+ ion L-edge
XAS spectra for whole thickness range, but FePS; showed much complex thickness-dependence in Fe L-edge
XAS spectra. By comparison with S L-edge XAS spectra, the features in Fe L-edge XAS spectra could be
interpreted as mixed signal of Fe** XAS spectra from the pristine layers and Fe’* XAS spectra from the oxidized
layers, which implies that FePS; is extremely air-sensitive. By comparing and fitting the measured spectra with
the results of calculation of cluster model based on the atomic multiplet theory, we could obtain information on
the symmetry of ground state and parameters such as charge transfer energy and electron-electron correlation.
From this analysis, it was revealed that NiPS; is an exotic compound which has negative charge transfer energy.
Experimental approach based on STXM is expected to be utilized to investigate the layer-dependent magnetic

properties of TMPS;, in combination with X-ray circular or linear dichroism.
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Electrical manipulation of the magnetization in
Fe/GaAs/GaMnAs hybrid structure

Sangyeop Lee'?, Taehee Yoo?, Seul-Ki Bac?, Seonghoon Choi?, Hakjoon Lee?,
Sanghoon Lee?, Xinyu Liu®, Margaret Dobrowolska® and Jacek K. Furdyna®
'Center for Spintronics Research, Korea Institute of Science and Technology, Seoul 136-791, Korea
*Physics Department, Korea University, Seoul, 136-701, Republic of Korea
3Physics Department, University of Notre Dame, Notre Dame, IN, 46556, USA

We have investigated the selective manipulation of the magnetization alignment in hybrid magnetic system
of Fe/GaAs/GaMnAs structure by SOI magnetic fields. A key feature for such selective manipulation is that the
SOI field depends strongly on the crystal structure of the ferromagnetic film. Therefore, even if the same current
is simultaneously applied to the Fe layer and the GaMnAs layer of such a hybrid structure, each of the magnetic
layers experiences different strength of the SOI field. This difference in the SOI field between two magnetic
layers provides a unique opportunity to control the magnetization in one layer (in the presence case in GaMnAs)
by the current while the magnetization in the Fe layer remains fixed. Owing to such ability to control the
magnetization in the GaMnAs layer selectively, we can manipulate the relative spin configurations in Fe/GaAs/
GaMnAs structure between collinear and non-collinear alignments simply by switching current polarity even in

the absence of an external field.
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Fig. 1. (a) The angular dependence of PHR for ¢y between —25° to +25°.
(b) PHR measured as a function of time, showing abrupt switching of PHR as
current polarity is reversed every 50 seconds. In both panels the magnetization for the Fe layer is shown

by black arrows, and for GaMnAs in color, red for positive and blue for negative current.
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Control and manipulation of voltage-induced skyrmion
and skyrmionium motion

Jungbum Yoon’, Kyoung-Woong Moon, Dongseuk Kim, Changsoo Kim, Byong Sun Chun,
Wondong Kim, and Chanyong Hwang

Spin Convergence Research Team, Korea Research Institute of Standards and Science,
Daejeon 34113, Republic of Korea

1. Introduction

Under interfacial Dzyaloshinskii-Moriya interaction (DMI) [1] in heavy metal/ferromagnetic bilayers, spins
favor spiral configurations and so-called magnetic skyrmions [2] can be placed with the topological stability by
the topological energy barrier. Thus they have the topological charge (Q) and act like a particle. In the current
or magnetic field-driven skyrmion motion for racetrack devices, the skyrmions may be pinned and then annihilated
at the side edges and the notches of racetrack due to the transverse motion by an undesirable force. Because
their motion can be deflected by the topological Magnus force depending on the Q. To overcome the bottleneck
of the desirable skyrmion motion, we propose various voltage-gated racetracks in the current- or voltage-driven
skyrmion (skyrmionium [3]) motion. During the moving, the skyrmion (skyrmionium) is controlled and
manipulated by the attractive or repulsive forces between the skyrmion (skyrmionium) and voltage-controlled

gates.

2. Simulation details

The current- or voltage-driven skyrmion (skyrmionium) motion can be described by Landau-Lifshitz-Gilbert
(LLG) equation with the consideration of the spin-orbit torque. To solve this equation, the micromagnetic
simulations are performed using OOMMF [4]. Magnetic parameters are adopted from Sampaio et al. [5] as
follows: damping constant (& = 0.3), saturation magnetization (M, = 580 kA/m?), thickness of ferromagnetic layer
(d = 0.4 nm), perpendicular uniaxial magnetic anisotropy constant (Ku, = 0.8 MJ/m’), exchange stiffness constant
(A=15 pJ/m), DMI constant (D = —3.5 mJ/m*). We assume that the K, of the voltage-controlled gates can be
changed by the electric field [6].

3. Results and discussion

First, we investigate the current-driven skyrmion (skyrmionium) motion in the racetrack considering various
shapes and positions of voltage-controlled gates. The Ky, of the gates can be higher or lower than that of the
rest of the racetrack. The skyrmion (skyrmionium) receives repulsive or attractive forces from the gate of higher
or lower K, respectively. When the current is applied, the skyrmionium can move parallel to the current
direction, because of no Magnus force corresponding to the Q = 0 [3]. For the current-driven skyrmionium
motion, the skyrmionium circumvents a voltage-controlled gate with higher K.; (= 0.88 MJ/m’) due to the
repulsive force between the skyrmionium and the gate, as shown in Fig. 1(a). In result, the voltage-controlled

gates can manipulate the path of skyrmion (skyrmionium) for the current-driven motion.
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Second, the voltage-driven skyrmion (skyrmionium) motion is investigated in the racetrack with voltage-
controlled gradient gates. The skyrmion (skyrmionium) flows into the gate of lower and lower K, due to the
attractive force from that of lower K. Figure 1(b) shows the voltage-driven skyrmionium motion in the racetrack
with the voltage-controlled gate of gradient K,,. The skyrmionium can move along the gradient gate without the
current. Thus, the skyrmion (skyrmionium) motion can be efficiently controlled by the voltage-controlled gradient

gates.

4. Conclusion

In conclusion, we have investigated the current- or voltage-driven the skyrmion (skyrmionium) motion in the
racetrack, which has the magnetic anisotropy change in the local region by means of the voltage-controlled gates.
For the current- or voltage-driven motion, the path of the skyrmion (skyrmionium) motion are manipulated or
controlled by the voltage-controlled gates or gradient gates, respectively. Our work will give an approach to

realize skyrmion-based storage, memory, or logic devices.
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Fig. 1. (a) Current- and (b) voltage-driven skyrmionium motion in the racetrack with

(a) a voltage-controlled gate and (b) a voltage-controlled gradient gate, respectively.
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Current-induced dynamic motions of ferrimagnetic
skyrmions in Pt/GdFeCo/MgO multilayers
Kyung Mee Song"#, Seonghoon Woo', Xichao Zhang?®, Yan Zhou®, Motohiko Ezawa®, S. Finizio®,

J. Raabe®, Jun Woo Choi'®, Byoung-Chul Min"®, Hyun Cheol Koo', and Joonyeon Chang®

'Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea

’Department of Physics, Sookmyung Women’s University, Seoul 04130, Korea
*School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
*Department of Applied Physics, University of Tokyo, Hongo 7-3-1, Tokyo 113-8656, Japan
>Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
®Department of Nanomaterials Science and Engineering,
Korea University of Science and Technology, Daejeon 34113, Korea
"KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02792, Korea

Magnetic skyrmions are topologically protected spin textures and have received great interest in utilizing the
information memory bit due to their unique topological characteristics. Recent studies have reported that chiral
skyrmions are formed in heavy metal (HM)/ferromagnet (FM)/oxide metallic heterostructures that exhibit strong
interfacial Dzyaloshinskii-Moriya interaction (DMI) such as Ta/CoFeB/TaOx!'?, Pt/CoFeB/MgO"!, Pt/Co/Ir'*! or
Pt/Co/MgO™. However, there exists an undesirable but unavoidable topological effect with ferromagnetic
skyrmions: the skyrmion Hall effect,™® which makes their current-driven motion towards device edges where the
skyrmions could easily be annihilated by topographic defects. Recent theoretical studies have predicted that the
skyrmion Hall effect can be suppressed in antiferromagnets, which also offer unique characteristics such as
ultrafast dynamics in THz regime.!”’

In this work, using element-specific scanning X-ray transmission microscopy (STXM), we first show that
chiral skyrmions can be generated in ferrimagnetic Pt/GdFeCo/MgO multilayer structure. Magnetic moments of
the skyrmions in GdFeCo films exhibit the antiparallel spin alignment between rare-earth component, Gd, and
transition-metal, FeCo. We have then demonstrated the current pulse-driven behavior of ferrimagnetic skyrmions
with the velocity reaching up to 50 m/s at |j,| ~ 3.94x10" A m? while the skyrmion Hall angle is significantly
reduced to Ogue < 20°, which is much smaller than skyrmion Hall angle of ferromagnetic skyrmion™®. Using
micromagnetic simulations, we also reveal that the skyrmion Hall angle within ferrimagnetic material largely
depends on material parameters such as Gilbert damping constant and effective saturation magnetization, which
can be engineered by e.g. composition modification. We believe that our findings reveal the important
topology-driven physics of ferrimagnetic skyrmions, which could be used to realize robust skyrmionic devices in

the future.
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Annedling temperature dependence on
spin current at the CoFeB/Pt interface

Nyun Jong Lee"’, Sang-Il Kim', Dongjoon Lee?, Oukjae Lee®, and Seung-Young Park""

'Spin Engineering Physics Team, Division of Scientific Instrumentation,

Korea Basic Science Institute, Daejeon 34133, Korea
*KU-KIST Graduated School of Converging Science and Technology, Seoul 02841, Korea
3Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea

Spin pumping from the ferromagnetic resonance (FMR-) in ferromagnetic/non-magnetic (FM/NM) bilayer has
attracted interest in the field of spintronics because it can inject a pure spin current (J;) from the FM layer into
the adjacent NM layer [1,2,3,4]. The observation of spin pumping is possible either through a change in the
Gilbert damping o of the FM layer or the measurement of the inverse spin Hall voltage [1,2,3,4]. A spin current
emission from the FM layer deprives the magnetization of the spin angular momentum and causes an additional
damping since the spin current transfers the spin angular momentum [2]. The change of o depends on the
thickness and saturation magnetization of the FM layer, the interfacial spin mixing conductance, and the
gyromagnetic ratio [5]. The J; is sensitive to the FM/NM interface properties.

In this work, we investigate the influence of annealing temperature (7;,) on spin current in a CoFeB/Pt bilayer
structure using a broadband coplanar waveguide (CPW-) FMR. The T, is chosen as a control variable for inducing
a structural change at the CoFeB/Pt interface because an amorphous CoFeB thin film is crystalized by annealing
process at 300°C [6]. Several temperatures between 200 and 400°C were selected as 7,. The field derivative FMR
absorption spectra were acquired by sweeping the external magnetic field for a set of microwave frequencies. The
magnetic damping parameter o extracted from the ferromagnetic resonance field (H.s) and the peak-peak line
width obtained by fitting the absorption data. A CoFeB/Cu bilayer system is comparatively studied in order to
rule out 7, dependence of the intrinsic damping. The Js value is calculated from the variation of a, which shows

that 7, can be attributed to the spin pumping efficiency at the CoFeB/Pt interface.

References
[1] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002)
[2] H. Nakayama, et al., Phys. Rev. B 85, 144408 (2012)
[3] T. Taniguchi and H. Imamura, Phys. Rev. B 76, 092402 (2007)
[4] T. Taniguchi and H. Imamura, Mod. Phys. Lett. B 22, 2909 (2008)
[5] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. 1. Halperin, Rev. Mod. Phys. 77, 1375 (2005)
[6] Kailash Chandra, et al., IRINAS 3, 66 (2016)

- 25 -



zxS-1I-6

Spin memory loss of FMR spin pumping in the
ferromagnet/heavy metal bilayer

Sang-1l Kim"#, Dongjoon Lee®, Oukjae Lee*, Seung-Young Park’, and Kyung-Jin Lee*?

'Spin Engineering Physics Team, Division of Scientific Instrumentation,
Korea Basic Science Institute, Daejeon 305-806, South Korea
“Department of Materials Science and Engineering, Korea University, Seoul 136-713, South Korea
’KU-KIST Graduate School of Converging Science and Technology, Seoul 136-713, South Korea
*Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, South Korea

The manipulation of pure spin current (J;) has provided more efficient ways for the spin-torque switching in
spintronic devices [1]. Conventionally, the spin Hall effect has been considered as an origin of J; for the magnetic
switching. It is essentially important that the generation and detection of J; can be understood in the multilayer
structure. So far the spin pumping method has been used for the generation of J; and the inverse spin-Hall effect
(ISHE) has been used as one of the electrical methods to detect J; [2]. The above experiments such as the conventional
spin pumping and inverse spin Hall voltage measurement are insignificant for the spin-orbit coupling at the interface
of ferromagnet (FM)/heavy-metal (HM). In 2015, K. Chen and S. Zhang [3] proposed a developed spin-pumping
theory, taking account of both Rashba spin orbit coupling (RSOC) at the interface of FM/HM and the backflow
of J; from the HM to FM. According to the theory, due to the interfacial RSOC, the amount of transmitted J;
is significantly lost at the FM/HM interface, which is referred to as a spin-memory loss (SML) [3].

Here, we experimentally study the spin pumping effect induced by the ferromagnetic resonance in the
CoFeB/Pt bilayer system. Furthermore, the issues of damping constant and inverse spin Hall voltage effectively

consider the effect of SML in the propagation of J; through the CoFeB/Pt interface.
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The spin-orbit torques (SOTs) is currently the focus of research interest, because this may offer significant
advantages in technological applications including non-volatile magnetic memory and logic devices. For highly
efficient spin memory devices, a reduction of switching current is required. In an in-plane magnetization
SOT-devices, a spin orbit torque driven switching current density is proportional to the magnetic damping(a) and
inversely to the spin Hall angle (Osn). Hence the achievement of a larger spin-Hall angle and a lower magnetic
damping at the same time is important for successful SOT-devices. However, recent researches have shown that
the transparency at the interface of heavy metal(HM)/ferromagnet(FM) plays an important role in determining the
magnitude of Ogy ; e.g. Osu(Pt|Co)~0.11 vs Osu(Pt|Py)~0.05 and the enhancement of o due to the spin pumping
effects; e.g. Aagyp(Pt|Co)~2-Aay(Pt/Py) [1,2,3]. For the Platinum/Ferromagnet bilayer system, this model indicates
that the advantage of high spin transparency can be reduced by enhancement of a.

For relieving this issue, we utilized ferromagnetic bilayers instead of a single ferromagnetic layer on top of
a Pt layer. We used DC/RF magnetron sputtering to deposit two series of multilayer films having different stack
orders, Pt|Co[Py or Pt|Py|Co, on a thermally oxidized Si substrate at room temperature. The multilayers consist
of, from the bottom to the top, Ta(1)/Pt(5)/Co(f)/Py(5-t)/MgO(2)/Ta(2) and Ta(1)/Pt(5)/Py(5-t)/Co(t)/MgO(2)/Ta(2)
(thickness in nm) where the thickness of cobalt (#¢,) layer was varied from 0 to 5 nm. and we investigated their
spin-Hall angles and magnetic damping’s by utilizing the spin torque ferromagnetic resonance technique (ST-FMR)
[3]. We observed that 6, seem to be consistent with the transparency model in which the spin-Hall efficiency
is determined by the adjacent FM layer to the Pt layer. However, a and AH are likely decided by the FM layer
interfacing to the MgO layer, which is inconsistent with the model.

We also studied about two components of spin-orbit torques; the damping-like torque ~m < (o< m)and the
field-like torque ~oxm. To identify both efficiencies we compared three ferromagnetic materials (Py, Co and
Co4FesB,) in contact to a platinum layer. We investigated the magnetic damping (a) and 6sy in PYFM/MgO
multilayers by ST-FMR and conventional ferromagnetic resonance technique. From the thickness dependence of
the damping and the spin Hall angle, we can estimate the values of damping-like torque efficiency (6,;,), field-like
torque efficiency (6,;), spin-transparency (T), and spin mixing conductance (o, ). Our results show that the
magnitude of Osy is determined by the interface material in contact to the Pt layer which is consistent with the
spin-transparency model [1]. However, we observed that the interface contributes to 6,, and the 6,, in a different

way.
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In this presentation, we shall show the detailed results and analysis method from our ST-FMR measurements
for the various stacking order and thickness ranges. And we will discuss about HM/FM and FM/MgO interface

effects on a and Ogy.
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Generation of spin current is a fundamental requirement in spintronics. Recently, it has been shown that pulsed
laser injected into metallic FMs can generate spin currents by ultrafast demagnetization. However, most
experimental evidences were focused on dynamics of magnetization of ferromagnets in a ferromagnet/non-magnet/
ferromagnet structure.

In this work, we show direct measurements of spin accumulation on non-magnets driven by ultrafast
demagnetization of a ferromagnet in the ferromagnet/non-magnet structure. We find that the spin accumulation
on a non-magnet, Cu, is well explained by dynamics of demagnetization of ferromagnets, Fe, Co, and Ni, and
spin diffusion process. From quantitative analysis of the spin accumulation by spin diffusion modeling, we

determine the spin relaxation time of ferromagnets.
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Crystallization Behaviors and Soft Magnetic Properties of
FeMoBCPSi amorphous alloys

Hwijun Kim’, Myungshin Kim, Sunguk Hong
Korea Institute of Industrial Technology, Korea

Due to the characterization of low coercivity and high permeability, soft magnetic amorphous alloys have been
used in various industrial fields such as high frequency inductor core, transformer core, sensor, and
electromagnetic wave shielding sheets. Especially, because of low cost, many studies of Fe-based soft magnetic
amorphous alloy have been proceeded briskly. To enhance amorphous structure alloy design of Fe-based soft
magnetic alloy has been performed by adding metalloid elements which have small atomic radius. As contents
of metalloid elements increase, saturated magnetic flux density is deteriorated. To increase improve saturated
magnetic flux density with keeping coercivity low, nanocrystalline alloys have been studied by many researchers.
It has been reported that Nb and Mo are excellent grain growth inhibitors leading to uniform distribution of fine
nanocrystallines in amorphous matrix.

Thus, in this study, we focused on investigating the effect of additive metalloid elements on crystallization
behaviors and soft magnetic properties of FenyMossBxCyPzSiw alloys. Their ribbons were fabricated by melt
spinning process by which rapid solidified ribbons could be obtained. Thermal analysis was conducted by DSC
analysis and it was indicated that crystallization temperature of FepyMo;sBxCyPzSiw alloys was raised with
increasing metalloid contents. The kinetics of crystallization behavior of amorphous ribbon was interpreted for
Fe;sMos sB4C P 10Sizs amorphous ribbon which exhibited the highest value of A H for crystallization. Isochronal
annealing analysis was created by Kissinger, Flynn-Wall-Ozawa, Augis-Bennett Method. Activation of
crystallization was an average value of 285.4 kJ/mol. Isothermal annealing analysis was calculated by Johnson-
Mehl-Avrami Equation and Avrami exponent was in the range of 2.19 ~ 2.90.

Heat treatment for nanocrystalline was conducted at just below crystallization temperature during 10 ~ 60
mins. Soft magnetic properties with the variation of crystallization fraction were measured by VSM. Furthermore,
morphology and phase of nanocrystallines were analyzed by SEM and TEM.

It was found that nanocrystallines exhibited a-Fe phases with the size of 20 ~ 90 nm containing metalloid
elements such as B, C, P and Si. As the fraction of nanocrystalline in amorphous matrix was raised by increasing
the time of heat treatment, saturated magnetic flux density was continuously raised but coercivity was rapidly
deteriorated upward more than 14 % in nanocrystalline fraction.

In the field of power electronics, requirement for improving the efficiency and reducing the volume is more
and more high, that is because the nanocrystalline alloy with high permeability and low coercivity has been
widely used, in areas such as communication, electric vehicles, electrolytic plating with the application of

switching power supply.
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The Three-Dimensional Nature
in the Magnetic Vortex dynamics

Hee-Sung Han, Sooseok Lee, Dae-Han Jung, Namkyu Kim, Ki-Suk Lee’

School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Korea

The dynamic excitation in a magnetic vortex structure is an interesting topic in a magnetism for the
development of novel data processing device with low power consumption. In a confined system, the magnetic
vortex shows various excitation modes such as translational, azimuthal, and radial spin-wave modes [1-3].
However, most of the studies have been performed under the assumption that the magnetization is uniform along
the thickness direction. However, it is recently reported that three-dimensional (3D) nature causes flexible
oscillation of the vortex core (VC) [4], which makes a rich variety of spin-wave modes in a relatively thick
nanodisk.

From micromagnetic simulations, we find various 3D dynamic behaviors including novel spin-wave modes
such as “beating modes” - the size oscillations of VC with inhomogeneous phase along the thickness direction
as well as asymmetric gyrotropic mode and a dramatic tearing of VC structure.

Furthermore, we found the VC reversals can occur through the resonant excitation of the beating mode.
Interestingly, its reversal mechanism is completely different with previously known vortex-antivortex pair mediated
one [5]; the Bloch-point pair are created at the center of the VC structure and they propagate through the film
thickness. In the presentation, we will discuss detailed mechanism and physical understandings on this novel core

switching process.
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Correlation between Charge Asphericity and
Dzyaloshinskii-Moriya Interaction
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Recent intensive studies on the formation of chiral domain wall (DW) and skyrmion, and their current-driven
dynamics are closely related to the Dzyaloshinskii-Moriya interaction (DMI) in the systems with the inversion
symmetry breaking (ISB) [1-3]. In spite of many progresses to understand and utilize DMI, the microscopic origin
of DMI has remain controversial [4,5]. In this presentation, we show results of our experimental and theoretical
studies to examine the microscopic origin of the DMI. Firstly, we demonstrate that DMI in the Co/Pt bilayer
shows strong temperature dependence. To find correlation between electron orbital structure and the temperature
dependence of DMI, the x-ray magnetic circular dichroism analysis results are mainly discussed. We find that
the perpendicular orbital moment and the dipole moment increase at low temperature while the in-plane orbital
moment is almost temperature-independent. The theoretical investigation based on the tight-binding model
qualitatively reproduces the anisotropic change of the orbital moment, showing that orbital-to-orbital electron
hopping with the ISB is related to the temperature dependence of DMI. In addition, the density functional theory

calculation exhibits that the orbital anisotropy and the dipole moment have clear correlation with DMI.
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Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
*Global Center for Bio-Convergence Spin System,
Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea

Various spintronic devices based on magnetic domain wall (DW) motions have been extensively developed
for high-density storage devices, logic gates, bio-inspired devices, and so on [1,2]. Because of its big potential
for numerous information technologies and 4™ generation industrial revolution, many individual techniques to
manipulate DWs have been theoretically and experimentally demonstrated in the last decade.

In this study, we analytically and numerically explain synchronous multiple DW motions in a perpendicularly
magnetized nanowire by applying in-plane magnetic field pulses [3,4]. The direction of the DW motion depends
on the chirality of the DW. In order to drive a Bloch (Neel) type domain wall, a longitudinal (transverse)
magnetic field pulse is necessary. We also show the contribution of the interfacial Dzyaloshinskii-Moriya (DM)
interaction. First of all, the DM interaction occurs multiple Neel types DWs of synchronized chirality, which is
mandatory for synchronous multiple DW motions. The DW displacements decrease with increasing the DM
energy density because a tilting angle of the DW is larger with a large DM energy density. In addition, we solve
one-dimensional equation of motion for the DW for all cases in the present work. The one-dimensional equation
of motion and the micromagnetic simulation results shows excellent agreements to reproduce most important

features of the DW motion by in-plane magnetic field pulses.

References
[1] S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320 (2008) 190-194.
[2] S. Emori et al., Nat. Mater. 12 (2013) 611-616.
[3] J.-S. Kim et al., Nat. Commun. 5 (2014) 3429.
[4] J.-S. Kim et al., http://dx.doi.org/10.1016/j.jmmm.2017.08.094 (in press)
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Antiferromagnetic spin dynamics at an angular
momentum compensation temperature of ferrimagnets

Kab-Jin Kim", Se-Kwon Kim?, Yaroslav Tserkovnyak?, Arata Tsukamoto?®,
Takahiro Moriyama“, Kyung-Jin Lee®, Teruo Ono*

'Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
*Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
3College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
*Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
*Department of Materials Science & Engineering, Korea University, Seoul 02841, South Korea

Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core
elements in spintronic devices. A central motivation toward this direction is that antiferromagnetic spin dynamics
is expected to be much faster than ferromagnetic counterpart because antiferromagnets have higher resonance
frequencies than ferromagnets. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls
(DWs) than ferromagnetic DWs. However, experimental investigations of antiferromagnetic spin dynamics have
remained unexplored mainly because of the immunity of antiferromagnets to magnetic fields. Furthermore, this
immunity makes field-driven antiferromagnetic DW motion impossible despite rich physics of field-driven DW
dynamics as proven in ferromagnetic DW studies. Here we show that fast field-driven antiferromagnetic spin
dynamics is realized in ferrimagnets at the angular momentum compensation point 7. Using rare-earth-
3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at Ty, the field-driven DW
mobility remarkably enhances up to 20 km s 'T' (Fig. 1). The collective coordinate approach generalized for
ferrimagnets and atomistic spin model simulations show that this remarkable enhancement is a consequence of
antiferromagnetic spin dynamics at 7. Our finding allows us to investigate the physics of antiferromagnetic spin
dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets,

which could be a key towards ferrimagnetic spintronics [1].

Reference
[1] Kab-Jin Kim et al. Nat. Mater. 16, 1187 (2017).
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Spin-transfer torques in the vicinity of the angular
momentum compensation temperature in ferrimagnet
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Yasuhiro Futakawa®, Hiroki Yoshikawa*, Arata Tsukamoto®, Yaroslav Tserkovnyaks, Yoichi Shiota’,
Takahiro Moriyama', Kab-Jin Kim®, Kyung-Jin Lee?, and Teruo Ono™"®
'Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
’Department of Materials Science & Engineering, Korea University, Seoul 02841, Republic of Korea
*Department of Physics and Astronomy, University of California, LA, California 90095, USA
*College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
*Department of Physics, KAIST, Daejeon 34141, Republic of Korea
®CSRN, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan

Antiferromagnets have come into the spotlight [1, 2] as a promising material for spintronic devices because
they exhibit the fast-magnetic dynamics and the low susceptibility to magnetic field. Recently, it has been
demonstrated that fast field-driven antiferromagnetic spin dynamics can be realized in ferrimagnets at the angular
momentum compensation temperature 7', [3]. The peak of field-driven domain-wall (DW) speed at 7', naturally
invokes curiosity about the effect of current on the DW motion across 7. For this study, we prepared an
amorphous ferrimagnetic GdFeCo film, where the detailed structure is 5-nm SiN/30-nm Gdys sFees9C096/100-nm
SiN on the intrinsic Si substrate. Since this film lacks nonmagnetic heavy metal as a spin current source, the
effect of current can be considered as spin transfer torques (STT), which arise from the exchange interaction
between conduction electrons and localized electrons. The field-driven DW speed was measured under positive
and negative bias current at various temperatures 7. The DW speed difference Av induced by a current density
J is defined as Awv=[v(+J) —v(—J)]/2. Figure 1 shows Aw/J as a function of 7 under several J. It shows
that the effect of current gradually changes its sign across 7', and the asymmetry of Aw/J with respect to 7,
occurs. To explain such an intriguing observation, we developed a generalized model based on the collective

coordinate approach including STT terms [3]. From the theory, the nonadiabatic and adiabatic STT as a function
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Fig. 1. The STT-induced DW speed difference divided by current density
as a function of temperature for several current densities. The dashed orange line indicates

the angular momentum compensation temperature.
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of 7 respectively constitutes the symmetric and the antisymmetric contribution with respect to 7°,. The good
agreement between theory and experiment supports that STT-driven DW dynamics is clarified in ferrimagnets at

T,. Details will be discussed in the presentation.

References
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[3] K.-J. Kim et al., Nat. Mater. 16, 1187 (2017).
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Search for magnetism in two-dimensional PdSe, and PdS,

Yoseph Cho and Hyoung Joon Choi’
Department of Physics, Yonsei University, Seoul 03722, Korea

PdSe; and PdS; are semiconducting materials with puckered layer structure. Recently, monolayer (ML) PdSe;
has been successfully exfoliated. Two-dimensional PdSe, layers have excellent air stability and a band gap that
depends on the number of layers. In previously reported density functional theory (DFT) calculations, the valence
bands of ML PdSe, have very large effective masses. This may imply that the system is close to instability when
hole-doped. In our present work, we search for magnetism in hole-doped ML PdSe, and PdS; using first-principles
DFT calculations. Considering both ferromagnetism and antiferromagnetism, we study energetic stability of
magnetic phases, electronic structures in magnetic phases, and structural conditions for magnetic stability. We also
discuss mechanism for magnetism in these hole-doped systems. This work was supported by NRF of Korea (Grant
No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2017-C3-0079)
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Design of memcapacitors for neuromorphic computation
using magnetoelectric coupling from first principles

Jun Hee Lee’
School of Energy & Chemical Engineering, UNIST

Mutlfiferroics with various interactions among charge, spin, and lattice have endless possibilities for material
engineering. Such interactions may result in various alternative magnetic phases that have different
spin-charge-lattice combinations and thus distinct dielectric properties that can be controllable by electric field.
I will talk about how to implement multi-level dielectric constants (memcapacitors) from the alternative phases
for developing neuromorphic computations with ultralow energy consumption. And some recent experimental
results veryfing our predictions will be introduced. I will highlight the importance of first-principles search and
collaboration with experiments to uncover the novel phases with different magnetic states and multiple dielectric

constants for the next-generation neuromorphic computation.
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Intrinsic spin Hall effect in fopological semimetals

Adarsh S. Patri', Kyusung Hwang'?, Hyun-Woo Lee'¥, Yong Baek Kim'
'Department of Physics and Center for Quantum Materials,
University of Toronto, Toronto, Ontario M5S 1A7, Canada
*Department of Physics, The Ohio State University, Columbus, OH 43210, USA
*Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
Email: hwl@postech.ac.kr

We theoretically investigate a mechanism to generate intrinsic spin Hall effect in topological semimetals such
as iridates. With SrlrO; as a specific example, it is shown that large spin Hall effect arises in this system via
the spin-Berry curvature originating from the nearly degenerate electronic spectra surrounding the nodal line. The
effect persists even when the nodal line is gently gapped out, suggesting the robustness of this mechanism. The

magnitude of the spin Hall conductivity is shown to be the biggest in any transition metal oxides.
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Large thermopower in
crystalline topological insulating perovskite

Myung-Chul Jung', W. E. Pickett?, and K.-W. Lee"*

'Department of Applied Physics, Graduate School, Korea University, Sejong, Korea
*Depatment of Physics, Univ. of California, Davis, CA, USA
*Division of Display and Semiconductor Physics, Korea University, Sejong, Korea

In the condensed matter physics, one of the hot issues is topological material physics for last ten years. Many
distinct types of topological phases have been proposed, and some of them have been supported by experiments.
Among them, the called topological crystalline insulator (TCI) is of interest, since it is protected by crystal
symmetries, whereas ordinary Z, topological insulators (Tis) are protected by time-reversal symmetry.

In this presentation, we will propose a new TCI ThTaNs, synthesized 25 years ago, and address its excellent
thermoelectric properties with seebeck coefficient of maximum 400 pl7K. Remarkably, the bulk gap is 150 meV,
quite large for any kind of Tis. The combination of topological surface bands with good thermoelectric properties
has become a recent high profile topic, because the combination enables engineering of thermoelectric devices
by trading off the bulk (thermopower) and surface (conducting states) contributions to the net device performance.
This feature is made easier in the cubic material here, where size and shape can be engineered more readily than
in quasi-2D materials. Thus, ThThN; combines excellent bulk thermopower with parallel conduction through

topological surface states that provide a platform for large engineering devices with ever large figures of merit.

Acknowledgements: This research was supported by NRF of Korea Grants No. NRF-2016R1A2B4009579
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The giant out-of-plane Rashba effect and
the nanoscale persistent spin helix controlled by
ferroelectricity in SnTe thin films

Hosub Jin’
Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea

A non-vanishing electric field inside a non-centrosymmetric bulk crystal transforms into a momentum-
dependent magnetic field, namely, a spin-orbit field (SOF). SOFs are of great use in spintronics because they
enable spin manipulation via the electric field. At the same time, however, spintronic applications are severely
limited by the SOF, as electrons traversing the SOF easily lose their spin information. Here, we present that
in-plane ferroelectricity in (001)-oriented SnTe thin films harness the Janus-faced SOF in a reconcilable way to
enable electrical spin controllability and suppress spin dephasing. The in-plane ferroelectricity produces a
unidirectional out-of-plane Rashba SOF that can host a long-lived helical spin mode known as a persistent spin
helix. Through direct coupling between the inversion asymmetry and the SOF, the ferroelectric switching reverses
the out-of-plane Rashba SOF, giving rise to a maximally field-tunable persistent spin helix. Furthermore, the giant
out-of-plane Rashba SOF seen in the SnTe thin films is linked to the nano-sized persistent spin helix, potentially

reducing spintronic device sizes to the nanoscale.
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Valley valve of bilayer MoS,/WS, heterostructure

J.D. Lee’
Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea
E-mail: jdlee@dgist.ac.kr

Being analogous to the spin valve of spintronics, the valley valve manipulating the valley spin magnetism
and transport is firstly proposed from the bilayer MoS,/WS, heterostructure. The proposed valley valve controls
the interlayer as well as intralayer non-local current driven by the inverse valley Hall effect of the anomalous
Lorentz effect. Here we demonstrate three types of segment signals of the nonlocal current at the terminals of
the heterostructure, where the nonlocal transports of low resistance (LR), middle resistance (MR), and high
resistance (HR) would be realized depending on the field bias. This finding provides a new chance of the highly

advanced valley informatics or valleytronics.
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Real-time TDDFT study of spin-phonon dynamics and
band topology of solids

Noejung Park’
Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 689-798 Korea

Topological states have commonly been cited as a new classification of materials, and global properties
immune to local perturbations have been suggested as topological non-trivial attributes. Actual computations of
the topological quantities of real materials have been obtained through the theories of linear responses over the
static ground electronic structure. Here, we propose an alternative way by considering the time-evolution of the
Hamiltonian, which lets the pumping parameter run periodically through the geometric space of the Hamiltonian.
As test examples of this method, we present a trivial insulator, a spin-frozen valley-Hall system, a spin-frozen
Haldane-Chern insulator, and a quantum spin-Hall insulators. In later part, we also demonstrate the spin precession
dynamics of MoS,, in which the spin is strongly coupled to the optical phonon. This dynamical spin state can
be resolved into discrete Floquet-phononic spectra, and once the phonon is pumped so as to break time-reversal
symmetry, the resulting spin-Floquet structures induce net out-of-plane magnetizations in the otherwise

non-magnetic 2D material.

- 79 -



=S-VI-8

Interfacial magnetic-phase transition mediated large
perpendicular magnetic anisotropy in FeRh/MgO
by a heavy transition-metal capping

Dorj Odkhuu’
Department of Physics, Incheon National University, Incheon 22012, South Korea

Stacking a magnetic memory junction in spintronic devices necessarily involves making contacts with a
transitional-metal capping electrode. In this talk, we will present results of our recent first-principles calculations
on a cruicial role of heavy transition-metal (HTM) capping on magnetic-phase transition from antiferromagnetic
to ferromagnetic order and large perpendicular magnetic anisotropy (PMA) found in Ta- and Os-capped FeRh
films on MgO substrate. While magnetization of FeRh films reorients from in-plane to PMA when in contact
with MgO, the presence of HTM capping further enhances PMA up to an order of magnitude in energy, which
is associated with the occurrence of ferromagnetism at the interface. Such a large PMA is mainly driven by the
interplay between the out-of-plane Fe 34-O 2p and Ta (Os) 5d-Fe 3d hybridized orbital states at both interfaces.
Furthermore, the magnetic-phase transition at the interface is the results of the mutual mechanisms of the
capping-induced volume/tetragonal expansion in the interfacial FeRh layers and the competition between the direct
and indirect exchange interactions mediated by the hybridization with the spin-polarized Ta (Os) 5d orbitals. These
findings suggest that HTM/FeRh/MgO multilayers may represent the highly favorable memory materials with net

interfacial ferromagnetism and large PMA in antiferromagnet spintronics.
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Electronic Structures and Phonon Properties in
Correlated Electron Systems

Byung Il Min’
Department of Physics, Pohang University of Science and Technology, Korea

In general, the phonon effects on magnetism are considered to be minor as much as the ratio of phonon
energy to electron energy. However, Professor Duk Joo Kim has shown that the phonon effect can determine the
temperature-dependence of magnetic properties in the case of large exchange-enhanced systems. We have
discussed the Prof. Kim’s theory by demonstrating the phonon effects explicitly on the Curie temperature and
magnetic susceptibility in the exchange-enhanced systems and the strong electron-phonon interaction systems.
Then we have discussed the success and failure of band description of f-electron properties in correlated systems.
We have explored a typical two-peak structure in the f-electron spectral function of Ce systems and examined

the temperature-dependent evolution of coherent f-band structure.
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Magnetic properties of two-dimensional layer structured
materials: A first principles study

Imran Khan, M. Umar Farooq, M. Moaied, S. Fazle and Jisang Hong’
Department of Physics, Pukyong National University, Busan, Korea 608-737

Study on two-dimensional (2D) layer structured materials is one of the most fascinating research topics in
condensed matter physics. So far, various types of 2D materials have been investigated either theoretically or
experimentally and many intriguing physical properties have been explored. However, most of the studies focused
on the electrical and optical properties because many of 2D materials are intrinsically non-magnetic. Regarding
the magnetism in the 2D structure, it was first reported that the intrinsic ferromagnetic 2D material could be
fabricated in Crls, Although it is still rare to find the studies on the 2D magnetic materials, the ferromagnetic
2D material may bring potential application for spintronics in diverse fields. Here, we will present the recent
works on magnetic properties of 2D layer structured materials in two ways; (i) theoretical design of 2D materials
(ii) theoretical understanding of pre-existing 2D materials.

This research was supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016R1A2B4006406)
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High coercivity Fe;s.xAlN2 alloy design

Jinho Byun, Taewon Min, Jaekwang Lee’
Department of Physics, Pusan National University, Busan 46241, Korea
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Iron nitrides (Fe;N>) have recently attracted considerable attentions for the future rare-carth free permanent

magnets due to its low cost and high magnetization compared to other RE-free magnetic materials. Despite such

a high remanent magnetization, its usefulness is restricted because it is easily de-magnetized. Here, using the

first-principles density functional theory calculations, we extensively investigated the structure evolution, stability

and magnetic properties of Fejs,AlN, alloys by varying Al contents. We find that substituting Fe by Al in Fe;¢N»

greatly improves the magnetic anisotropy of the alloys, and their coercivities can increase by about 300%

compared to that of Fe;¢N,. We thus expect that these FeisxAliN, alloys will be promising candidates for strong

rare-earth free permanent magnets.

This work was supported by the Industrial Strategic Technology Development Program (10062130,

Theory-driven R&D for non-centrosymmetric structured rare-carth free Fe-based permanent magnet materials)

funded by the Ministry of Trade, industry & Energy (MI, Korea).
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Room-temperature ferromagnetism from
an array of asymmetric zigzag-edge nanoribbons
in a graphene junction

Hosik Lee”

UNIST, School of mechanical, aerospace and nuclear engineering department

Room-temperature ferromagnetism in graphene layers with defects has been experimentally measured. Despite
disagreement around the intrinsic origin of carbon magnetism, experimental evidence has supported the existence
of paramagnetism or ferromagnetism in carbon materials. Convincing theoretical explanations, however, have not
yet been proposed. In this work, density functional theory calculations were used to suggest a plausible
explanation for this phenomenon as it is observed at the zigzag grain boundaries of a mismatched single-double-
single-layer graphene junction. We identified asymmetric zigzag-edge graphene nanoribbons that display
ferromagnetic properties in a graphene junction structure. Two ferromagnetic asymmetric zigzag graphene
nanoribbons displayed antiferromagnetic coupling in a defect-free structure at the grain boundary. The introduction
of a vacancy or N-substitutional defect was found to destroy the magnetism on one side only; the nanoribbon
on the other side continued to display a large ferromagnetic exchange coupling. The ferromagnetic nanoribbon
in the junction was ferromagnetically correlated with other nanoribbons in the two-dimensional junction array,
yielding a Curie temperature well-above room temperature. Moreover, the ferromagnetic correlation was observed
regardless of the arrangement of the magnetic layers, enabling ferromagnetic ordering within the graphene junction

array.
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Catalytic Effects of magnetic nanoparticles Synthesized
by Levitational Gas Condensation (LGC)

Young Rang Uhm’
Affiliation A, KorealRadioisotope Research Division,
Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057 Korea

Among the various methods for preparing nanopowders, almost all of the processes face important challenges,
such as poor control of size distribution, surface contamination, the agglomeration of the particles, and so on.
Many attempts have been made to develop processes and techniques that can synthesize nanoparticles with
specific functional properties. Dry methods such as the levitational gas condensation (LGC) process, have been
developed to obtain high purity nanopowders, while suppressing the agglomeration of the produced particles. The
produced magnetic metal (Ni and Fe) and carbon encapsulated metal (Ni@C, and Fe@C) nanoparticles showed
a non-collinear magnetic structure between the core and surface layer of the particles. The morphologies and the
dispersion stability kinetics in the solvents are introduced in this study. A very stable dispersion for the carbon
coated metals was observed without showing any clarification or sedimentation in EG and PEG. In contrast, a
progressive fall signal was observed as a function of time in the middle region of metal nanoparticles which had
an average particle size of 20 nm. This can be explained by flocculation-induced particle growth. Also, the carbon
encapsulated metal nanoparticles were successfully applied as a catalyst for the multi-component Biginelli
reaction. The simultaneous use of a heterogeneous catalyst along with the chiral modifier allowed the ratiobetween
stereoisomer in the Biginelli reaction to be changed in some experiments in favor of the S-enantiomer, with an

excess of about 19.6 %.

ko

Fig. 1. High resolution TEM images of carbon en-capsulated (a) Ni and (b) Fe
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Modelling and Diagnosis of Wooden Cultural Heritages
for the Radiation Processing

Gwang Min Sun’

Affiliation A, Group of NAA and Precise Nuclear Detection,
Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057 Korea

All areas for heritage protection are concerned by infestation problems. Methyl bromide has been used to treat
the conservation of the traditional and cultural heritages such as historical building, woodblock and hanji (Korean
traditional paper) and so on. According to the global agreement to slow down the depletion of the Ozon Layer,
the use of methy bromide will be banned in 2018. Chemicals such as ethyl formate and phosphine were developed
as an alternative fumigant to replace the methyl bromide, but these could not show the efficient effects to get
rid of the bugs, worms and their larvae and eggs inside the cultural heritages due to their reduced penetrating
powers. Furthermore, chemical agents have caused dozens of accidents from poisoning accidents each year.
Therefore, to replace these chemicals, the technology to process the cultural heritages using ionizing radiation has
been developed and used around world, especially in Europe, US and Japan. Nowadays, many Asian countries
like Iran, Kazakhstan also adopted the radiation technology to protect their cultural assets from infestation. [AEA’s
efforts to preserve the World Heritages using radiation are also expanding through the technical expert meetings.
In this study, we will assess the influence of gamma and X-ray radiation on the woodblock and hanji to establish
the SOP for processing the domestic cultural heritages. In the case of Korean wooden heritages, the type of the
woods and processing methods vary depending on the times and areas, so it is necessary to secure and provide

the computerized modelling of the various media and processing conditions.
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A new approach for targeted hyperthermia using
nanoparticle-based microrobot

S. H. Kim", C. S. Kim?

'Wonkwang University, Republic of Korea
*Kookmin University, Republic of Korea

Typically, iron oxide nanoparticles have been used for heat generation to kill cancer cells in magnetic
hyperthermia, whereas nanoparticles are accumulated after hyperthermia and they can cause side effects. To avoid
this issues, we proposed a new approach for hyperthermia using a microrobot. The proposed microrobot head
is made of Fe;O, magnetic nanoparticles(MNPs) for hyperthermia, and the robot generate active locomotion by
magnetic field manipulation. In this study, we investigated magnetic properties and heat generation of Fe;O4
nanoparticles for microrobot design whit hyperthermia. We have manufactured Fe;O., copper tube, copper tube
filled with Fe;O4 and permanent magnet attached to this copper tube. Fe;O4 were prepared by HTTD method.
The microrobot head was put in the magnetic induction coil with a heat insulator and induction heating system
generates magnetic field strength of 250 Oe with 112 kHz. The magnetic properties were investigated by VSM.
For active locomotion and targeting of the microrobot, we utilized spiral-type magnetic microrobot mechanism
with 3-axis Helmholtz coil system. The robot, which is driven by magnetic torque, is synchronized by the applied
rotating magnetic field (40~100 Oe and 1~100 Hz). Figure 1 shows the concept of microrobot for hyperthermia
and experimental results. The value of saturation magnetization and self-heating temperature are 4, 12.9 E7, 67,
and 52 emu/g and 58, 60, 70, and 64 °C for Fe;Os, copper tube, copper tube filled with Fe;O, and permanent
magnet attached to this copper tube, respectively. It can be seen that self-heating temperature of the copper tube
filled with the MNPs (robot head) is higher than that of pure MNPs. Therefore, the application of a microrobot

with heat function can solve the side effect caused by the accumulation of MNPs in the human body.
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Fig. 1. Concept of targeted hyperthermia: active locomotion with results of hyperthermia
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Revealing the Active Sites of Fe —N/C Oxygen Reduction
Electrocatalysts by Mossbauer spectroscopy

Sang Hoon Joo’

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST),
Ulsan 44919, Republic of Korea

Iron and nitrogen doped on carbon (Fe—N/C) catalysts have emerged as promising nonprecious metal catalysts
(NPMCs) for oxygen reduction reaction (ORR) for fuel cells. In this presentation, we show that Mdssbauer
spectroscopy, in combined with other spectroscopic and microscopic methods, plays a pivotal role in revealing
the nature of active sites in Fe—N/C catalysts. Based on the information on the active sites, we developed a
general “silica-protective-layer-assisted” approach that can preferentially generate the catalytically active Fe—Nj
sites in Fe—N/C catalysts while suppressing the formation of inactive large Fe-based particles. The preferential
formation of Fe—Ny sites in the resulting Fe—N/C catalysts was characterized by Mossbauer spectroscopy, X-ray
absorption spectroscopy, X-ray diffraction, and transmission electron microscopy. The developed Fe—N/C catalysts

showed very high ORR activity and excellent stability in both alkaline and acidic media.
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High-Density Crystalline/Amorphous Phase Boundaries in
Electrochemically Activated Nickel-Doped Cobalt Sulfide
for Efficient Oxygen Evolution Reaction

Sungwook Mhin’

Korea Institute of Industrial Technology, 156 Gaetbeol-ro 156,
Yeonsu-gu, Incheon 406-840, Republic of Korea
hyeleci@kitech.re.kr

The development of highly efficient, low-cost electrocatalysts for water splitting is essential to achieve
sustainable production of hydrogen fuel. It has recently been proposed that the OER activity of transition metal
sulfides (TMSs) can be enhanced by forming a thin amorphous layer on a pristine surface. We report here a novel
strategy for enhancing OER by developing a nickel-doped cobalt sulfide (CNS) with a high density of crystalline
and amorphous phase boundaries. Electrochemical activation (ECA) can partially amorphize hollow CNS
nanoparticles derived from surface-selective sulfidation. ECA-treated CNS (ECA-CNS) electrocatalysts, which are
comprised of CNS nanodots separated by thin amorphous layers, show high densities of crystalline and amorphous
phase boundaries. This catalyst shows superior OER catalytic performance with a current density of 10 mA cm™
at a small overpotential of 290 mV, a low Tafel slope of 46 mV dec’, a high mass activity of 217 A g, a

high turnover frequency of 0.21 s at an overpotential of 340 mV, and excellent stability in alkaline media.

pressure

Schematic illustration of the preparation of (a-c) hollow CNS-rGO nanoparticles

in GO solution and (d) morphology change after ECA process
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Current Status on Bio-Spintronics Researches
- From molecular diagnosis to Tissue engineering -

Cheol Gi Kim’
Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
“cgkim@dgist.ac.kr

The integration of a remotely controllable particles/cells manipulation in a lab on a chip system, including
diagnosis sensors, promises to play a key role towards the advancement in gene sequencing, single cell analysis
and cell separation technology. Particularly, most existing single cell platforms are unable to achieve large scale
operation with flexibility on cells and digital manipulation, and thus there is urgent need of innovative techniques
to accomplish the automation of single cells. Recently, the flexibility of magnetic shuttling technology using
nano/micro scale magnets for the manipulation of particles has gained significant advances and has been used
for a wide variety of single cells manipulation tasks. Here, we have developed a class of integrated magnetic
track circuits designed by conventional lift-off technology for executing sequential and parallel, timed operations
on an ensemble of single particles and cells. When the magnetic tracks are combined into arrays and driven by
rotating magnetic field, the single cells/particles are precisely control for multiplexed analysis [1]. The concentric
cells/particles transport to one point and then transported to apartments array for the single cell analysis were
performed by the assembly of this magnetic track into a novel architecture, resembled with spider web network
consisted of several radii and spirals. Furthermore, a planar Hall resistance sensor was integrated at the center
of the web networks, and the manipulation and detection are achieved via superparamagnetic particles with dual
functions as a biomolecule carrier for transportation and labels for monitoring [2]. This novel platform could
possibly open a new biological assay system for both future diagnostic devices that overcomes diffusive
bioanalytes transportation issues facing existing nano/micro-biosensors, and cells-on-chip which allows the
heterogeneity analysis in individual cell levels. Here, I will also review the application of Spintronics devices to

the bio-chemical and bio-physical analysis

References
[1] B. Lim, V. Reddy, X. H. Hu, K. W. Kim, M. Jadhav, R. Abedini-Nassab, Y. W. Noh, Y. T. Lim, B. B.
Yellen, C. G. Kim, Nature Communications, 5, 1(2014)
[2] B. Lim, S. R. Torati, K. W. Kim, X. Hu, V. Reddy, C. Kim, NPG Asia Materials (2017) doi:10.1038/
am.2017.37
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Semiconductor valley magnetism and
its control and application

J.D. Lee’

Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea
E-mail: jdlee@dgist.ac.kr

Being analogous to the spin valve of spintronics, the semiconductor nanoarchitecture playing a role of the
valley valve is firstly proposed from the bilayer MoS,/WS, heterostructure, which manipulates the valley spin
magnetism and its related transport. The proposed valley valve controls the nonlocal current driven by the inverse
valley Hall effect of the anomalous Lorentz effect and produce three types of segment signals of the nonlocal
current at the terminals of the heterostructure, where the nonlocal transports of low resistance (LR), middle
resistance (MR), and high resistance (HR) would be realized depending on the field bias. This finding provides
a new chance of the highly advanced valleytronics and further the valleytronic devices for the bio-inspired

application.
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Magnetically actuated microrobots for
targeted therapeutics

Jin-young Kim'?', Seungmin Lee?, Sunkey Lee', Sangwon Kim® and Hongsoo Choi'?"
'DGIST-ETH Microrobotics Research Center, DGIST, Korea
*Department of Robotics Engineering, DGIST, Korea
*Institute of Robotics and Intelligent Systems, ETH Zurich, Switzerland

Targeted therapies have emerged as a promising new biomedical treatment since they can transport agents such
as drug, cells, thermal energy to specific areas in a body and then treat the targeted area for an appropriate length
of time [1]. These therapies have many advantages such as reduction of ADR (Adverse drug reaction) and drug
dosage over conventional medical treatments (ex. oral or intravenous drug administration). However, they are not
yet available for clinical treatments as the targeted drug/cell delivery mechanisms require improvement. For
example, it remains difficult to deliver the micro- or nanoparticles used as drug carriers to specific areas of the
body since some of the drug carriers administered deviate from the intended route, especially under fluid flow
conditions, such as in circulating blood [2]. Therefore, there is a demand for more accurately targeted drug/cell
delivery methods. These methods should transport drugs precisely to the targeted areas without losing therapeutic
agents before they reach their destination. These challenges have prompted considerable interest in microrobots.
Microrobots are micron scale (less than 1 mm) devices that can be precisely and wirelessly controlled by external
power sources such as ultrasound and magnetic fields. This means that they can be used to accurately deliver
medicine in a minimally invasive way [3]. As they are operated wirelessly, they have a possibility to be navigated
around various environments inside the human body, such as the circulatory, urinary, and central nervous systems.
External magnetic fields are often used to control the motion of microrobots in three-dimensional (3D) space.
In this talk, I will introduce various microrobots for targeted therapy that are actuated by an external magnetic
field, including the 3D porous scaffold-type and the capsule-type microrobot for drug/cell delivery, the magnetic

drilling actuator for vascular disease, and biodegradable microrobots for drug delivery.
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[1] Y. Chen, L. Jiang, R. Wang, M. Lu, Q. Zhang, Y. Zhou, Z. Wang, G. Lu, P. Liang, and H. Ran, Injectable
Smart Phase-Transformation Implants for Highly Efficient In Vivo Magnetic-Hyperthermia Regression of
Tumors, Adv. Mater. 26 (2014) 7468-7473

[2] T. M. Allen, and P. R. Cullis, Drug delivery systems: entering the mainstream, Science 303 (2004)
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Proteins and Biomagnetics

Ogan Gurel
Distinguished Invited Professor, DGIST

It is well known that proteins exhibit dynamic behavior with their normal modes specifically vibrating at
terahertz frequencies. These motions are essential to protein function and because these macromolecules are
charged the existence of such vibrations suggest the possibility of specific interaction with electromagnetic
radiation in the terahertz band. Time-domain spectroscopic experiments were performed identifying specific
absorption of terahertz radiation (~0.8THz and 1.3THz) by met-hemoglobin as well as potential interactions
between high frequency and low frequency modes (e.g. Stokes shift). This proof-of-concept result suggests that
these protein spectroscopic signatures can serve as the basis of a novel form of molecular medical imaging;
likewise terahertz-modulated manipulation of such motions may underlie new forms of therapy. Other
collaborative studies now underway, including THz imaging of Alzheimer’s tissue, and THz spectroscopy of
diabetes-related hemoglobin, and 2D THz spectroscopy as applied to biomolecules, will also be discussed along

with implications for biomagnetics in general.
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A Study on the Change of Reference Value of Patient
Specific Quality Assurance according to Intensity
Modulated Radiotherapy Technigue

Jeong Ho Kim"", Se Jong Yoo?, Myeong Cheol Park®, Seok Hwan Bae*, Min-Cheol Jeon®
'Department of Radiation Oncology, Konyang University Hospital
’Department of Radiation Technology, Daejeon Health Institute of Technology
*Department of Diagnostic Radiology, Konyang University Hospital
*Department of Radiological Science, Konyang University
Department of Radiation Technology, Daejeon Health Institute of Technology

Introduction : In the case of the intensity-modulated radiotherapy technique that reflects various factors of
change, the patient specific quality assurance is performed before application. However, the evaluation criteria of
the patient specific quality assurance according to the types of the intensity modulated radiotherapy technique are
all the same. Therefore, we propose the evaluation criterion by comparing the evaluation value of the patient
specific quality assurance according to the type of intensity modulated radiotherapy technique.

Materials and method : Three intensity modulated radiotherapy techniques in the Step and Shoot technique,
the Sliding Window technique, and the volumetric modulated Arc radiotherapy technique were applied to 16
patients. Then QOC, HI, and CI according to intensity modulated radiotherapy technique were measured and the
area gamma, the maximum gamma, the average gamma, the maximum dose difference, and the average dose
difference were compared.

Result : For the sliding window technique, QOC was 0.97 = 0.014, HI was 1.103 + 0.026, and CI was 0.931
+ 0.027. For the Step and Shoot technique, QOC is 0.965 + 0.016, HI is 1.112 + 0.03, and CI is 0.941 + 0.032.
For the VMAT technique, the QOC is 0.973 + 0.015, the HI is 1.101 £ 0.024, and the CI is 0.944 + 0.026.
In the sliding window technique, the area gamma is 96.03, the maximum gamma is 2.08, the average gamma
is 0.21, the maximum dose difference is 0.457, and the average dose difference is 0.062. In the Step and Shoot
technique, the area gamma is 97.99, the maximum gamma is 1.09, the average gamma is 0.014, the maximum
dose difference is 0.14, and the average dose difference is 0.004. In the VMAT technique, the area gamma is
95.16, the maximum gamma is 2.57, the average gamma is 0.326, the maximum dose difference is 0.633, and
the average dose difference is 0.084.

Conclusion : As a result of the evaluation of the patient specific quality assurance according to the intensity
modulated radiotherapy technique, the Step and Shoot technique showed the best reproducibility and the VMAT
technique showed the greatest difference. Also, each evaluation index should be adjusted based on the average
value. However, for clinical application, statistical significance should be increased by increasing the number of

samples.
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Performance Analysis of Low-level Radiation Shielding
Sheet with Nanosized Shielding Fiber

Jae-Hwan Cho"", Myung-Sam Kim?, Jea-Dong Rhim®', Man-Seok Han* Chang-Gyu Kim®
'Department of International Radiological Science, Hallym University of Graduate Studies, Seoul 135-841, Korea
*MS Medicamp Company, Daegu 702-280, Korea
*Department of Radiological Science, Daewon University College, Jecheon 390-702, Korea
“Department of Radiological Science, Kangwon National University
*Department of Radiological Science, Gimcheon Univertisy

In this study, the authors attempted to produce a medical radiation shielding fiber that can be produced at
a nanosize scale and that is, unlike lead, harmless to the human body. The performance of the proposed medical
radiation shielding fiber was then evaluated. First, bismuth oxide, an element which, among elements that have
a high atomic number and density, is harmless to the human body, was selected as the shielding material. Next,
10 ~ 100 nm sized nanoparticles in powder form were prepared by ball milling the bismuth oxide (BiyOs), the
average particle size of which is 1~500 um, for approximately 10 minutes. The manufactured bismuth oxide was
formed into a colloidal solution, and the radiation shielding fabric was fabricated by curing after coating the
solution on one side or both sides of the fabric. The thicknesses of the shielding sheets prepared with bismuth
oxide were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm. An experimental method was used to measure the
absorbed dose and irradiation dose by using the lead equivalent test method of X-ray protection goods presented
by Korean Industrial Standards; the resultant shielding rate was then calculated. From the results of this study,
the X-ray shielding effect of the shielding sheet with 0.1lmm thickness was about 55.37% against 50keV X-ray,
and the X-ray shielding effect in the case of 1.0mm thickness showed shielding characteristics of about 99.36%
against 50keV X-ray. In conclusion, it is considered that nanosized-bismuth radiation shielding fiber developed
in this research will contribute to reducing the effects of primary X-ray and secondary X-ray such as when using

a scattering beam at a low level exposure.

Keywords: Shielding material, Bismuth oxide, Nanosize, Absorbed dose, Irradiation dose, Shielding rate
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Magnetic Field Variation with Activation of Bending
Magnet in Linear Accelerator

Jeong-Min Seo", Jeong-Ho Kim?, Gap-Jung Kim?
'Dept. of Radiological Science, Daewon University
Dept. of Radiation Oncology, Konyang University Hospital
*Dept. of Radiological Science, Songho University

The nuclide transformation could occur by radio-activation whenever the high-energy electromagnetic radiation
of the medical linear accelerator is irradiated in high capacity, and the magnetic field strength would be changed
due to the nuclide transformation of bending magnet, and this change in the magnetic field strength is shown
as the change in flux of the electromagnetic radiation. Therefore, the effect of radio-activation on the change in
flux of the electromagnetic radiation according to the electromagnetic radiation dose is to be evaluated.

Subjected to 7 medical linear accelerators planned for disposal, the total dosage, nuclide analysis using the
spectrometer of the magnet core, flatness using the water phantom & ion chamber, and the change amount of
symmetry were evaluated.

As a result, the relationship of change rate in flux according to the dosage is shown in 4 % error per 1,000
Gy. As a result of applying the 1 % threshold limit by the American Association of Physicists in Medicine,
TG-142 Report, the tolerated dose is 250Gy.

Therefore, on the use of medical linear accelerator in the future, it is recommended to perform the flux
evaluation according to the magnet core radio-activation for each 250Gy along with the existing periodical quality

control.
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Effects of Task-Oriented Activity after Low Frequency
Repetitive Transcranial Magnetic Stimulation on
Cerebral Motor Evoked Potential Emplitude and

Latency in Stroke Patients

Sung-Ryoung Ma", Man-Seok Han?, and Bo-Kyoung Song®
'Department of Occupational Therapy, Shinsung University
’Department of Radiological Science, Kangwon National University
Department of Occupational Therapy, Kangwon National University

1. Introduction

This study aimed to investigate the effects of low-frequency repetitive transcranial magnetic stimulation
applied over the cerebral motor cortex, and the subsequent task-oriented activities performed under the residual
effect, during the rehabilitation of stroke patients by measuring changes in MEPs amplitude, MEPs latency of

the affected cerebral motor cortex.

2. Methods and Results

this study conducted an intervention program on two groups (experimental group-TIL, control groups-GRT,
each consisting of 10 patients) of chronic stroke patients. The program which was conducted three times a week
for 6 weeks—evaluated the MEP amplitudes, MEP latency before and after the experiment. In an inter-group test
of MEP amplitude and MEP latency, all groups showed an increase between pre- and post-test evaluations. In
an intergroup examination on MEP amplitude and MEP latency, a significant difference was observed between
the TIL and GRT groups.

3. Conclusions

Noninvasive brain stimulation using repetitive transcranial magnetic stimulation is a new concept of
reurorchabilitation that is different from existing rehabilitation, which is based on improvement of brain function
through peripheral control. This study reports that an intervention combining low-frequency repetitive transcranial
magnetic stimulation and task-oriented activities demonstrated significantly greater improvements in MEP
amplitude, MEP latency in the affected cerebral cortex as compared with conventional rehabilitation training in
stroke patients when performed three times a week for six weeks. Therefore, based on the present study,
transcranial magnetic stimulation is a new neurorehabilitation and evaluation method that can be used safely and

effectively for stroke patients, and it seems to be more likely to develop in the future.

4. References
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Spin Seebeck effect in a bulk-Y;FesO,, fabricated
by a sol-gel synthesis

Min-Sun Jang’, Ki-Suk Lee

School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST),
Ulsan 44919, Republic of Korea

1. Introduction

Spin-caloritronics, based on the spin Seebeck effect (SSE) has been considered as a prominent candidate for
future sustainable green energy technologies [1]. Most of experiments has been performed on a single crystal
Y;Fes01, (YIG) fabricated by a pulsed laser deposition (PLD) method [2,3]. This is because a single crystal YIG
has been believed to be able to generate sufficiently high SSE signal [4]. However, this method is known to be
very difficult to use in mass-production. In contrast, the sol-gel synthesis can provide a low-cost and
mass-production method. Here, we fabricated a bulk-YIG by adopting a sol-gel synthesis and a mechanical
pressing process with heat-treatments [5]. We measured thermoelectric (TE) voltage of a bulk-YIG through the
inverse spin-Hall effect in Pt electrodes on a bulk-YIG surface. It is found that TE performance of a bulk-YIG
is almost closed to that of a single crystal YIG by PLD method.

2. Experiments

YIG precursor was prepared by mixing yttrium nitrate (Y(NO;);.6H,O, 99.99%) and iron nitrate
(Fe(NOs);.9H,0, 99.99%) powders in a stoichiometric ratio of 3: 5 and adding citric acid (C¢HsO7.H,0). The
precursor mixture was dissolved in distilled water (100 mL) by stirring (300 rpm) at 27 °C for 18 hours. The
solution of the citric acid was maintained at 1pH. The resulting solution (sol) was then stirred for 24 hours at
80 °C to obtain a homogenous gel. Next, a form a dry material (gel) was obtained from the sol by drying the
solution, which was decomposed at 100 °C for 5 hours. The YIG powder was obtained by grinding the
completely dried gel. The calcination process was carried out at 850 °C in the air at the ratio of 7.0 °C/min
to get rid of residual impurities and the crystallization. After, we did the pressing process to produce the
substrate-free as well as the bulk- YIG by pushing 15 MPa for 5 minutes and observed the influence of external
mechanics for magnetic properties. Lastly, sintering has been done at 1400 °C at the ratio of 5.0 °C/min. To
measure the longitudinal-SSE (LSSE), a Pt electrode was fabricated on the bulk-YIG sample. By applying 400
Oe magnetic field parallel to the disk plane (+y direction), magnetization in bulk YIG aligned along +y direction.

To form temperature difference along -z direction, bottom surface was heated, and top surface was air cooled.

3. Results & Discussion

From this process, the saturated magnetization (M) value of a bulk-YIG was obtained upto 26.5 emu/g, which
is 70% of the ideal M; of a YIG. From the previous studies [6], it is well known that heat treatment from the
sol-gel method can affect the crystalline structure and enhanced magnetic properties of YIG. In this work,
however, we found that the pressing process can play a crucial role for the high performance M; of YIG. Also,

it is evident that a significant TE voltage is generated in a Pt/bulk-YIG structure. These results reveal clearly
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that the SSE signal can generated well in a polycrystalline bulk-YIG structure.
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Magnetic separation assisted high-throughput differential
identification of abnormal fusion genes in prostate
cancer patient urine
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*Division of Bio-Medical Science & Technology, KIST School,
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"kwanhyi@kist.re.kr

We introduce how the TMPRSS2-ERG fusion genes found in urine samples can be used as a biomarker to
diagnose prostate cancer in accordance with widely used prostate serum antigen, PSA. Bio-barcode assay detected
three types of TMPRSS2-ERG fusion genes that are expressed frequently in urine of prostate cancer patients at
an extremely low level. In the bio-barcode system, micro magnetic particle can isolate target fusion genes
specifically through hybridization with complementary sequence. Therefore, we detected target genes quickly
without any sample preparation steps.

In our study, we detected multiple target sequences to verify the diversity of TMPRSS2-ERG fusion genes
between the patients. We demonstrated the bio-barcode assay that elucidated the existence of the TMPRSS2-ERG
fusion gene up to a 100 aM (10 zmole) concentration. Notably, the bio-barcode assay also could differentiate
prostate cancer patients with different types of fusion gene, while traditional PSA assay did not. This opens up
a possibility of classifying cancer patients by detecting different types of fusion genes. Another ability of the
bio-barcode assay is that it can identify patient who was treated with hormones therapy which could decrease
the PSA concentration almost to zero level in urine of patient. These findings offer a new patient-friendly
monitoring method that could add accuracy to the conventional method for prostate cancer patients by detecting

multiples fusion genes in their urine with highly sensitive bio-barcode assay.[1]
Reference
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Two-dimensional antiferromagnon characterin S = 1
one-dimensional chain NiTe;Os
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'School of Natural Science, UNIST, Ulsan, Korea
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3Center for Correlated Electron Systems, IBS, Seoul, Korea
“Dept. of Phys. & Astro., Seoul National University, Seoul, Korea

SCanadian Neutron Beam Centre, Chalk River, ON, Canada

®Dept. of Physics, University of Florida, FL, USA

Since Haldane conjectured that ground state of one-dimensional Heisenberg antiferromagnet has a finite spin
excitation gap for integer spins, while gapless excitations for half-odd integer spins, it has inspired lots of
theoretical and experimental studies on low-dimensional quantum magnets. This integer spin chain, called Haldane
chain, generally has antiferromagnetic coupling for the intrachain exchange interaction. Recently, a new Haldane
chain compound NiTe,Os has been discovered, in which antiferromagnetic order is accompanied by
antiferromagnetic interchain coupling between one-dimensional ferromagnetic chains. In the new compounds,
magnetic and thermal properties have been intensively studied. Interestingly, it has been found that the
one-dimensional spin chain NiTe,Os has two-dimensional antiferromagnon character. In this presentation, we
present our comprehensive experimental studies on NiTe,Os and discuss about the possible two-dimensional

antiferromagnon excitation.
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Correlation between Magnetic Properties and
Depinning Field in Field-Driven Domain Wall
Dynamics in GdFeCo Ferrimagnets
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Hiroki Yoshikawa?, Arata Tsukamoto?, Yoichi Shiota', Takahiro Moriyama', and Teruo Ono'?

'Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
*College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
3Center for Spintronics Research Network (CSRN), Graduate School of by Engineering Science, Osaka University,
Osaka 560-8531, Japan

The dynamics of the domain walls (DWs) in magnetic materials has been extensively explored for
understanding the physics [1] as well as the potential applications in spintronic devices [2, 3]. Here, we report
that the depinning magnetic field strongly depends on the magnetic properties. For this study, Si substrate/100-nm
SiN/30-nm GdFeCo/5-nm SiN films with perpendicular magnetic anisotropy were prepared. The DW velocity v
was measured as a function of an applied magnetic field uH at different temperatures 7 by use of a real-time
DW detection technique [4]. As shown in Fig. 1(a), we find that the depinning field uoHs, monotonically
decreases as T increases. Furthermore, we find that uoHy, is proportional to \/m as shown in Fig. 1(b),
where Ms is the saturation magnetization and poHx is the magnetic anisotropy field. This correlation between u
oHaep and the magnetic properties is understood in terms of the creep scaling law. Details will be discussed at

the presentation.
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Fig. 1. (a) Magnetic field poH dependence of the DW velocity v at different temperatures 7.
(b) The depinning field ipHa, as a function of o Hy/ M, .
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[1] P. J. Metaxas et al., Phys. Rev. Lett. 99, 217208 (2007).
[2] S. S. P. Parkin er al., Science 320, 190 (2008).
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Correlation between Compensation Temperatures
of Magnetization and Angular Momentum in
GdFeCo Ferrimagnets
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’Department of Physics and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
*Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
’Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University,
Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan

Recently, magnetic field-controlled antiferromagnetic spin dynamics has been achieved using ferrimagnets [1].
This observation reveals that ferrimagnets exhibit the antiferromagnetic dynamics because of the zero net angular
momentum at the compensation temperature of the angular momentum. Although remarkable efforts have been
made theoretically and experimentally [1, 2, 3] in understanding the role of angular momentum compensation in
DW dynamics, it is difficult to determine the angular momentum compensation temperature because of the
methodological complexities. Here, we propose a way to estimate the angular momentum compensation
temperature of ferrimagnets. We find a linear relation between the compensation temperatures of the magnetization
and angular momentum in GdFeCo ferrimagnetic materials, which is proved by theoretically as well as
experimentally. The linearity comes from the power-law criticality and is governed by the Curie temperature and
the Landé g factors of the elements composing the ferrimagnets. Therefore, measuring the magnetization
compensation temperature and the Curie temperature, which are easily assessable experimentally, enables to
estimate the angular momentum compensation temperature of ferrimagnets. Our study provides efficient avenues

into an exciting world of ferrimagnetic spintronics.

References
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The symmetry breaking during a transformation
from a vortex core to an asymmetric Bloch wall
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1. Introduction

A competition between dipole-dipole interaction and exchange interaction the competition stabilize a Landau
domain structure (a magnetic vortex structure) in a square (circular) sub-micron scaled ferromagnetic disk [1].
These magnetic configurations have been studied in a two-dimensional structure. However, as increasing the
thickness of the disk, it should be considered as a three-dimensional structure due to the non-homogeneous
magnetization along thickness. In this work, we show the deformation of magnetic vortex core under in-plane
magnetic field in a ferromagnetic disk, which is originated from the formation of asymmetric Bloch wall with

Néel caps [2, 3]. Furthermore, we report the symmetry breaking in the formation of the asymmetric Bloch wall.

2. Experiment & micromagnetic simulation

The sample was prepared by electron beam lithography and lift-off patterning technique on a silicon nitride
membrane substrate. A 100 nm thick Permalloy (NigoFey) layer was deposited by DC-sputtering. To observe the
domain structure, we utilize a magnetic transmission soft X-ray microscopy (MTXM). The magnetic imaging in
Permalloy (Py) disk was carried out at the Fe L; X-ray absorption edge at 707 eV. To understand the experimental
results, the micromagnetic simulation was performed for the field-driven vortex core motion in a 100 nm-thick
Py square disk of a thickness L = 100nm. For the typical material parameters for Py, we used the saturation
magnetization Mg = 800 kA/m, the exchange stiffness A = 13 pJ/m, and a zero magnetocrystalline anisotropy

constant.

3. Results & Discussion

As shown in Fig. 1(a), the vortex core on the top (bottom) surface is abruptly shifted along -x (+x) direction
when it is shifted along +y direction by applying magnetic field, i.e., the asymmetric Bloch wall is formed between
two shifted vortex cores. Interestingly, the shifted direction of vortex core is determined by the direction of
in-plane magnetic field direction as seen in Fig. 1(b). we found that this symmetry breaking is related to the

configuration of an asymmetric Bloch wall. Our work help to design the magnetic vortex-based spintronic device.
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Fig. 1. (a) The simulated images for the formation process of the asymmetrci Bloch wall.
The red surface is the area where M,/M; > 0.8, i.e.,, vortex core. (b) The asymmetric Bloch wall observed

by the micromagnetic simulation (left column) and MTXM (right column).
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Non-Parabolic Confining Potential Model of
Magnetic Skyrmion
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1. Introduction

Magnetic skyrmions can be ideally incorporated into the future spintronic devices, owing to their unique
advantages such as extremely small sizes in the nanometric range and particle-like behaviors [1-3]. The
prerequisite for such potential devices is related to understanding on the motion of skyrmion under the influence
of potentials in a confined geometry. Here, we report the micromagnetic simulation studies on confining potentials
of skyrmion with respect to the geometrical boundaries. In this work, we find that the confining potentials of
skyrmion cannot be a simple model of parabolic potential because of particular characteristics of skyrmion spin
texture as shown in Fig. 1. The non-parabolic potentials of skyrmion can be understood by analyzing the energy

changes in the system. We hence derived analytical model of confining potentials of skyrmion.

2. Micromagnetic simulations

For micromagnetic simulations, we used the OOMMEF code [4], which includes the extension code for the
interfacial Dzyaloshinskii—Moriya interaction [5]. As a model system, we employed Co(0.6nm)/Pt nanostripe and
mimic a nanostrip of infinite length using periodic boundary conditions. In the intial state obtained by the energy
minimization method, the Neel-type skyrmion are at the center, and DMI-induced locally-tilted magnetization are
present near the boundaries. The magnetization dynamics of skyrmions driven by in-plane current are modelled
by the modified Landau-Lifshitz-Gilbert equation [6-8].

(a) | (b)
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Fig. 1. (a) Confining potentials of skyrmion versus the displacement of skyrmion from the boundaries
with different conditions of current. (b) The radius of skyrmion versus the displacement of skyrmion

from the boundaries obtained from micromagnetic simulations.
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3. Result & Discussion

Based on the simulation results, we find that the confining potentials of skyrmion cannot be a simple model
of parabolic potential because of particular characteristics of skyrmion spin texture. The boundary put a constraint
on the local spin structure and certainly influence a skyrmion closeby. The local deformation, in turn, leads to
the interaction of skyrmion size with the boundary and the non-parabolic potentials. The studies on micromagnetic
energy, which is a linear dependence on skyrmion size, show that the boundary forces exerted to the skyrmion
decreases with increasing the exchange coupling and perpendicular anisotropy, while it increases with increasing

Dzyaloshinskii-Moriya interaction and dipolar coupling.

4. Conclusion

We conducted numerical and analytical studies on confining potentials of skyrmion with respect to the
geometrical boundaries. Our results provide not only analytical expressions describing the skyrmion dynamics
based on collective coordinates but also fundamental understandings on the phenomena related to the boundaries
such as the skyrmion-Hall effect. Consequently, our results could provide basic guidelines for the operation of

skyrmion-based spintronics devices.
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Phase stability and magnetic properties of MnS0AIS0-xCx:
First-principles calculation and experiment

Sumin Kim"", Minyeong Choi?, Yang-ki Hong? Hyun-Sook Lee'™, Wooyoung Lee"
"Yonsei University, Korea
*University of Alabama, USA

Mn-based magnetic materials including MnBi, MnAl and MnGa have received much attention due to their
high magnetocrystalline anisotropy and high Curie temperature without rare earth or noble metals. Especially,
MnAl-based permanent magnet have advantage of low cost, which might fill in the gap between the traditional
NdFeB and ferrite permanent magnets if a well manufacturing process could be developed. The ferromagnetic
and metastable —phase MnAl, which has the L10 stucture and relatively low density 5.1 g/cm3, has relatively
good intrinsic magnetic properties (K1 = 1.7 MJ/m3, Ms = 7.5 kG), suggesting a potential maximum energy
product of ~12 MGOe with appropriate microstructural development. The L10 phase is metastable and forms from
the & phase, which is stable above 870 °C. The equilibrium phases at room temperature that normally result from
the decomposition of the & phase are y2 and B-Mn. The addition of C tends to increase the stability of the
metastable T phase, likely by suppressing formation of the equilibrium phases. The C addition to the L10 does
not deleteriously affect the intrinsic properties, except for the Curie temperature.

In this study, we fabricate the MnAICx ribbons by rapid solidification using melt spinning bypasses the
primary solidification of y2 and B-Mn phases, resulting in single-phase € in the as-solidified case. Consequently,
ribbons were heat treated and milled to particles by ball milling. The MnAIC powder was separated by size
through sieves. A relatively high coercivity of about 3.2 kOe and saturation magnetization of ~96 emu/g can be
obtained under an applied magnetic field of 3T. This saturation magnetization value is the highest value reported

so far.
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Rare-Earth-Free MnBi Permanent Magnets:
Bulks and Thin Films

Sumin Kim’, Hongjae Moon, Hwaebong Jung, Hyun-Sook Lee"and Wooyoung Lee’
Department of Materials Science and Engineering, Yonsei University,
50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
*Corresponding Authors Email: wooyoung@yonsei.ac.kr (W. Lee), h-slee@yonsei.ac.kr (H.-S. Lee)

Low-temperature phase (LTP) of MnBi has attracted much attention due to its larger coercivity than that of
Nd-Fe-B at high temperature. Moreover, according to the theory of exchange-coupled core-shell magnet, when
the LTP-MnBi is used as a hard magnetic core and combined with soft magnetic shell, the maximum energy
product (BH)m. is estimated to overcome that of Nd-Fe-B. In this regards, there have been many efforts to obtain
the LTP-MnBi bulks and thin films for the exchange-coupled magnets. We report on the magnetic properties of
low-temperature-phased (LTP) MnBi bulks synthesized by arc-melting and melt-spinning, and LTP-MnBi thin
films grown by a UHV sputtering system. First of all, we found that MnBi bulks shows iH, = 5.60 kOe, B, =
6.00 kG, and (BH)max = 7.27 MGOe for 1 h milling (low-energy planetary ball milling) in the synthesis process,
indicating that anisotropic precursor powders are crucial in achieving high-performance MnBi bulk magnets. On
the other hand, we found that the ratio of Bi/Mn strongly has an effect on the magnetic properties of LTP-MnBi
films. The highest value of (BH)m. of LTP film was obtained to be ~ 8.6 MGOe at room temperature when
the thicknesses of Bi and Mn were adjusted in 36nm and 14nm, respectively. The magnetic properties of

exchange-coupled MnBi with various soft layers such as FeCo and Fe will be discussed in detail.

Keywords: Permanent magnet, rare-earth free permanent magnet, MnBi, bulk, multilayer film
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Optimum Control Program for Helium Recovery
System Based on Thermal Equation

Daehwan Park’, Yoon Seok Oh
Department of Physics, UNIST, Ulsan, Korea

Nowadays, liquid helium is one of essential resource for modern civilization in which it is utilized to cool
down the superconducting magnet devices in various fields, such as magnetic resonance image (MRI), nuclear
magnetic resonance (NMR) spectroscopy, and research on nuclear fusion reactor, etc. However, unfortunately, the
helium resource is very limited on Earth. Therefore, one has been looking for the way to minimize loss and
consumption of helium in those application. As an idea, a system is suggested to trap the evaporating helium
gas and liquefy liquid helium, so called helium recovery system or helium recovery plant. A couple of companies
have manufactured helium recovery system for laboratory/hospital and helium recovery plant for the large facility.
The helium recovery system liquefies using the 4K cryocooler so that it can be operated in the relatively small
space. However, its conventional operation needs constant cooling down with the cryocooler, which causes high
maintenance cost about $30,000 in a year. Thus, new control method is required to reduce cost of the maintenance
of the helium recovery system. We designed IoT (Internet of Things) based program to extend effective lifetime
of the cryocooler. The program optimizes operation time of the cryocooler using thermal equations of the
liquefaction system. In addition, it displays real-time status of the cryocooler. Eventually we demonstrate to extend

the lifetime of cryocooler up to 300%.
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