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Analysis of Magnetic Properties using FMR Signals

Dong Young Kim’
Department of Physics, Andong National University, Andong, Korea
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Infroduction of Brillouin Light Scattering for
Spintronics Research

Jaehun Cho’, June-Seol Kim' and Chun-Yeol You®

'Division of Nanotechnology, Institute of Convergence, DGIST, Daegu 42988, Korea
*Department of Emerging Materials Science, DGIST, Daegu 42988, Korea

We will explain about Brillouin Light Scattering (BLS), which is an in-elastic light scattering with magnon
of the magnetic samples [1]. Magnon excitation frequency (or spin-wave (SW) resonance frequency) is determined
by the dispersion relations of SW as a function of the basic magnetic properties of the samples, sample’s
geometrical structure, SW wavevector, and external magnetic field. In BLS measurement, we varied the external
magnetic field and obtained the basic magnetic properties of the sample by non-linear regression process, so that
we can determine the saturation magnetization, anisotropy energy, exchange stiffness. In addition, we can also
determine the interfacial Dzyaloshinskii-Moriya Interaction (iDMI) energy density by using non-reciprocal nature
of the SW with non-zero iDMI. Since BLS is based on optical measurement, BLS has a lateral resolution of
the laser beam spot size (~50 um), and BLS can measure the magnetic properties of the sub-nm ferromagnetic
films. In this lecture, we will discuss about basic principles of BLS measurement and application of BLS for

spintronics devices researches.

Reference
[1] J. Cho, J.-S. Kim, and C.-Y. You, J. of Mag. 31, 69 (2021).
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Skewed In-plane Uniaxial Magnetic Anisotropy in
Pt/Co/MgO by Using Miscut Sapphire Substrate

Jin-A Kim’, Suhyeok An and Chun-Yeol You"
Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea
"Correspond to cyyou@dgist.ac.kr

Recently, the magnetic memory devices using spin-orbit torque(SOT) have been investigated actively. The
writing process in SOT magnetic memory devices takes advantage of simple heavy metal(HM)/ferromagnet(FM)
bilayer without extra ferromagnetic layer, which is required in spin transfer torque memory devices. Strong
spin-orbit coupling in HM layer generates SOT in FM layer so that the direction of magnetization of FM layer
changed by the torque. Efficient SOT based magnetic memory devices usually adopt perpendicular magnetic
anisotropy(PMA) system. Generally, SOT makes the magnetization direction to in-plane, additional external
in-plane magnetic field is required to achieve deterministic switching. In order to realize field-free SOT switching,
in-plane symmetry breaking in PMA system is needed. According to recent researches, breaking in-plane
symmetry has been achieved by means of using exchange bias[1], Rashba interface modulation[2], or crystal
structural symmetry breaking[3].

In this study, we tried to find lateral symmetry breaking of Pt/Co/MgO heterostructure which is a typical layer
structure in SOT based memory devices. We used 3°miscut Al,O3 as substrate to get imperfect symmetry through
the in-plane direction while deposited heterostructure still shows PMA through the out of plane direction. In-plane
magnetic anisotropy is measured by anomalous Hall effect with external field in Hall bar and calculated by using
Generalized Sucksmith-Thompson(GST) method[4,5]. The notable finding is the difference between the samples
deposited on miscut substrate and the flat Al,O; substrate. The former presents slanted uniaxial anisotropy [6]

whereas the latter doesn’t as shown in Fig.1(b).

(a) (b) —=—using flat AL,O, sub.
—=—using miscut AL,O, sub.
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Figure 1. (a) Simple schematic of sample deposited on miscut sapphire substrate and applied in-plane field with
the azimuthal angle ¢, (Gray solid lines represent step and terrace structures.), (b) Effective anisotropy field

calculated by GST method as a function of angle ¢,



We successfully introduce additional in-plane symmetry breaking with miscut Al,O; substrate, and this result
is important because of the proven association between lateral symmetry breaking and field-free SOT based

switching.

References

[1] van den Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat
Commun 7 (2016).

[2] Cui, B. S. et al. Field-Free Spin-Orbit Torque Switching of Perpendicular Magnetization by the Rashba
Interface. Acs Appl Mater Inter 11, 39369-39375 (2019).

[3] Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat Nanotechnol
16, 277-+ (2021).

[4] Okamoto, S. et al. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt
(001) epitaxial films. Phys Rev B 66 (2002).

[5] Okamoto, S., Nishiyama, K., Kitakami, O. & Shimada, Y. Enhancement of magnetic surface anisotropy
of Pd/Co/Pd trilayers by the addition of Sm. J Appl Phys 90, 4085-4088 (2001).

[6] You, C.-Y., et al. Slant-perpendicular magnetic anisotropy axis induced by steps in 4°-miscut Si(111)/
Cu/Au/Co/Au system. Physical Review B 69(13), 134402 (2014).
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Simulation of Multiple Walker Breakdowns

Jaesung Yoon", Joon Moon', Kitae Kim', Seong-Hyub Lee', Dae-Yun Kim?, Sug-Bong Choe'"
'Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
*Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117582, Singapore

Recently, magnetic thin films have drawn great technological attention due to their prospects for use in
next-generation memory and logic devices. Particular focuses are given on their domain wall dynamics, which
means how to move them effectively. The domain wall dynamics and its characteristics are usually determined
by magnetic properties, such as perpendicular magnetic anisotropy (PMA), Dzyaloshinskii-Moriya interaction
(DMI), and the spin-orbit coupling effect (SOC), etc. As these properties mostly depend on the interfaces adjacent
to the magnetic layers, the magnetic multilayered structures which have multiple interfaces are highlighted.

For this study, we did micromagnetic simulation using so-called OOMME. For the case of in-plane field —
domain wall velocity plot, in contrast to the magnetic single layer which shows single minimum conventionally,
double minima are observed in magnetic double layers. The results reveal that each magnetic layer has different
internal dipolar magnetic field and thus, the domain wall in each magnetic layer feels different magnetic field.
Consequently, each layer has different Walker breakdown field for each domain wall, the domain wall can go

through multiple Walker breakdowns assisted by the in-plane field.
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Fig. 1. DW configurations under various A, values of (a) 0 mT, (b) 30 mT, (c) 60 mT, (d) 90 mT, and
(e) 120 mT. The arrow inside each mesh shows the direction of the magnetization. The colors of arrows
and meshes correspond to the = and z components of the magnetization, respectively. The gray arrows show
H,, at the upper and lower magnetic layer. The blue arrow shows the strength of H,. (f)-(j) Plots of vyy

with respect to A, for different A, values.
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Electrical detection of magnetic domain wall in
Hall bar structure

Seong-Hyub Lee’, Myeonghoe Kim, Yune-Seok Nam and Sug-Bong Choe’
Physics and Astronomy, Seooul National University, Seoul 151-742, Republic of Korea

Here we report electrical detection of magnetic domain wall in Hall bar structure in various wire dimensions
within perpendicular magnetic anisotropy system. To examine as many as possible device structures in one coupon
sample, wire width and Hall bar width combination was arranged as 8 by 5 matrix. Using Dc magnetron
sputtering, our conventional perpendicular magnetic anisotrpy thin film Ta [S nm] / Pt [2.5 nm] / Co [0.3 nm]
/ Pt [1.5 nm] trilayer structure was deposited on the commercial Si [525um] / SiO,; [100 nm] diced to 12 mm
by 12 mm wafer substrate. Then Hall bar pattern was transferred to this film by using photolithograpy and ion
milling process. And finally electrode pattern was also tranferred followed by Ta [5 nm] / Au [80 nm] electrode
deposition and lift off process. Now in this microstructure, magnetic domain wall position was optically detected
by laser p-MOKE with anomalous Hall signal simultaneously. Wire width dimension (W);) is assigned as [40,
30, 25, 20, 15, 10, 5, 2 um] and Hall bar width (Wy) is assigned as [10, 8, 6, 4, 2 um]. Hall signal of magnetic

domain wall was fitted as a*tanh{b(z —c)} and if the value of a reach 90 % of total anomalous Hall signal,

. . . ) [2tanh™1(0.9)] .. ) )
detection range of magnetic domain (R) is defined as — 5 Fig. 1 is our example data of Hall signal

versus position of magnetic domain wall (DW). Interestingly, maximum value of ratio between detection range
and Hall bar width was 23.4 which is very seneitive to the position of magnetic domain wall. In conclusion by
measuring the detection range of magnetic domain wall via anomalous Hall signal in diverse wire dimensions,

we investigate the sensitivity of anomalous Hall signal to magnetic domain wall position.
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Fig. 1 Hall signal versus position of domain wall in wire width 40 pm and Hall bar width 10 pm device.

=12 -



SS04

Asymmetry of Spin-Orbit Torque induced Magnetization
Switching by Local Helium lon Irradiation

Suhyeok An’, Jin-A Kim, Hyeong Joo Seo, Chun-Yeol You'
Department of Emerging Materials Science, DGIST, Daegu, Korea
Correspondent to cyyou@dgist.ac.kr

The spin-orbit torque (SOT) induced magnetization switching based memory devices with perpendicular
magnetic anisotropy (PMA) [1,2] has a perspective as replacement of spin transfer torque (STT). However,
magnetization switching using SOT, unlike STT, requires in-plane magnetization symmetry breaking, thus the
applying an in-plane external magnetic field is essential. Therefore, several methods have been proposed to break
the in-plane magnetization symmetry without the application of an external magnetic field. Among them, there
is a few reports that magnetization switching caused by in-plane non-uniformity of PMA creates deterministic
SOT-based magnetic field-free switching [3,4], but the discussion on how the magnetization reversal starts is still
insufficient. In this report, we prepared the sample having in-plane non-uniformity of PMA by locally irradiated
He" ion in Pt(5)/Co(0.8)/MgO(2) structure. And the asymmetry of SOT induced magnetization switching current
is observed according to magnetization initial status (+z or -z direction). By local irradiation of He' ion, the
sample is divided two (irradiated and non-irradiated) regions. The PMA energies of two regions are districted and
its differences between them increase gradually with higher dose irradiation. The results show different critical
switching current according to initial direction of magnetization and this asymmetry reaches ~ 12.3% at dose
amount of 45 ions/nm’. The domain patterns measured by magneto-optical Kerr microscopy display lower
switching current when the domain starts to nucleation at PMA boundary, and it implies that SOT switching can

be assisted by internally-formed effective field caused by PMA energy gradient.

References
[1] Miron, 1. M. et al. Nature 476, 189-193 (2011)
[2] Liu, L. et al. Phys. Rev. Lett. 109, 096602 (2012)
[3] Yu, G. et al. Nat. Nanotechnol. 9, 548-554 (2014)
[4] Wu, H. et al. Nano Letter 21, 515-521 (2020)
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Exploring the role of magnetic clusters in Ce and
Cr-substituted La; ,2C90,2CC|1 sMnN; ,9Cfo,107
Ruddlesden-Popper compound

Akshay Kumar", Kavita Kumari?, Minji Shin', Seok Hwan Huh' and Bon Heun Koo™"?'

'School of Materials Science and Engineering, Changwon National University,
Changwon, Gyeongnam, 51140, Republic of Korea

?School of Materials Science and Engineering, Changwon National University,
Changwon, Gyeongnam, 51140, Republic of Korea

In this work, the Simultaneous doping on A and B sites were performed in La;;Cep,Ca;¢Mn; oCry 07
(LCCMCO) compound to analyze the influence of Cerium (Ce) and Chromium (Cr) on the structural, magnetic
and magnetocaloric properties. The bulk ceramics were prepared through solid-state sintering method by
sequentially monitoring the heating episodes. The samples crystallized in tetragonal symmetry of double layer
Ruddlesden-Popper phase. Parent compound (La; 4Ca; ¢Mn,O;) acquired pure phase while the co-doped sample has
a mixed cubic perovskite phase. The samples possess well-connected microstructure with clearly defined grain
boundaries. secondary oxide phases appeared at the surface of LCCMCO. The temperature dependent
magnetization revealed ferromagnetic state of the compounds, meanwhile multiple magnetic transitions were
observed in LCCMCO, which were ascribed to the magnetic clusters and/or due to the involvement of secondary
phase. The ferromagnetic-paramagnetic transition temperature (T¢) was reduced from a value of 275 K for the
parent compound to 235 K for LCCMCO. In general, Arrott plots disclosed second order phase transition for
both samples, while the spin-clusters clearly revealed for LCMCO sample throughout the transition. The maximum
magnetic entropy change (ASy) at 2.5 T was 3.02 J/kgK for LCMO and 2.48 for LCCMCO sample. The relative
cooling power (RCP) enhanced from 98 J/kg to 109 J/kg at an applied field of 2.5 T respectively for parent and
LCCMCO compound.

Keywords: Ruddlesden-Popper phase; magnetocaloric; ferromagnetic state; magnetic entropy change; relative

cooling power.
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Spin-orbit torque properties of W-V alloy based
magnetic heterostructures

Jeong Kyu Lee"’, Gyu Won Kim', Taehyun Kim', Min Hyeok Lee,
In Ho Cha', Jiung Cho?, Young Keun Kim'
'Department of Materials Science and Engineering, Korea University, Seoul 02481, Republic of Korea
*Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea

B-W is considered the most promising transition metal due to its outstanding charge-to-spin conversion
efficiency. Despite this exceptional property, alloys based on B-W as a spin current generating layer have been
rarely studied due to their lack of phase stability [1]. This study examines various properties of W-V alloy layers
in WigxVx (5)/CoFeB (2.5)/MgO (1)/Ta (2) magnetic heterostructures with different W-V compositions.

Samples were sputtered onto thermally oxidized Si wafers under a base pressure below 5 x 10” Torr. Diverse
WinoxVx compositions were fabricated by changing sputtering power densities of W and V targets during
co-deposition. X-ray diffraction verified the existence of B-W up to a V content of 20 at%. It also confirmed
that Co-V alloys are formed when V content exceeded 60 at%. Spin-orbit torque properties were analyzed by
harmonics Hall measurement [2]. Out of all the samples measured, the sample with W content of 80 at% and
V of 20 at% showed the maximum damping-like torque efficiency of -0.45 + 0.04. &pp decreased drastically when
V content exceeded 20 at% because phase transition from B-W to a-W occurred [3]. We also fabricated
heterostructures of W (5)/CoFeB (0.9)/MgO (1)/Ta (2) and WgVa (5)/CoFeB (0.9)/MgO (1)/Ta (2) to obtain
perpendicular magnetic anisotropy. These samples were used to acquire optical microscope images and determine
switching current densities. We utilized Magneto-Optic Kerr Effect microscope to observe and obtain
current-induced spin-orbit torque switching images for the WgoVy alloy-based sample. The change in the contrast
of the images successfully depicted the magnetization switching of the ferromagnetic CoFeB layers. The switching
current (current density) was 11 mA (2.2 x 10’ A cm?) and 6 mA (1.2 x 10’ A cm?) for B-W and WgoVa,
respectively. The switching current is clearly reduced when WgoVy is used instead of pristine W. We hope that

this work will play as a key role in the field of spintronics in the future.
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Fig. 1. Damping-like and field-like spin-orbit torque efficiencies of Wi« V/CoFeB/MgO/Ta structures
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Investigation of Magnetic Anisotropy in
Ultra-thin Co Films Grown on 2-D Materials

Pham Trang Huyen Cao?, Nguyen Dan Chi'?, Thi-Nga Do"?, Soo Min Kim?,
Chanyong Hwang*, Tae Hee Kim'?

'Center for Quantum Nanoscience, Ewha Womans University, Seoul, 03760, Korea
2Department of Physics, Ewha Womans University, Seoul, 03760, Korea
*Institute of Functional Composite Materials, Korea Institute of Science and Technology, Jeonbuk, 55324, Korea
*Korea Research Institute of Standards and Science, Daejeon, 34113, Korea

2D materials have unique physical and chemical properties which can be used for spintronic device
applications, such as the long spin relaxation time of graphene. Additionally, the related heterostructures provide
the unprecedented probability of combining the different characteristics via the proximity effect.[1]

In this work, ultra-thin Co films were grown on CVD-grown Gr and h-BN layers using the UHV-MBE
system. In order to characterize unconventional magnetic properties of 6 ~ 8 nm thick Co films, anisotropy of
magnetic tunnel junctions (MTJs) was investigated. The MTJs of x-nm Co (x = 6 and 8)\1.6-nm MgO\12-nm
Co were prepared using UHV-MBE system on CVD-grown Gr and h-BN. Perpendicular magnetic anisotropy
(PMA) was clearly shown at room temperature (RT) in all the Co bottom electrodes prepared on both graphene
and h-BN. Interestingly, for the MTJs grown on h-BN, a very large MR value of more than 700%, was observed
with the large PMA, while a few tenth percent of MR values were measured for the Co films grown on Gr layers.
Considering theoretical report of an active role of the Co/graphene interface in the magnetism of Co [2], which
allows us to sustain PMA, analysis of interface properties between Co and 2-D materials layers is a prerequisite
for understanding their magnetic properties. The development of high-quality ferromagnetic thin films in contact
with 2D materials is a state-of-the-art growth technique, whereas only thick polycrystalline or three-dimensional
morphologies have been demonstrated so far. We report on the growth of flat, epitaxial ultrathin Co films on

h-BN and graphene using UHV-MBE deposition technique.
References
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During the last decade, current-induced magnetization switching by spin-orbit torque (SOT) is of great
importance to nanoelectronics due to energy-efficient control of spintronic memory and logic devices [1,2].
However, it has a problem that an external magnetic field is required to switch magnetization of a device when
magnetic layers are perpendicularly magnetized [2]. This implies that there should be limitation of scalability and
low energy efficiency because of necessity to use the external magnetic field. Therefore, field-free switching of
a magnetization should be achieved for realization of the energy efficient and ultra-fast SOT-driven devices.

Here, we report field-free SOT switching of ferrimagnetic GdCo thin films with a He ion microscope (HIM)
technique [3]. The Pt(5)/Gd3sCoss(5)/Ta(3) structure is irradiated by He ions with the dose range from 5 to 50
ions/nm”>. We find that magnetic properties of the GdCo layer such as coercivity (Hc) and magnetization
compensation temperature (7y) strongly depend on ion dose of a He irradiation. Based on the idea that
ferrimagnetic properties can be controlled using He ion irradiation method, we introduced a lateral gradient of
magnetization by the HIM to form a broken mirror symmetry in the device [4]. The mirror symmetry breaking
was observed after the local modulation; 7y and perpendicular magnetic anisotropy (PMA) properties were locally
modulated by He ion irradiation. As the magnetic mirror symmetry is broken, we observed the field-free SOT
switching behavior. The S, component of the spin current generated by the broken mirror symmetry was also

observed. We will discuss details about structural change in the ferrimagnetic GdCo by the He ion irradiation.
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It is essential to study the dynamics of magnetic solitons such as domain walls (DWs), vertical Bloch lines
(VBLs), and vortices for understanding physical features of emergent excitation. Skyrmion, a topologically
protected magnetic soliton, drew a lot of attention because of its nanoscale size, low current controllability, and
topological stability, which makes it an attractive candidate for technological applications, such as magnetic
memory and logic devices [1, 2]. However, due to the complicated energy landscape and stochastic thermal
motion, analyzing the current-induced dynamics of a skyrmion in the actual world is difficult, necessitating
statistical treatment. Using magneto-optical Kerr effect (MOKE) microscopy and a blob-tracking method, we
discover the current-induced hopping motion of skyrmions in the W/CoFeB/Ta/MgO ferromagnetic thin film.
Skyrmions follow a different scaling behavior compared with magnetic DWs, which follow the conventional creep
scaling law in the 2D regime [3]. We show that skyrmions display a stochastic particle-like hopping motion, as
evidenced by the stop-start characteristics of skyrmion motion at low current density (7.0 x 10" ~ 1.6 x 10° A/m?),
thermal diffusion, and forward-and-backward movement. Collective segment theory [4] with the bottleneck process
shows that skyrmions exhibit hopping-like scaling behavior because of geometric constraints coming from the
closed boundaries. Our study on the rigid-particle model further verifies the hopping nature of skyrmions. Our
findings provide fundamental and physical insights into the stochastic motion of particles in the weakly-driven

regime, which will be useful to many pioneers in the field.

References
[1] A. Fert et al.,, Nat. Nanotechnol. 8, 152 (2013)
[2] M. Song et al., IEEE Trans. Electron. Dev. 68, 1939 (2021)
[3] K. -J. Kim et al., Nature 458, 740 (2009)
[4] J. Ryu et al.,, Phys. Rev. B 84, 075469 (2011)

- 21 -



SS12

Antiferromagnetic interfaces in
CoFeyO4/Fes0O,4 superlattices

Van Quang Nguyen'?, June Hyuk Lee?, and Sunglae Cho"

'Department of Physics and Energy Harvest Storage Research Center,
University of Ulsan, Ulsan 44610, Republic of Korea
*Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea

CoFe;04 and Fe;O4 have been focused in bi-layer system due to their potential used as the magnetic tunnel
barrier and electrode in spin dependent tunneling devices and due to their small lattice mismatch. A strong
antiferromagnetic coupling at their interface has been reported due to the exchange coupling between two oxides.
Here, we provide a first study on the transport and magnetic properties of [CoFe;O4(d)/Fe;04(d)], superlattices
(d=25A,n=40and d = 100 A, n = 10), epitaxially grown on MgO (100) substrate using molecular beam
epitaxy. Different from bi-layer system, magnetization curves were centered not only at zero but also at high
fields, assigned to a combination of magnetizations of antiferromagnetic interfaces and ferrimagnetic layers. As
expected, this behavior becomes more obvious, when the superlattice’s wave length decreases due to the
dominance of interfaces. Anomalous anisotropic magneto-resistance was also observed due to the presence of

these interfaces.
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Magnetic skyrmions are topologically stable swirling spin configuration and they hold promise as information
carriers in future spintronic devices due to their impressive stability. [1-5] For magnetic skyrmions to be practical,
establishing controlling method in a selected area of the magnetic thin film is an essential prerequisite. In this
presentation, we show experimental demonstration of skyrmion creation and annihilation in a Pt/Co/Ta multi-
layered film with perpendicular magnetic anisotropy (PMA) by using highly localized magnetic field. To apply
the local magnetic field, we utilized magnetized tip of the magnetic force microscopy (MFM) which generates
highly localized stray field (Hp). [6]. As the tip-sample distance decreases, H;, becomes stronger and it reaches
to the switching field of the PMA film, and the local magnetization direction of the films can be switched, and
it induces creation of magnetic topological structures such as the magnetic skyrmions. Moreover, we demonstrate
that the skyrmion polarization can be selectively reversed by changing the tip magnetization as well as they can
remain stably without an external magnetic field [7]. Our findings can provide a useful manipulation method for

skyrmion based spintronic devices.
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Magnetization manipulation by a Spin Orbit Torque (SOT) phenomena using novel heavy materials has intense
focus on the efficient operation of spintronic devices at lower powers. The previously published theoretical work
suggested that a W;Ta layer might have a large spin hall angle, compared with those of the well-known Heavy
Metals such as W, Ta. Here, we address the SOT Efficiency of W;Ta material in a W;Ta/ CoFeB/MgO
hetero-frame. Our in-plane DC analyses confirmed the SOT efficiency of W3Ta by means of spin orbit torque-
driven effective fields and spin hall angle, where the Ws;Ta layer were systematically prepared by adjusting
different parameters, such as working pressure and annealing temperature. Experimental observation indicate that
the enhanced SOT efficiency strongly depends on the crystal structure of particular A15 phase(B-phase) existing

in an extremely narrow growth ranges, as seen in fig 1.
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Fig. 1. W3;Ta XRD data with a-phase and B-phase(Al5 phase) tungsten
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The metal-oxides spin valve junctions are the building blocks for spintronic devices and to utilize for
miniaturized magnetic sensors. Here, we describe the fabrication and characterization of vertical spin valve based
on CoFe/TiO,/CoFe structure. CoFe was deposited on Si/SiO, substrate and TiO(1 nm) deposited on CoFe
directly by an e-beam evaporator, in a high vacuum. A reasonable positive magnetoresistance (MR) is obtained
via this vertical spin valve at low temperatures. We have observed a maximum value of MR about 0.33% at 28K
and 0.20% at 300K. At various current bias, a significant variation in MR is observed. The value of MR was
high at lower current (15 pA) and then decreased for the higher bias current which saturates at 40 pA. The
decrement in MR at higher bias current can be accredited to the excitation of magnons, to band bending, and
probably to the contribution of interface states at higher currents. This trend was also observed in other previous
reports. The linear I-V curve demonstrates the ohmic trend of the TiO, and FM contacts. The demonstrated device
identifies TiO, as favorable spacer material in spin valve and opens the way to integrate high-performance

memory storage devices.
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Pt\Co\W multilayers are evaluated as a novel material composition for the use in perpendicular

nanomagneticlogic (pNML) applications. For practical applications of SOT devices, write efficiency parameters

such as SOT efficiency (or effective spin hall angle), switching current and write latency need to be improved.

SOT efficiency can be improved by reducing anisotropy energy density (Key). In this study, we compare and

analyze SOT efficiency in Pt/Co/W structures with insertion of the W-Ge layer between Co and W layers.
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Magnetic sensor core thin film properties
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Magnetic head core material are required to have higher saturation magnetization (4nMs) and low coecivity.
Co-based amorphous films and Ni-Fe (permalloy) alloy films have low coecivity and high saturation
magnetization values. So we prepared a Co-based thin films. The thin film was made of Co, Nb, Zr. The cobalt
(Co) has good properties suitable for magnetic sensor films. However, cobalt has hcp structure crystalline, which
is not good for magnetic sensor core. Than zirconium (Zr) helps to amorphize the crystallinity of cobalt. But,
zirconium has negative magnetostrction value. If the magnetostrction value becomes negative, thin film structure

become unstale due to stress. Niobium has positive magnetostrction value and help high thermal stability.
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Spin structure inside domain wall (DW) has attracted great attention due to its potential application on data
storage or logic memory. Among terms affecting chirality of DW, Dzyaloshinskii-Moriya interaction (DMI) has
been investigated in magnetic thin layer with perpendicular magnetization anisotropy. Based on such platform, most
of experimental schemes have measured the chirality change under application of external in-plane field. By changing
in-plane field, the direction of magnetization inside DW is changed, resulting in modification of chirality, DW
energy, DW dynamics, etc. But those schemes have an assumption that DW is straightly placed across wire and
only one variable, direction of the magnetization inside DW, is changed. Here, we propose generalized equation
of equilibrium chirality with not only the degree of freedom of DW chirality (¥), but also the DW tilting angle
(0). With coordinate system in fig. 1, we numerically calculated equilibrium angle of ¥ and 0, giving a result
of DW tilting in the transition regime of DW chirality (fig. 2). This result is counterintuitive in a sense that DW
would not be tilted in transition regime as its energy is maximum at W=0. Tilting angle of DW is maximum
when in-plane field is applied as much as effective DMI field. Interestingly, the transition regime is widened as
both ¥ and 6 contribute to reduction of DW energy when in-plane field is changed. Additionally, we analytically
calculated the critical field at which the DW starts and ends tilting. This study provides more realistic understanding

of chirality and tilting mechanism by considering both contribution to DW energy.
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There have been numerous efforts devoted to quantifying the DMI both theoretically and experimentally,

because Dzyaloshinskii-Moriya interaction (DMI) that occurs in structural inversion asymmetric systems stabilizes

chiral domain-walls (DWs) which is a key issue to achieve high performance spintronic applications such as

memory and data storage devices with high speed and high durability [1-4]. Unfortunately, the inconsistency

between theory and experiment inevitably occurs because the theory predicts the strength of DMI based on single

interface, however, the experiments must be implemented based on at least, double interface because of Ex-Situ

nature [2-6]. Here, we first, measure the strength of DMI in Pt/Co single interface in In-Situ nature. To measure

the strength of DMI in single interface, we set up In-Situ magneto-optical-Kerr-effect (MOKE) microscopy with

UHV magnetron sputtering chamber. Figure 1 clearly shows the plot of v, with respect to /A, to quantify the
strength of DMI based on Je’s method [5].
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Magnetic skyrmion is topologically stable spin configuration, which is extensively studied nowadays as
promising information carrier in future. Such skyrmion is composed of the Néel-type domain wall with energy
stabilization by the Dzyaloshinskii-Moriya interaction. When electric current flows through the skyrmion, the
effect based on the Berry phase makes skyrmion deflected from the direction of the current. This effect is called
skyrmion Hall effect, which consequently causes information loss by inducing skyrmion annihilation near
boundary of device. Therefore, the skyrmion Hall effect attracts great attention with caution in development of
skymions to memory device.

In this study, we made series of samples, Ta (5) / Pt (2.5) / Co (X) / W (3) / Ta (2 nm), with varying the
magnetic layer thickness X = 0.9, 1.0, 1.1, 1.2, 1.6, 1.7, and 1.9 nm using DC magnetron sputtering. We measure
then the skyrmion Hall angle by means of a magneto-optical Kerr effect (MOKE) microscope. In Thiele equation,
the skyrmion Hall angle is predicted in terms of Gilbert damping o and anisotropy field Hx. The results are shown
in Fig. 1. Although Ideal skyrmion moves remaining circular, in case of half-skyrmion observed in our samples,
one half part is extended inclined to the current direction while the other half is pinned. Topological structure
is same between skyrmion and half skyrmion so that our result shows verification of Thiele equation

experimentally.
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Telegraph noise, the certain type of signals which consists of sudden jumps between two or more levels, can
be observed in several systems for example CMOS, memristor, and magnetic domain wall. The behavior of
telegraph noise looks so random that there have been several approaches to utilize this noise to generate random
numbers. In this study, as the foundation work for random number generator, some statistical properties are
extracted from the telegraph noise generated by domain wall between two metastable states. Telegraph noise is
measured by magneto-optic Kerr effect (MOKE) signal from the domain wall of the perpendicularly magnetized
Pt/Co/W thin film. Applying field in the direction which makes domain wall escape from the pinning site results
in telegraph noise of MOKE signal. As shown in figure 1, signal jumps up when the domain wall is depinned.
By fitting cumulative probability function depending on depinning time, the energy barrier of domain wall

depinning is also estimated.
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Because the anomalous Nernst effect (ANE) involves the effective electric field generated by the combination
between the thermal gradient and the magnetization direction, it has been well applied to not only the
measurement of the static magnetization but also the experiments for low frequency magnetization dynamics. In
this work, the frequency response of the ANE was examined to provide two implications: First, as a method to
separate Nernst effects from other signals in the homo or heterodyne method, and second, as a timing reference
of the phase-sensitive measurement for the magnetization dynamics. The 1550 nm laser power was modulated
up to 2.4 GHz and successfully produced the equivalent speed of the ANE signals on the 10 nm permalloy block
on the sapphire substrate. The two implications could be sufficiently supported, when the system consists of
well-designed radio frequency components and the better heat sink substrate for the fast thermal gradient on the

magnets.
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Compensated ferrimagnets show both ferromagnetic and antiferromagnetic dynamics, i.e., fast magnetization
dynamics [1-5] and vanishing Skyrmion Hall effect [6] with finite magnetization. As the dynamics of ferrimagnets
can be driven with current-induced spin torques [7, 8], it is important to find a way of quantifying spin torques
in ferrimagnetic materials. One of the main methods to quantify the spin torque in ferromagnets is the spin torque
ferromagnetic resonance (ST-FMR) technique [9, 10]. For ferromagnets, the damping-like (DL) and field-like (FL)
torque components are separately determined through ST-FMR line-shape analysis. However, it is unclear if this
line-shape analysis is valid even for ferrimagnets. In this work, we report a theory of spin torque ferrimagnetic
resonance (ST-FiMR) in ferrimagnet/heavy metal bilayer structures. The mixing voltage originating from the DL
torque is linearly proportional to the effective net spin density of the system, resulting in sign reversal at the
angular momentum compensation condition. Our result suggests that the line-shape analysis established for
ferromagnets is invalid for ferrimagnets especially near the compensation condition so that the proposed theory

must be implemented to analyze the spin torque ferrimagnetic resonance.
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Fig. 1. ST-FiMR signals for various values of net spin density as a function of external field B.
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Enhanced Superconductivity of SroRuO, and La,,SrCuOy
Thin Films by Atomic-Scale Interface Engineering
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Miyoung Kim?®, Changyoung Kim'?, Jason W. A. Robinson*, Yoshiteru Maeno®, Tae Won Noh'?
'Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
’Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
Department of Materials Science and Engineering and Research Institute of Advanced Materials,

Seoul National University, Seoul 08826, Korea
“Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 OFS, United Kingdom
*Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Ruddlesden-Popper (RP) phase oxides (4,+1B8,03.11, 7 = 1, 2, ...) have been spotlighted with versatile physical
properties such as high-temperature superconductivity, colossal magnetoresistance. !'? These emergent phenomena
provide a platform for novel oxide-based electronic devices including spintronics application. However,
high-quality RP-phase thin film growth has been disturbed by extended structural defects, such as out-of-phase
boundaries (OPBs).”) OPB is a translational boundary between neighboring unit cells, shifted in a specific
crystallographic direction. For instance, if RP-phase thin films grown on ABOs perovskite substrates, the structural
mismatch between film and substrates induces a crystallographic shift in the c-axis direction, thus OPBs form
at the film-substrate interface. Since OPB formation hampers the physical properties of RP-phase thin films, the
suppression of the structural defects is highly required to carry out the high-performance RP-phase based
functional devices.*!

In this study, we suppressed OPB suppression in RP-phase oxide thin films by atomic-scale interface
engineering. As model systems, the unconventional superconductor Sr,RuOy4 (bulk 7, ~ 1.5 K) and La,Sr,CuO4
(bulk 7. ~ 39 K) thin films were employed. Despite the structural similarities between films and substrates,
Sr2RuO4 and La,,Sr,CuO, films exhibited huge OPB formations. By controlling the atomic-scale interface
engineering, the OPBs were significantly suppressed in the film structure. Notably, these OPB-free Sr,RuO4 and
La,,Sr,CuO; thin films exhibited highly enhanced superconductivity than the film with huge OPB formation. Our
study suggests a comprehensive method to suppress OPB formation in RP thin films, enabling superconducting

spintronics devices based on the unconventional superconductivity.!”
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Electrical and magnetic properties of in-plane
graphene/graphene oxide junction devices
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In the past decade, the study of graphene has been tremendously exploited due to its phenomenal physical
and electromagnetic properties such as high flexibility, high thermal conductivity, high electron mobility and long
spin diffusion length. Especially, research using long spin life-time and spin diffusion length of graphene have
been extensively investigated for the application to spintronics. However, low spin-injection efficiency (~1%) of
graphene is an obstacle to realize for spintronic devices. Recently, there have been reports to overcome this
problem by using insulating oxide films or a material which has a similar hexagonal lattice constant of graphene
such as Ni (111) between the ferromagnetic electrode and graphene. Also, it has been known that a magnetic
exchange field (MEF) induced by a magnetic insulator adjacent to graphene can effectively control local spin
generation and spin modulation in a 2D device without modulating the structural properties of the material.

In this study, we fabricated graphene (G) / graphene oxide (GO) junction devices in which GO was formed
by oxidation technique by applying ultraviolet(UV) light, directly. One of the shortcut to fabricate large area GO,
which can make the process of fabrication device easy, minimizing contamination on graphene surface is using
ozone induced by UV light. We examined the proximity effect of GO adjacent graphene in the transport of this
G/GO heterostructure device with external magnetic field. We showed that week localization and Shubinikov-de
Haas oscillations were larger than that of pristine graphene. And we measured magnetoresistance(MR) that
revealed negative MR at low temperature in this G/GO heterostructure device. We expect the ferromagnetic

properties of GO improve the spin-orbit coupling of the graphene.

B (T
Fig. 1. Magnetoresistance (MR) VS Magnetic field
MR (%) = {Rxx(B)-Rxx(B=0)/Rxx(B=0)}*100,

graph shows enhanced weak localization effect at low temperature.
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Neutron scattering for large-area 2D magnetic materials

June Hyuk Lee’

Korea Atomic Energy Research Institute, Daejeon, Korea

2D magnetic materials have attracted attention as a material for next-generation spintronic and magneto-optical
devices. These technological applications require the large-area synthesis and characterization of high crystalline
ultrathin films. Recently the family of Fe-based 2D magnetic materials has been fabricated in wafer-scale by
molecular beam epitaxy. These 2D materials exhibit Curie temperatures at or above room temperature along with
various magnetic effects. To analyze the magnetic structure of large-area ultrathin samples, neutron scattering,
especially reflectivity can be useful because of its large beam size and magnetic sensitivity. This can be achieved
by transferring 2D van der Waals materials on top of substrate with additional layers, which amplify the
reflectivity from ultrathin film. In this presentation, molecular beam epitaxy for large-area 2D magnetic materials

and neutron reflectivity analysis will be discussed.
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Anomalous Hall and Nernst effect in a few to bulk layer
2D van der Waals ferromagnetic material Fe;GeTe;
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Two-dimensional (2D) van der Waals (vdW) ferromagnetic materials have emerged as promising candidates
and are recently providing a huge platform for the study of spin-related phenomena and their potential
applications. Here we report the thickness and temperature-dependent anomalous Hall and anomalous Nernst effect
in h-BN/FGT/SiO; van der Waals heterostructures. Interestingly, we have observed the polarity reversal of AHE
in a thin flakes of FGT ~15 nm. The anomalous Hall and Nernst effects in a few-layer FGT flake show single
domain magnetic structure with nearly square-shaped hall signals and large coercivity, indicating strong
perpendicular magnetic anisotropy (PMA). On the other hand, thick (bulk) FGT shows gradual switching with
the magnetic field evolution, indicating the presence of multi-domain structures and demonstrate weak PMA. The

variation of Curie temperature (T¢) and Hc with a flake thickness are also presented.
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A Study on Increasing the Useful Field of View by
Minimizing the Edge Effect of Gamma Camera

Hyeon Jeong Yang', Ji Eun Jeong', Hye Ri Shin’, Su Rim Lee', Seung-Jae Lee"*
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*Center for Radiological Environment & Health Science, Dongseo University, Korea

It is intended to increase the detection area by minimizing the phenomenon that the uniformity is lowered
at the edge of the scintillator of the gamma camera. The light generated by the interaction between the scintillator
and gamma rays is reflected or blocked from the side of the scintillator, resulting in a phenomenon in which
the uniformity of the edge portion is deteriorated. To minize this, a gamma camera was designed by placing the
optical sensor on the side of the scintillator. A gamma camera was designed using the DETECT2000 simulation
tool capable of simulating the movement of light, and a flood image was acquired by generating a gamma ray
event at the edge and the entire detection area. The acquired flood image was compared and analyzed with the
flood image acquired by a general gamma camera. In general, in a gamma camera with an optical sensor on
the bottom, a phenomenon in which the position of a gamma ray event generated at the edge cannot be distinguished
occurs, resulting in a decrease in the detection area and a decrease in uniformity. On the other hand, the gamma
camera designed by adding an optical sensor to the side of the scintillator showed an increase in the detection
area by distinguishing gamma ray events at the edge. A gamma camera was designed that improved the detection
area by adding an optical sensor to the side of the scintillator. As a result, the uniformity was improved and
the detection area was increases compared to the general gamma camera. When this gamma camera is used for

clinical application, it is considered that the imaging area will be expanded without deterioration of uniformity.

Acknowledgments: This work was supported by the Korea Foundation for the Advancement of Science &
Creativity (KOFAC), and funded by the Korean Government(MOE).

50 100 150 200 250 300 50 100 150 200 250 300
Bottom sensors Bottom + Side sensors

Fig. 1. Flood image acquired when a gamma ray event is generated at 3 mm intervals.

Left: gamma camera with bottom sensors, Right: gamma camera with bottom and side sensros.
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A Study on the magnetic field of
eddy current caused by the rolling of the Ship

Sang Hyeon Im’

Dong Eui University, Korea

In warships made of ferromagnetic materials, permanent magnetic fields generated during the manufacturing
process, induced magnetic fields due to changes in the Earth's magnetic field, and eddy current magnetic fields
due to fluctuations of underwater bodies are generated. The above magnetic fields cause damage by magnetically
sensitive mines using high-sensitivity magnetic field sensors equivalent to thousands to tens of thousands of the
earth's magnetic field.[1] In order to remove the permanent and induced magnetic fields that account for the
majority of the above magnetic fields, research on demagnetization and devices to reduce the permanent and
induced magnetic fields of ships is being actively conducted, and damage caused by mines is effectively reduced
by reducing the magnetic field of underwater vehicles. [1][2][3]

However, the relative weight of the eddy current magnetic field is increasing as the permanent and induced
magnetic fields are reduced through demagnetization and demagnetization processes. Therefore, in order to prevent
damage to the ship by mines, it is necessary to predict the eddy current magnetic field generated by the
fluctuation of the ship and generate a magnetic field to offset it. However, if the correct offset current is not
passed, the magnetic field measured from the outside becomes larger, which may increase the possibility of
damage. In order to prevent such a situation, it should be possible to accurately measure the eddy current when
the ship fluctuates. Therefore, it is necessary to quickly and accurately respond to the generated eddy current
magnetic field, so immediate calculation by formulas rather than FEM simulation analysis is required.

In this paper, the formula for calculating the eddy current in the equivalent model of the ship is summarized.
In addition, the eddy current calculation method was verified by simulating the ship's fluctuations through the
2D FEM program, analyzing the eddy currents generated accordingly, and comparing the analyzed results with

the calculated results.

| B | n
By B
| I I | E —— a
| ki
(a) Rolling simulation modeling (b) Revised modeling

Fig. 1. Rolling simulation modeling in warships
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Korea Pathfinder Lunar Orbiter (KPLO) is the first Korean Lunar exploration mission. Kplo-MAGnetometer
(KMAG) is one of the scientific instruments of KPLO set to be launched in 2022. Its scientific objectives are
the investigations of the lithospheric magnetism of the Moon and measure the electromagnetic wave properties
near Moon’s orbit space.

KMAG consists of three fluxgate magnetometers on a 1.2 m long boom. The three magnetometers are used
for scientific measurements, redundancy checks, and multi-sensor technical investigation. The magnetometers and
an inner Anisotropic Magneto-Resistive sensor perform simultaneous sampling to correct for the magnetic field
interference caused by the spacecraft. The fully integrated flight model assembly showed that the magnetometer
noise level was less than 30 pT Hz—1/2 at 1 Hz and stability was within 0.2 nT at the 10 Hz sampling rate.
This paper describes the configuration and performance of the KMAG using the multi-sensing method. The
KMAG will be able to contribute to multi-site in-situ measurements of the lunar magnetic field with others lunar
mission during KPLO operation phase. We expect that the KMAG will provide an up-to-date lunar observation

data set and an opportunity to perform the multi-sensor observation.
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Fig. 1. KMAG instrument of KPLO. (a)KPLO, (b) Magnetometer stabilities,

(¢) KMAG configuration, (d) simulation of spacecraft interference.

- 46 -



0S04

Quantitative iDPC-STEM observations of oxygen
octahedral connectivity control at perovskite oxide
interfaces via epitaxial strain engineering

Junsik Mun'?", Eun Kyo Ko"*", Tae Won Noh"*", and Miyoung Kim"?

'Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
*Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National
University, Seoul 08826, Republic of Korea
*Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea

+ .
These authors contributed equally.
“twnoh@snu.ac.kr, and mkim@snu.ac.kr

Since the oxygen octahedral rotation (OOR) of ABO; perovskite oxide provides various functionalities,
controlling the OOR plays an important role in device applications development and fundamental physics
exploration. One of the most efficient ways to control the OOR is using the oxygen octahedral coupling at
heterointerfaces which have two different structural symmetries. [1] Thanks to the interfacial coupling, structures
that cannot be accessed in bulk can be realized in thin films. [2-4] For exploring further functionalities,
investigating and engineering the length-scale of the interfacial coupling is an important issue. However, precise
length-scale and control method of the oxygen octahedral coupling remain open questions.

Here, we made SrRuOs/SrTiO; (SRO/STO) heterostructure on various substrates by pulsed laser deposition and
succeeded controlling the length-scale of the oxygen octahedral coupling via epitaxial strain. Since SRO has a'b'c
(in pseudo-cubic notation) and STO has a’a’c” rotating pattern, we could observe how the a’a’c’ symmetry of
STO penetrates into SRO. The precise OOR angle depending on the each atomic layer was investigated using
integrated differential phase contrast-scanning transmission electron microscopy (iDPC-STEM) technique. We
found that the critical thickness for saturated OOR angle is engineered via epitaxial strain from 3 unit cells to
13 unit cells of SRO. This study provides an effective method to control the oxygen octahedral interfacial
coupling, and suggests a potential model system for investigating how the interfacial coupling occurs between

the two different symmetries.
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Fluoride-containing mouthwash easily used at home are preferred. Children under the age of 6 have difficulty
gargling, so when using fluoride-containing mouthwash, fluoride may remain in the oral cavity and may even
be swallowed. Therefore, this study measured the total fluoride (TF) of mouthwash for children containing
fluoride sold in Korea using Fluorine (‘’F) Nuclear magnetic resonance (NMR) spectroscopy and confirmed the
amount of fluoride remaining in the saliva of the oral cavity after using mouthwashes.

In this result, the fluoride content of 2080 Kids was 90ppm, but the detected TF was about 29% less. The
fluoride content indicated in Chikachika was 226ppm, but the average TF was about 32% less. On the other hand,
in the case of Garglin Kids Care marked as 226.1ppm, TF was 102% more. After 2 minutes of using mouthwash,
very little fluoride was present in the oral saliva in all three types of mouthwashes.

So, there was no possibility of exposure to side effects. Therefore, fluoride-containing mouthwash is a safe
method of preventing dental caries for children under six who have difficulty brushing teeth. Therefore, this study
confirmed the mouthwash has no effect on the human body as toxicity even when children swallow the fluoride
remained in the saliva after using fluoride-containing mouthwash for children. In conclusion, for children under
the age of 6 who have difficulty brushing their teeth, mouthwash containing fluoride can prevent dental caries

and contribute to oral health.
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High-Energy Electromagnetic Wave Radiation Analysis
Study of Laboratories Using Digital Medical Imaging Devices

Chang Gyu Kim’
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Abstracts Devices that acquire digital medical images using radiation (DR; Digital Radiography) are widely
used in medical institutions to obtain information necessary for patient diagnosis. Compared to the existing
film-sensitization method and computerized radiography system (CR, computed radiography system) method,
digital medical imaging radiation generator has advantages such as image processing speed, diverse image
parameters, image quality improvement through utilization, wide dynamic range, image post-processing method
to remove noise from output instability, and artifact correction. This study was conducted to measure the 3-month
cumulative dose of the radiation protection facility shielding wall of the radiation generating device that acquires
digital medical images using a glass dosimeter for environmental monitoring, and to improve the diagnostic
radiation safety management method by comparing it with foreign standards and to present it as basic data for
education.

In this study, DK medical system Innovision (Ceiling Type - ELIN T5) was used to measure the radiation
dose of the digital medical imaging radiation generator examination room protection wall [Figure 1]. Innovision
device is a device that can quickly check a clear image with a low radiation dose and can be used easily and
safely. This device is widely used as a device that supports conversion of standard medical images.

By selecting 3 hospitals that perform more than 50 digital X-ray medical imaging tests per day, a glass
dosimeter for environmental measurement was installed outside the protection wall of the examination room, and
the leakage radiation dose was measured for one month from May 16 to June 21, 2021.

The glass dosimeter was installed at 150 - 190cm from the floor considering the safety of the patient entrance
and exit door, the entrance door of the digital medical image acquisition radiation generator control room, the
shielding wall, and the patient viewing window based on the medical image X-ray examination room.

To measure and evaluate the shielding efficiency of the patient viewing window, multiple glass dosimeters
were installed inside and outside the laboratory to measure environmental radiation dose and verify statistical
significance. The dosimeter recovered after measurement was delivered by air to Chiyoda Technol, Japan, without
the procedure of passing the X-ray screening station, and the results were analyzed. By multiplying the
measurement result by a factor of 3, a comparative analysis was performed with the Japanese medical radiation
safety management standard.

Using a glass dosimeter, the cumulative leakage dose from the shielding wall, entrance, and patient viewing
window of the digital medical image acquisition radiation generator examination room was measured and analyzed
for 3 months.

The lcm dose equivalent value of the glass dosimeter accumulated for 3 months was 0.96mSv at the
maximum and 0.18mSv on average at the outer side of the shielding wall at the entrance of the digital medical
image acquisition radiation generator examination room. In addition, the cumulative dose equivalent of 1 cm in

the glass dosimeter for 3 months outside the shielding wall on the control room showed a maximum of 3.03
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mSv and an average of 0.41 mSv.

At the outside of the entrance to the patient waiting room for the digital medical image acquisition radiation
generator examination room, the glass dosimeter accumulated dose equivalent of 1 cm for 3 months was
maximum of 8.31 mSv and average of 2.09 mSv. Also, outside the entrance to the control room, in 3 months,
the cumulative dose equivalent of 1 cm in the glass dosimeter showed a maximum of 14.04 mSv and an average
of 3.84 mSv.

It is expected that these research results can be used as basic data for conducting medical radiation safety
management in the future. In addition, it is expected that it will be greatly useful in setting measurement methods
and regulatory standards for environmental radiation safety management of medical radiation generators [Tablel].

It is proposed to continue research at the national level by expanding to all medical institutions distributed

throughout the country on the shielding wall performance of diagnostic radiation shielding facilities.

=
3
z
N
-]
e
e

Fig. 1. Digital medical image acquisition radiation generator

Table 1 Digital medical image radiation generator examination room shielding wall dose analysis result

Examination Room Entrance Shielding Wall Control Room Shielding Wall

1 - -
2 - 0.24
3 0.96 -
4 0.57 -
5 - 3.03
6 - 0.33
7 - 0.30
8 - 0.18
9 0.30 -
10 - -

Average 0.18 0.41
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Effects of Pulsed Electro-Magnetic Fields on
Dry Eye Syndrome

Subin Park’, Hyunseon Yu, Donghwan Ko, Sangmin Shim and Byungjo Jung

Yonsei Univ. Biomedical Engineering, Korea

Pulsed Electro-Magnetic Fields (PEMF) is known as a technology used in clinical trials for the purpose of
pain control and treatment due to its non-invasive, safe, and convenient use. PEMF has been found to affect
physiological processes such as increased cell activity, depolarization of cell membranes and changes in membrane
potential, improvement of inflammation, and improvement of blood flow, but the specific mechanism is not clearly
defined. Pulsed electromagnetic fields (PEMFs) are emerging as innovative therapies for the control of
inflammation that can significantly affect tissue regeneration. [1]

Dry eye syndrome is a disorder of the tear film caused by insufficient or excessive evaporation of tears, which
causes damage to the ocular surface between the eyelids and is associated with symptoms of ocular discomfort.
The causes of dry eye syndrome are diverse, including aging, chronic conjunctivitis, decreased female hormones,
and environmental factors. Among them, we focused on dry eye syndrome caused by chronic conjunctivitis. When
cells that function as mucous glands in the conjunctiva decrease due to chronic inflammation, mucus secretion
decreases. As a result, water cannot be held in the mucus layer, and the aqueous layer of the tear layer flows
out through the tear duct into the nose. [2] In this study, we tried to observe the improvement effect of dry eye
syndrome through stimulation of PEMF.

This study was conducted with an approval from the Institutional Review Board at the Mirae campus of the
Yonsei University (Protocol 1041849-202101-BM-019-03). Experiment was conducted on 9 subjects with dry eye
syndrome in their 20s. The subjects had previously been diagnosed with dry eye syndrome or had been diagnosed
with conjunctivitis or the like. It was observed continuously for 5 days, and PEMF (20Hz, 7mT) equipment was
worn under the eyelids for 30 minutes every day. Dry eye examination was performed at the hospital on the 1st
and 5th days. There are two tests for dry eye syndrome, Break-Up Time test and Schirmer test. [3] Schirmer
Test (ST) measures the amount of tears secreted in 5 minutes by hanging a piece of paper of a certain length
on the lower eyelid. Break-Up Time (BUT) test measures the time it takes for the tear film to break through
an ophthalmic microscope and fluorescein. Subjective evaluation of subjects through a survey was also carried
out.
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Fig. 1 Survey results according to PEMF stimulation

- 53 -



30.000

25000
3
< 20.000
g
o]
@ 15.000
E mSTR
£ 10,000 ST L
a
5.000
0.000

Time (day)

Fig. 2 Schirmer test results according to PEMF stimulation
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Fig. 3 Break-Up Time test results according to PEMF stimulation

In the survey, it showed a decrease of 31.008% from 14.333 points to 9.898 points on average, and 7 out
of 9 people showed a subjective improvement effect. In ST, 4 out of 9 patients showed an increase in tear volume
in the left and right eyes. In BUT test, 3 out of 9 subjects increased the BUT value 5 days after PEMF
stimulation. It was confirmed that all three people with improved BUT showed an improvement effect in the
survey and ST.

The results of this study may be of limited improvement in subjects with chronic conjunctivitis. It seems that
long-term monitoring for improvement of dry eye syndrome is necessary, and additional research on this is also

required.
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Daehong Kim', Kihong Son?, Sooyeul Lee?, Cheol-Ha Baek®, Pil-Hyun Jeon*

'Department of Radiological Science, Eulji University, Seongnam 13135, Republic of Korea
*Medical Information Research Section, Electronics and Telecommunications Research Institute,
Daejeon 34129, Republic of Korea
*Department of Radiological Science, Kangwon National University, Samcheok 25949, Republic of Korea
*Department of Diagnostic Radiology, Yonsei University Wonju College of Medicine,

Wonju Severance Christian Hospital, Wonju 26426, Republic of Korea

The aim of this phantom study was to evaluate the image quality of low-dose lung computed tomography
(CT) achieved using a deep-learning based image reconstruction method. The chest phantom was scanned with
a tube voltage of 100 kV for various CT dose index (CTDIvol) conditions: 0.4 mGy for ultra-low-dose (ULD),
0.6 mGy for low-dose (LD), 2.7 mGy for standard (SD), and 7.1 mGy for large size (LS). The signal-to-noise
ratio (SNR) and noise values in reconstructions produced via filtered back projection (FBP), iterative
reconstruction (IR), and deep convolutional neural network (DCNN) were computed for comparison. The
quantitative results of both the SNR and noise indicate that the adoption of the DCNN makes the image
reconstruction in the ULD setting more stable and robust, achieving a higher image quality when compared with
the FBP algorithm in the SD condition. Compared with the conventional FBP and IR, the proposed deep
learning-based image reconstruction approach can improve the ULD CT image quality while significantly reducing

the patient dose.

FBP Iter. DCNN

Fig. 1. Reconstructed images of the upper lung produced through filtered back projection (FBP), iterative
reconstruction (IR), and deep convolutional neural network (DCNN) under a CTDIvol of 0.4 mGy for
ultra-low-dose (ULD) CT
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Injection el
point

Fig. 1. Recovery flow property of mAb-MNPs in arterial blood vessels of rabbit’s left ear (a) before and
(b) after the injection of amount 75 pl. Non-recovery flow property from (c) before and (d) after 15 pL

injection of pure MNPs in arterial blood vessels of a rabbit’s right ear. Recovery flow property from (c)
before and (d) after 15 pL injection of mAb-MNPs in arterial blood vessels of a rabbit’s left ear. Here,
the arrows in the dotted white circle indicate the injection site of MNPs and mAb-MNPs given in 1
mg/mL of PBS.

Fig. 2. (a) Intravenous injection, (b) intramuscular injection, and (c) intraperitoneal Injection of nanoparticles.
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Fig. 3. Photos of the back of a rat. (a) Before and (b) after bonding one disc-type permanent magnet.

(c) The permanent magnet is removed from the rat.

f
i

Fig. 4. The photos of the rat's dorsal wound were taken after applying MNPs conjugating Foralumab

antibodies over both (a) before and (b) after 3 days. (c) The black-brown vessel marked white bold arrows

at the top of the center is the induced state of mAb-MNPs by permanent magnet.
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Hard Ferrites Composite Particles for Millimeter-wave
Wideband Absorption

Gi-Ryeon Jo"?, Da-young Jeong', Seung-hoon Song', Young-Guk Son?, Youn-Kyoung Baek'"
'Powder Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
*School of Materials Science and Engineering, Pusan National University, Busan, Korea

High-performance electromagnetic wave absorbers are required for electromagnetic wave control particularly
at a broad bandwidth in millimeter-wave spectrum, which will play a big role in future 5G and 6G wireless
networks. Traditional radar absorbing materials (RAMs) comprised of metals or soft ferrites and metamaterial
absorbers (MA) have been developed for millimeter-wave absorption, but lack of widening the absorption
bandwidth hinders their practical applications. In this study, we developed a facile and scalable method to
synthesize the core-shell structured magnetic particles showing wideband absorption of millimeter-wave. The
resulting ferrite composites show two different absorbance peaks around 54 and 84 GHz, measured by a vector
network analyzer. It is note that broadband absorption from V (40~75 GHz) and W band (75~100 GHz) was

shown in the magnetic loss particles.

This study was supported by the Fundamental Research Program of the Korea Institute of Material Science
(PNK7630).

Keywords: Millimeter-wave, Magnetic loss material, 6G, Ferrite, Core-shell particle
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Synthesis and characterization of FeCo-Mn3;O,
hetero-nanostructures

Kavita Kumari'', Akshay Kumar?, MinJi Shin?, Seok Hwan Huh® and Bon Heun Koo'#'

'Industrial Technology Research Institute, Changwon National University, Changwon,
Gyeongnam, 51140, Republic of Korea
’Department of Materials Convergence and System Engineering, Changwon National University, Changwon,
Gyeongnam, 51140, Republic of Korea
*Department of Mechatronics Conversion Engineering, Changwon National University, Changwon,
Gyeongnam, 51140, Republic of Korea
"Corresponding Author - bhkoo@changwon.ac.kr

The magnetic hetero-nanostructures have gained immense attention of the scientific community due to their
wide range of applications. The magnetic hetero-nanostructures have been exploited for the exchange bias effect
which is highly desirable for the applications like magnetic sensors and non-volatile memory. Therefore, in the
present work, the FeCo-Mn;O4 nanostructures have been prepared through chemical route method following
two-pot synthesis. The heterostructure having the combination of ferromagnetic and antiferromagnetic materials
can make an excellent system for the investigation of the exchange bias effect. The synthesized nanostructures
were characterized with various characterization techniques such as x-ray diffraction (XRD), high resolution field
emission scanning electron microscopy (HR-FESEM), electron dispersive x-ray spectroscopy (EDS) and
dc-magnetization. The XRD spectra revealed the presence of cubic FeCo and tetragonal Mn3O4. The crystallite
size has been calculated with in the nanometer range. The HR-FESEM micrographs demonstrated the formation
of non-spherical particles. The histograms revealed a broad particles size distribution indicating that the average
particle size remains with in the nanometer range. The EDS images displayed the presence of Fe, Co, Mn and
O in the samples. The distribution of elements revealed that the manganese oxide surrounds the FeCo
nanoparticles. The magnetic field dependent magnetization shows the ferromagnetic behaviour of the particles as
shown by the M-H hysteresis curves. The field cooled and zero-field cooled M-H hysteresis curves evidenced

the induced exchange bias effect.

Key words: Magnetic heterostructure, exchange bias, nano-composites
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Phase transition and magnetic property of
La(Fe,Si);3 compound

Jae-Young Choi"?", Jung-Min Lee', Youn-kyung Baek', Jung-Goo Lee', and Young-Kuk Kim""
'Korea Institute of Materials Science, Changwon, Republic of Korea 51508
*Pusan National University, Pusan, Republic of Korea 46241

The magnetic property and phase fraction of the La(Fe,Si);; compound have been experimentally studied. In
the near 200K, La(Fe,Si);3 compound is phase transition occur. La(Fe,Si);3 compound shows ferromagnetic or
paramagnetic when the temperature is lower or higher than transition temperature, respectively. La(Fe,Si)i3
compound is paramagnetic in room temperature. To promote wider applications, it is highly desirable that the
transition takes place near room temperature. Paramagnetic to ferromagnetic transition temperature enhances when
light element is doped to La(Fe,Si);3 compound. On the other hand, there is a problem that it takes a long time
to form a single phase. To solve this problem, melt spinning was performed and annealed at high temperature
to enhance the phase fraction of La(Fe,Si);; compound a short time. The amount of iron decreased during
annealing in XRD data. The Fe and La(Fe,Si);; phases were identified by SEM images. VSM data showed a
hysteresis loop close to a low paramagnetic material at room temperature, the remaining iron was existed in
La(Fe,Si);3 compound. PPMS analysis showed that the phase transition temperature is near to 200K and is
consistent with La(Fe,Si);3 reported. As a result of comparing magnetization at room temperature, 3% of Fe

remains and a considerable portion of it was converted to paramagnetic materials.
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Systematic process control for high performance MnBi

Su Yeon Ahn"?, Yang Yang'?, Jung Tae Lim', Jihoon Park’, Jong-Woo Kim',
Soon Chul Hong?, Chul-Jin Choi'
'Korea Institute of Materials Science (KIMS), Changwon
“Department of Physics, University of Ulsan
3School of Materials Science and Engineering, Pusan National University

In recent years, rare-earth-free permanent magnets have attracted considerable attention due to the concern
over cost and supply crisis of rare-earth raw materials. Among the rare-earth-free permanent magnets, MnBi
shows high magnetic crystalline anisotropy, high Curie temperature of 633 K and a noticeable positive temperature
coefficient making it promising for possible industrial applications. For the future industrial applications, a detailed
optimization process and mass synthetic process of qualified MnBi powder and bulk magnet should be established.

In this work, a systematic process control for high performance MnBi magnets has been investigated. A
synthetic process of MnBi ingots via induction melting was tuned for high purity low-temperature phase (LTP)
and mass production of MnBi powder. In addition, efficient particle size control and an inevitable post processes
for homogeneity of LTP, microstructure, and finally, enhancement of magnetic property has been optimized.
Meanwhile, the doping effect of the third element substitution on MnBi matrix has also been examined for
enhancement of coercivity and higher energy products. A detailed optimization process and mass synthetic process

of MnBi powder which has advantages for industrial applications will be presented in detail.
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Magnetic properties and microstructure evaluation of
Sm(Fep sC0g2)11Ti particles produced by reduction
diffusion process

Hankuk Jeon"#, Jung Tae Lim', Hui-Dong Qian’, Jihoon Park",
Hyojun Ahn?, and Chul-Jin Choi'"

'Korea Institute of Materials Science, Changwon, Gyeongsangnam-do 51508, Republic or Korea
*School of Materials Science and Engineering, Gyeongsang National University, Republic of Korea

Permanent magnets are increasingly used in transportation technology and sustainable energy production for
EVs, hybrid vehicles and wind turbines. High performance permanent magnets, such as Nd-based magnets, have
problems with stability at high temperature, supply and high price. Therefore, developing rare-earth free or
rare-earth lean permanent magnets is becoming an important task to solve the abovementioned issues. Herein,
iron-rich rare-earth alloys with tetragonal ThMn,, structure, which can replace rare earth permanent magnets, is
drawing attention due to its high saturation magnetization of 1.43 T, anisotropy field of 10.9 T, and Curie
temperature of 800 K [1]. Although the magnetic properties of SmFe;; with ThMn,, structure have been already
demonstrated, a number of studies to enhance coercivity are still underway. The coercivity increases as grain sizes
approach to the single domain size. Therefore, in this work, we conducted experiments to obtain SmFe;, particles
with single domain sized grains to acquire high coercivity through the high energy ball milling and the reduction
diffusion process.

In this experiment, Sm,O3(Samarium Oxide), Fe,Os;(Iron Oxide), Co, TiOy(Titanium Dioxide), Ca were used
as starting materials. SmyOs and Ca, as a reducing agent, were excessively added in consideration of vaporization.
The starting materials except Ca were crushed and homogeneously mixed for 4 hours using a high energy ball
milling process. Then, the powders were processed by low energy ball milling with Ca powder for 2 hours. The
resulting mixture was sealed in a graphite crucible and then heat treated in argon atmosphere. This heat treatment
process including heat treatment temperature and time were optimized. Then, it was washed using a detergent
that dissolves unreacted Ca and remaining CaO, followed by drying in vacuum. It was concluded that the purity
of the samples varied with the initial contents of Sm and heat treatment time. The resultant particle size and
magnetic properties of the products were also affected by the ball milling conditions. The detailed experimental

procedures and physical and magnetic properties will be discussed.

Reference
[1] P. Tozman, H. Sepehri-Amin, Y. K. Takahashi, S. Hirosawa, K. Hono, Acta Materialia, 153, 354 (2018).
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Magnetic properties and phase relations of
Sm(Feo_8C00,2]10_3Ti0_6V0_6 + x wt.% Cu-Ga produced by
melt-spinning method

Tianhong Zhou'?', Hui-Dong Qian'?, Jung-Tae Lim', Jihoon Park', Yong-Rae Cho?, Chul-Jin Choi'"
"Powder Materials Division, Korea Institute of Materials Science, Changwon,
Gyeongsangnam-do 51508, Republic of Korea
?School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea

In our previous work, we studied the influence of Ti and V content in the Sm(FeqsC0¢2)122:Ti;V,y (x = 0.5
- 1.0) alloys. The optimal x for high purity ThMn,, phase was found to be 0.6, and the corresponding remanent
magnetization, coercivity, and maximum energy product were 80.6 emu/g, 3379 Oe and 7.29 MGOe, respectively.
However, an intergranular phase that could enhance the coercivity was not found in the Sm(FeysCo02)105Ti06Vo.6
sample, i.e., the grains of ThMn,-phase were in direct contact. Therefore, in this work, we have introduced
Cu-Ga as the intergranular phase to improve the coercivity.

First, Sm(FeysCoo2)10sTiosVos and Cu-Ga alloys were separately fabricated. The produced alloys were then arc-melted
together to produce Sm(FepsCoo2)105TiosVos + x Wt.% Cu-Ga (x = 1, 2, 3) alloys. It is noted that an excess of
Sm was added to crystallize Sm-Cu-Co-Ga in the alloys. The produced ingots include the ThMn;, and a-Fe phases
in the main grains and Sm-Cu-Co-Ga in the grain boundaries. The contents of the a-Fe and Sm-Cu-Co-Ga were
dramatically reduced by melt-spinning at the wheel speed of 37 m/s due to the high cooling speed. It was found
that the main phase of the melt-spun ribbons is TbCu; phase. The ribbons were manually ground and pressed under
12.5 GPa to produce high density green bodies. The green bodies were annealed at 800 °C for 15 minutes under
vacuum conditions, which resulted in a nearly pure ThMn;, phase in the main grains and Sm-Cu-Co-Ga in the
grain boundaries. The resulted coercivities of the samples were 3399, 4054, and 4317 Oe for x = 1, 2, and 3,
respectively, which are higher than the sample without Cu-Ga. However, compared to the small increase in the
coercivity, the remanent magnetization declined to 64, 66 and 60 emu/g, respectively. This degradation resulted in
a negative impact on the maximum energy product, which were 4.43, 6.44 and 4.75 MGOe, respectively.

Although the intergranular phase was successfully fabricated by introducing the Cu-Ga alloy in this work, it
led to the deterioration of the remanent magnetizations and maximum energy products. Thus, it is necessary to

further optimize the experimental procedures to improve the magnetic properties.

T B e S N s —— T ————
- . x=3 . N
Sm 5(FepC0p 2)106TinsVos + X W% CuGa x=3 ] Sm, 5(Fe 5C0p2)105Ti0.sVos + X Wt% CuGa Sm, 5(FeqsC002)10.8TiosVos + X Wt% CuGa

Arc-melted samples [ Ribbon (2800 rpm) ] Annealing samples at 800 °C for 15 min
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Fig 1. XRD patterns of the Sm(FeysCo¢2)105TiosVost x wt.% Cu-Ga (x = 1, 2, 3) (a) arc-melted ingots,
(b) melt-spun ribbons, and (c) annealed bulks.
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La-Co co-substituted M-type hexaferrites on magnetic
properties prepared by solid-state reaction

Min-Kyung Seong", Kang-Hyuk Lee?, Sang-Im Yoo?', Hae-In Yim'"
'Department of Physics, Sookmyung Women’s University, Seoul 04310, Korea
*Department of Material Science and Engineering, Seoul National University, Seoul 08826, Korea

M-type hexaferrites, which are widely used hard magnetic material, have high crystalline anisotropy (H,),
saturation magnetization (M;), and coercivity (H;). For enhancing magnetic properties, such as saturation
magnetization, substitution is mainly used. La-Co substituted Strontium M-type hexaferrite has known superior
magnetic properties among M-type hexaferrites. Previous research has focused on Co®" substitution for the Fe’"
sites of Ca-La M-type hexaferrites. However, La-Co substituted La-Ca M-type hexaferrites remain unexplored.
Therefore, in this work, we investigated the effect of La-Co co-substitution with the same ratio on the magnetic
properties. Ca;LasFe;;xCoxO19 (0 <z < 1) were synthesized by solid-state reaction. Calcination was performed
at temperature 1200°C for 2 hours in the air. The as-calcined samples were palletized and sintered at temperature
1250C for 2 hours in the air. The temperature was increased at a rate of 5C per minute. To define crystal
structure, magnetic properties, and microstructure, the samples were characterized by X-ray diffraction (XRD),

vibrating sample magnetometer (VSM), and the scanning electron microscope (SEM), respectively.
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Effect of Heat Treatment Temperature on Rare-earth
Elements Diffusion Process in Nd-Fe-B Sintered Magnets
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*Department of Advanced Materials Engineering, KEIMYUNG UNIVERSITY, 1095,
Dalgubeol-daero, Dalseo-gu, Daegu, Republic of Korea
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Commercially used Nd-Fe-B sintered permanent magnets have been widely used in various applications such

as hard disc drives, wind power generators, efficient air-conditioner compressors and motors for electric vehicles.

Since these applications are often used in high-temprature environments, the required coercivity and remanence

have been simultaneously obtained by using the heavy rare earth (HRE) grain boundary diffusion process (GBDP).

In this study, we report the heat treatment temperature dependence of magnetic properties as a start to reduce

the HRE content of GBDP-based high performance magnets. TbH coated commercial Nd-Fe-B sintered magnets

were annealed under various temperatures and the coercivity and remanence were systematically measured. Further

description of the microstructure will be discussed in detail.

Keywords: Grain boundary diffusion process / Nd-Fe-B / heavy rare earth / TbH / coercivity / remanence
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properties of sol-gel-processed Sr;CozFe,404:
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"Corresponding author email: ymkang@ut.ac.kr

Sr;CoyFe2404; hexaferrite powders were prepared through sol-gel synthesis and calcination at 1150-1260 °C.
Almost single Z-type hexaferrite could be obtained at calcination temperature (Tca) range in 1225-1245 °C. Below
and above the temperature range, more than two types of hexaferrites phases were formed. Complex permittivities
and permeabilities spectra (¢, €", u', and p") of these calcined hexaferrite powders-epoxy (10wt%) composites
were measured via network analyzer. Electromagnetic (EM) wave absorption properties were calculated based on
the €', €", p', and p" spectra and analyzed by plotting reflection loss (RL) spectra and RL maps of the composite
samples. Direct RL measurements confirmed that the calculations for RL spectra or RL maps derived based on
transmission theory were very reliable. The Z-type hexaferrite-epoxy (10wt%) composites, where the powder
calcined at 1230 °C, exhibited ferromagnetic resonance (FMR) at ~3.0 GHz and a strong EM wave absorbing
performance with RLi, < -60 dB at around the FMR frequency. Z-type hexaferrite—epoxy composite is a highly
promising material for EM absorption in the gigahertz band (2-10 GHz).

Acknowledgements: This work was supported by Korea National University of Transportation in 2021.
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Tuning of electromagnetic wave absorption properties of
Zn-Zr-substituted M-type hexaferrite-epoxy composites

Jae-Uk Kim’, Young-Min Kang"
Department of Materials Science and Engineering, Korea National University of Transportation,
Chungju, 27469, Republic of Korea
"Corresponding author email: ymkang@ut.ac.kr

We report on synthesis, characterization, and electromagnetic (EM) wave absorption properties of
Zn-Zr-substitued M-type Sr-hexaferrites (SrtM). The hexaferrite powders with nominal chemical composition of
SrFe .0 ZnyZrO19 (x = 0 — 2.0) were prepared by conventional solid-state reaction routes. The hexaferrite powder
and epoxy binder were mixed at a 9:1 wt% ratio, and the mixtures were pressed into disk and toroidal shaped
green compacts, respectively, and cured at 180 °C for 20 min air. M-H curves were measured using a B-H loop
tracer on the disk samples. The real and imaginary parts of permittivities (&', €") and permeabilities (u', pu") were
measured on the toroidal samples using a vector network analyzer (ES063A, Keysight) with an airline kit in the
frequency range from 0.1 to 18 GHz.

XRD analysis revealed that the solubility limit of Zn-Zr substitution into the M-type structure was about x
= 1.0. The p" spectra for the series of samples are presented in Fig. 1(a). Reflection losses (RLs) indicating the
electromagnetic wave absorption performance were analyzed based on the €', ", p', and p" spectra. The EM
absorption area could be figured out in the RL maps plotted as a function of the sample thickness (d) and
frequency (f) for the composite samples. The RL spectra at the optimal thickness are plotted at Fig. 1(b). The
coercivity, ferromagnetic resonance (FMR) frequency, and frequency range of the EM absorption decreased in
large steps for an increasing substitution x of up to 0.9, and then decreased slightly with increasing x for 1.0
< x £ 1.1. All these parameters are closely related to one another, and the changes are due to the magnetic
crystalline anisotropy change caused by the Zn-Zr substitution. The sample with x=0.9 exhibited a high absorption
in the X-Band (8-12 GHz) with the lowest reflection loss of < 45 dB, and the sample with x = 0.8 exhibited
EM absorption performance satisfying RL < 19 dB at 11 < f < 18 GHz. Tuning of EM absorption frequency
could be achieved by Zn-Zr substitution, which gradually reduces the magnetic anisotropy, the FMR frequency,
and the EM absorbing frequency area. It is believed that Zn-Zr substituted M-type Sr-hexaferrites are very
promising candidates for X (8-12 GHz) and Ku band (12-18 GHz) EM absorbers.

.

=204
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_40_—x=07{1 6mm)
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| m—x=0.9 (2.7mm)

50 x=1.0 (3.0mm)
—x=1 1 (3.1mm) |
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Fig. 1. (a) Imaginary part of permeability (1”’) and (b) Reflection loss (RL) spectra of SrFej;.xZnZrOj9
(x= 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1)-epoxy composites
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Nanomaterials are receiving a lot of attention these days. Transition metal elements such as iron (Fe), cobalt
(Co) and nickel (Ni) have promising applications in the scientific community and for high utilization of
optoelectronic materials in magnetic devices, magnetic memory bits, magnetic sensors and high-density data
storage devices. showed In particular, among all magnetic elements, ferromagnetic Ni with low magnetic crystal
anisotropy improves magnetic properties, which is useful for manufacturing various magnetic devices. Nickel,
which has high saturation magnetization and low coercive force, has a high magnetic flux density and is easily
reversible, was used in this study. Powders are prepared by solution synthesis, using NiCl, ‘6H,O, NaOH, N,H4
H,0, etc. at the right temperature, The strength of the magnetic field was changed as the reaction proceeded.
After the specified time has elapsed, the generated powders are washed several times with deionized water and
ethanol. Then dry using a vacuum oven. The collected samples are analyzed for composition and microstructure
through XRD and high-resolution SEM, and the hysteresis curve is identified through the PPMS equipment. At
this time, through the strength of the applied magnetic field, the evaluation of the magnetic properties of each

sample can be compared.

Keywords: Magnetic Properties, Nickel, Powders, Magnetic, PPMS
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The properties of magnetic nanoparticles are affected by various factors such as particle size and shape,
chemical composition, and crystal lattice. Among them, as the size of the magnetic nanoparticles decreases and
the shape anisotropy increases, the magnetic recording density, material life, etc. are improved, so research on
the magnetic nanoparticles is currently being conducted. Iron-nickel alloys, transition metal alloys selected in this
experiment, are considered important in the field of wireless communication devices. Samples are prepared by
solution synthesis using FeCl,-4H,0, NiCl,-6H,0, N,Hs-H,O, NaOH etc. Magnets of various shapes and strengths
are used in the process of generating nanoparticles. After the appropriate time has elapsed, when the sample is
formed, it is washed several times with deionized water and ethanol. Then dry using a vacuum oven. The
collected samples are analyzed for composition and microstructure through X-ray Diffraction. Then, the surface
and particle size of the samples are analyzed through high-resolution SEM, and the hysteresis curve, the saturation

magnetization and the coercive force are identified through the Physical Property Measurement System equipment.

Keywords: magnetic properties, Fe-Ni alloy, Fe-Ni Nanoparticles, nanopowders
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Redox based Resistive random-access memory (RRAM) devices is considered as one of the most promising
candidates for the next generation nonvolatile memory due to its excellent storage capacity, high scalability, robust
retention, good endurance, and stability [1,2]. Recent research shows that it has applicability in neuromorphic
networks as an artificial synapsis is one of the major breakthroughs of the recent investigations [2]. Recently,
we introduced brownmillerite SrCoO,s and SrFeO,s as a novel material platform to harness exceptional oxygen
ion transport properties for resistive switching memory devices for the first time [3,4]. For SrFeO,s, we were
able to demonstrate an excellent resistive switching performance with high endurance (> 10° cycles), fast
switching speed (10 ns) and high uniformity in key switching parameters [4,5]. In this contest, compound with
substitution of Co at the Fe lattice of SrFeOs is also found to be potential material for the resistive switching
devices with excellent magneto-electrical coupling [6]. SrFe;—Co,O; (SFCO) gained attention recently due to its
redox-driven topotactic transformation with a brownmillerite nonmagnetic phase to perovskite ferromagnetic phase
[7]. The solid-solution system SFCO exhibit antiferromagnetic-to-ferromagnetic transition as a function of Co
concentration with a high Curie temperature of (Tc= 300K). SrFe; «CosO; shows multiple magnetic phases varying
from helimagnetic to cluster glass for lower Co concentrations (0> x <0.07), whereas the system switches to
ferromagnetic state for higher (x> 0.2) values [6,7]. In the present work we are interested to explore the electrical
manipulation of magnetism and magnetic properties of PLD grown epitaxial SFCO thin films by varying the Co
content as well as oxygen stoichiometry for the development of the high-quality magneto-electric switching

devices.

Intensity(arb.unit)

26(°)
Figure 1. X-ray diffraction pattern of the SrFe;CoxO;s bulk material with x=0.5 and x=0.3
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Currently, with the development of information-communication technology, telecommunication and microwave
electronic systems operating in high frequency are being widely used. Simultaneously, electromagnetic interference
(EMI) has been a challenging problem as it can cause a serious malfunction in electronic devices. To solve the
EMI problem, much attention has been paid to microwave absorbers, because of a solution of electromagnetic
noise and special usage in electronic devices. Among various hexaferrites, the W-type hexaferrites are well known
for EMI suppression in the frequency region of gigahertz (GHz) because they have high saturation magnetization
and magnetic anisotropy values. However, since strontium W-type hexaferrites (SrW) is stable at the high
temperature region of 1350-1440°C in air, it is hard to obtain a pure phase of SrW at room temperature. Thus,
we fabricated Co-substituted SrW-type powders with the chemical formula of SrFe(.CoxFes027 (x = 0.25, 0.5)
in a reduced oxygen atmosphere. The complex permittivity (¢ = & — je") and permeability (u, = ¢’ — ju") were
measured in Ka band (26.5-40 GHz) by mixing SrW-type powders and epoxy resin. The microwave absorbing

properties will be evaluated including reflection loss (RL) and presented for a discussion.
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Fe-Co-based alloy systems have outstanding soft magnetic properties, such as high saturation magnetization,
suitable curie temperature, and low manufacturing cost. The last study added Vanadium to these FeCo alloys to
make cold workable alloy without decreasing the soft magnetic properties. Further, in this study, the magnetic
properties of the quaternary composition were tested by adding Ni and Nb to the three designs with the best
magnetic properties among them to improve hysteresis loss, magnetic flux density, and mechanical properties.
Therefore, we investigated the Fe-based alloys of Fe-Co-V-Ni and Fe-Co-V-Nb prepared by the arc-melting system
with high purity metals under an Argon atmosphere. Then, we manufactured samples in bulk with a Smm
thickness, a width of 3mm, and a length of 50mm using injection casting equipment. After processing these
samples, we analyzed the alloys' structural and magnetic properties using X-ray diffraction (XRD), vibrating

sample magnetometer (VSM), and DC B-H loop tracer.
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Thermal and Magnetic Properties of Fe-Co-B-P-Cu
Amorphous Alloy System
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Over the past decades, Fe-based amorphous alloy systems have been spotlighted with remarkable soft magnetic
properties such as high saturation magnetization (Ms), low coercivity (Hc), and good permeability. These
advantageous properties provide a platform for essential components of commercial products.

In this study, we improved saturation magnetization and high-temperature magnetic properties by adding
Cobalt at the expense of Fe. As a model system, Fe-Co-B-P-Cu amorphous ribbons fabricated by the
melt-spinning method were employed. We measured the thermal properties of the alloy by using differential
scanning calorimetry (DSC), including crystallization temperature. Structural characteristics of ribbons examined
by X-ray diffraction (XRD) turned out to be a fully amorphous state. Magnetic properties such as Ms and Hc
were inspected by vibrating sample magnetometer(VSM) and B-H loop tracer, respectively. The combination of
excellent soft magnetic properties and thermal ability makes the FeCoBPCu alloys promising soft magnetic

materials for industrial applications.
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Due to the development of the 4th industry, the problem of electromagnetic noise caused by electromagnetic
waves continues to occur. Therefore, the need for electromagnetic wave absorbers in the high frequency band
is becoming more important. The purpose of this study is to prepare CoNi nanoparticles for EMWs absorbers
in the high frequency regions and evaluate magnetic properties according to the synthesis conditions. In order
to synthesize CoNi, a polyol process that allows easy controls of composition, particle size, and shape and has
small aggregation was used. In addition, to make the particle size smaller, AgNO3 was added to proceed to
heterogeneous nucleation.

To investigate the characteristics, the morphology and composition of the materials are analyzed by SEM and
EDS. XRD was performed to confirm the crystal structures of the prepared materials. TEM is used to determine
the microstructures and sizes of the materials. Magnetic properties are confirmed using VSM. Electromagnetic
properties (complex permeability, permittivity) are measured using VNA and reflection loss is calculated by
transmission-line theory. CoNi nanoparticles with a different composition show feasibility for EMWs absorbers

in high-frequency bands.

Keywords: polyol method, EMI absorber, CoNi nanoparticle
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Fe-based amorphous soft magnetic powder is considered an ideal material for soft magnetic composite (SMC)
due to its excellent magnetic properties such as a low coercivity, a high resistance, and good DC bias
characteristics.[1] In general, the amorphous soft magnetic material is manufactured in the form of a ribbon or
wire using a rapid solidification process. However, direct application in the form of ribbons or wires is very
limited. Therefore, powder metallurgy has to be applied to manufacture soft magnetic parts with complex shapes.

Previously, the gas atomization process was attempted to make amorphous soft magnetic metal powder.
However, it is difficult to maintain amorphous due to the low cooling rate, therefore a larger amount of
glass-forming metals is added.[2] Accordingly, the iron content is limited and causes a low saturation
magnetization. On the other hand, the melt spin process with a high cooling rate can manufacture a metal ribbon
with high saturation magnetization.

However, manufacturing the powder core using the melt spin process requires a milling process. In particular,
there is a problem in that the milling efficiency is low due to the low ductility of the amorphous. Most Fe-based
amorphous metals become brittle after heat treatment at a temperature lower than the -crystallization
temperature.[3] Therefore, the temperature of pre-heat treatment is a factor that greatly affects the efficiency of
the milling process, which is the next process.

In addition, the flake-like powder produced through the milling process causes a low filling rate. Therefore,
high pressure is used in the pressing process, and stress is generated in the core. The core heat treatment process
after pressing removes the stress generated during the pressing process, which is a factor that affects main soft
magnetic properties such as magnetic permeability, core loss, and DC bias characteristics. Sufficient temperature
is required to relieve the stress, but amorphous must be maintained.

Here, we demonstrated SMC using flake-like powder manufactured through the milling process and analyzed
the effect of temperature during the manufacturing process. In this study, we demonstrate the milling effect
according to the temperature of pre-heat treatment and analyze the soft magnetic properties according to the

temperature of core annealing.
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As the operating frequency of the power conversion element increases for the purpose of miniaturization and
weight reduction, the development of a soft magnetic material with high saturation magnetization is required to
cope with the increase in current while exhibiting low iron loss even at high frequencies above 100. kHz. In
the case of crystalline powder materials such as Fe-Ni, Fe-Si-Al, and Fe-Si, which were used in the past, the
iron loss due to the eddy current increases rapidly as the frequency increases above 100 kHz. Current limiting
use at high frequencies. Amorphous soft magnetic powder material is emerging as an alternative because it has
no crystalline magnetic anisotropy and high specific resistance compared to conventional crystalline powder
material and shows low iron loss even at high frequencies. A gas spraying method using an inert gas is used
to prepare the amorphous powder, because the water spraying method has effects such as reducing saturation
magnetization and increasing iron loss due to oxidation. In the gas injection method, it is important to achieve
high GFA (glass forming ability) because the cooling rate is limited and it is difficult to make amorphous powder.
In this study, a composition containing 80% or more of Fe was designed to obtain high saturation magnetization
and high GFA. Based on the high-Ms Fe82.5B15Si2C0.5 quaternary composition, 1-2% of transition metal Mo
and B were added in the direction of increasing GFA. The properties of the amorphous alloy were evaluated by
fabricating a ribbon-shaped specimen through arc melting and melt spinning. The magnetic properties of the
ribbon were measured using a vibrating sample magnetometer, a DC loop tracer and a BH analyzer. As a result,
Fe82.5BXSi2C0.5Mox alloy containing Mo showed high saturation magnetization of 1.5T or more and high GFA

for stable formation of high-Ms amorphous soft magnetic powder.
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In this study, we attempted to optimize the composition of Fe-based nanocrystalline alloys with high saturation
flux density, low coercivity and low core loss. To improve the saturation flux density, the alloy used in experiment
is made up of over 80 at% of Iron. As the iron content of the alloy increases, the metalloid content of the alloy
decreases, resulting in a decrease in glass forming ability(GFA). To improve the GFA and to obtain high Bs, we
have researched to achieve optimal composition by adjusting the ratio of Boron and Silicon(a : b, a=1~5, b=1).
Moreover, the metalloids elements, Carbon, and the transition element, Niobium, are added. The transition
element, Nb, is known as an important element of nanocrystals by impeding a grain growth distinctly. The Cu
can be a base of nanocrystalline alloy to form nucleation sites where nanocrystals occur. We fabricated a ribbon
using Rapid Solid Process (RSP). To find optimal temperature for heat treatment analyzed using Differential
Scanning Calorimetry, DSC. After that, we measured coercivity, permeability, core loss and saturation flux density
using DC Loop Tracer, BH Analyzer and Vibrating-sample magnetometer(VSM). The results of that, we found
optimized components of alloy, Si can improve GFA and the alloy of B : Si = 5 : 1 has remarkable magnetic

properties. Based on these results, a way of adjusting ratio of components could deserve for designing alloys.

Keywords: Soft magnetic materials, Rapid solid process, Glass forming ability, Nanocrystals, Magnetic
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Until the present, Fe-based amorphous soft magnetic alloy systems have desirable properties such as low
coercivity(Hc), high saturation magnetization(Ms), and good permeability. Because of these excellent properties
can be applied to various components of inductors, magnetic cores, motors, and so forth. Especially Fe-Si-B-P-Cu
alloys, as known as NANOMET, have attracted interest in variable soft magnetic properties such as high
saturation magnetic flux density(Bs), and low manufacturing cost. However, NANOMET alloys have the limits
of low glass-forming ability(GFA) and mechanical processing.

In this study, to improve the limits of soft magnetic properties and glass forming ability(GFA) on NANOMET
alloys, we investigated the effect of C and Nb addition on the NANOMET-based alloy system. Using the
induction-melting method with high purity metals, we prepared the alloys and produced ribbon samples by the
melt-spinning process under the argon atmosphere. We analyzed the as-quenched ribbon’s thermal and structural
properties using differential scanning calorimetry(DSC) and X-ray diffraction(XRD). Measuring magnetic
properties of the ribbons used vibrating sample magnetometer(VSM) and DC B-H loop tracer.
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The wireless communication has revolutionized to meet the consumer demands in communication and mobility
where the fifth generation (5G) telecommunications are rapidly developing for reliable data transmission and better
connection in users. However, serious health hazards and malfunctioning in devices has become one of the issues
when operating at high frequency bands around 26-30 GHz. Notable attempts have been made to solve these
problems through recent breakthroughs in electromagnetic wave absorbing materials (EWAMs), composed of
dielectric and magnetic materials for eliminating or attenuating electromagnetic waves. From this point of view,
FeCo-based soft magnetic alloys is particularly attractive EWAMs due to their performances, including high
saturation magnetization (M,) of 2.45 T, small coercivity (H.), and complex permeability. In addition, a structural
modulation of the soft magnetic materials provides the magnetic anisotropy, resulting in enhancing the limit of
ferromagnetic resonance (fn) to achieve high initial permeability.

Here, we prepare the FeCo nanochains using a highly-productive thermal plasma synthesis to be utilized as
an electromagnetic absorber with exceptionally low reflection loss in the high frequency bands. The composition
of FeCo nanochains ranging from 7:3 to 3:7 shows high saturation magnetization of 151 — 227 emu g
Subsequently, the planetary ball milling is also implemented for a shape modulation in order to enhance the
complex permeability and the reflection loss performance. The shape-modulated FeCo nanochains offer the
enhancement in both the real and the imaginary part of the complex permeability. The shape modulation is one

of the technological advancements in improving the complex permeability of FeCo alloys.

Keywords: Electromagnetic absorbing materials, FeCo nanochain, Thermal plasma synthesis, Shape modulation,
and Permeability
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Soft magnetic materials require magnetic properties such as high permeability(pt), high saturation magnetic flux
density(Bs), and low core loss. Silicon electronical is widely used due to high saturation flux density and low
material cost, however it is difficult to satisfy low coercivity (Hc) and low core loss. Soft magnetic Fe-Si-B-Nb-Cu
(Finemet) nanocrystalline alloys have been used as magnetic components in high frequency transformers, inductors
due to their low coercivity, high permeability. Comparing to Silicon electronical Finemet has low saturation
magnetic flux density(1.23T). Therefore, it is inevitable to develop Fe-based nanocrystalline soft magnetic
materials with high saturation magnetic flux density and excellent soft magnetic properties. Nanocrystalline
materials have the best soft magnetic properties when the crystal size is 10-15 nm. The purpose of this study
is to minimize grain size and to enhance the soft magnetic properties. Zr distributed in amorphous residual matrix
suppress grain growth, increasing the permeability and lowering the core loss and coercivity. Nb atoms also
suppress grain growth and impending Fe,B formations. However, Nb is problematic in terms of cost. To improve
cost problem, we design our nanocrystlline alloys substitute Nb with Zr. Also according to previously studies W.
Lu et al., it has been reported that simultaneous co-addition of transition elements resulted in a significant
reduction in particle size to 10-20 nm. In this study, nanocrystalline ribbons with a composition of
Fe77.5Si11.5sB7.sNbyZr; 4 Cu;(x=0-3) have been fabricated by rapid-quenching melt spinning and thermal annealing.
The ratio of (Zr/Nb) effects on microstructure and magnetic properties. Among the alloys investigated in this
work, Fes75Si115B75NbiZr,Cu;  nanocrystalline ribbon annealed at 580 °C exhibits excellent soft-magnetic
properties including low coercivity, low core loss, and high saturation magnetization. The uniform
nanocrystallization in Fe;75581;,5B75sNb;Zr,Cu; alloy has been also confirmed through high-resolution TEM

analysis.

Keywords: soft magnetic materials. nanocrystalline, amorphous, magnetic properties, microstructures
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Soft magnetic composite (SMC) has the advantages of excellent magnetic properties and the three dimensions
shape core manufacturing with insulation coated Fe powder [1]. In addition, SMC is attractive because it can
overcome the output density limit of the currently produced electric motors made with two dimensions shape
electrical steel plate. In the case of SMCs, comprising Fe@PO, powders, which is currently widely used, heat
treatment above 650 °C damage of insulation properties. In order to solve this problem, this study focused on
manufacturing SMC with low core loss characteristics, excellent magnetic properties, and maintaining insulation
at heat treatment above 650 °C. Herein, SiO, coating was performed on the surface of Fe powder to reduce eddy
current loss [2]. Fe powder was coated with tetracthyl orthosilicate by sol-gel method, and core was prepared
by pressing and heat treatment for 1 hour at 600 °C, 700 °C, and 800 °C in the argon atmosphere. The phase
identification was carried out by X-ray diffractometer (XRD) and the insulation coating layer was measured by
scanning electron microscope and energy dispersive X-ray spectroscopy. Also, magnetic characteristics were
figured out through vibrating sample magnetometer (VSM) as well as the core loss value were compared for each
frequency band; 0.05 kHz, 0.4 kHz, and 1 kHz using AC BH analyzer (AC) and DC BH loop tracer (DC). XRD
patterns were observed the a-Fe peak, VSM results suggested that the saturation magnetization value was reduced,
which confirmed the existence of coating layers. The results of AC and DC measurements on the cores
heat-treated at 600 °C, 700 °C, and 800 °C have presented that core loss increase rate is higher for the Fe@PO,
than that for the Fe@SiO, because SiO, has superior ability to retain the coating layer at high temperature.

Therefore, SiO, coated Fe powder has potential in high temperature atmosphere applications.

Keywords: soft magnetic composite, sol-gel, magnetic properties, heat treatment
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In this presentation, we demonstrate hybrid mutimodal soft magnetic composite (SMC) comprising
gas-atomized spherical amorphous powder (AP) and carbonyl-iron powder (CIP), and present enhanced
electromagnetic properties of them. The CIPs are selectively incorporated in the voids between APs, and deforms
during compression, effectively reducing the pores resulting in a high packing density of the core, where CIPs
magnetically bridge APs each other and helping magnetic domain rotation much efficiently. Addition of 20 wt%
CIP in the SMC showed constant effective permeability of 57 up to 1 MHz, a remarkable 63% increase compared
with the AP core, while DC bias superimposing retention level of 61% was secured in the help of high
magnetization of CIPs. In addition, effect of SiO, surface insulation, prepared by sol-gel process on the
high-frequency magnetic properties of hybrid SMCs were also evaluated. Conclusionally, it has been revealed that
high-frequency eddy current loss of the hybrid core is originated from intra-particle eddy currents, and
inter-particle eddy currents are negligibly small. We believe that our approaches of AP/CIP multimodal hybrid
SMCs are effective way of achieving high permeability as well as DC bias characteristics at high frequencies,

and it will be highly beneficial for the miniaturization of power inductor.

Keywords: soft magnetic composite, amorphous powder, carbonyl iron powder, surface insulation, multimodal

core
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We investigated the biaxial strain dependent magnetic properties of two dimensional (2D) VSe, single layer
using the density functional theory. The ferromagnetic state of the pristine VSe, monolayer was preserved under
the applied strain. Also, the pristine VSe, monolayer had an in-lane magnetic anisotropy of -0.47 meV/cell. The
in-plane anisotropy was maintained in both tensile and compressive strain. However, the magnitude of magnetic
anisotropy was dependent on the strain type. For instance, the in-plane magnetic anisotropy decreased under
compressive strain whereas the opposite behavior appeared under tensile strain. We also explored the strain
dependent Curie temperature. The pristine structure had a Curie temperature (T¢) of ~ 237K. By applying strains,
the exchange energy was enhanced and subsequently, the T¢ was increased as well. Particularly, we found that
the T¢ increased to 323 K under the tensile strain of 3%. Our finding illustrates the role of the strain in achieving

tunable magnetic properties for potential spintronics and straintronics applications in the 2D 1T-VSe;.
Acknowledgment: This research was supported by the Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning
(2019RA21B5B01069807).
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Magneto-crystalline anisotropy (MCA), originating from spin orbit coupling (SOC), is one of important
properties for spintronics applications [1-3]. Here, MCA energy (EMCA) of Co/Pt thin film with Ti insertion or
capping is studied using density functional theory. For both cases, two types of stacking sequence are considered,
AB- and ABC-stacking (Fig. 1). EMCA of Ti capping is twice as large as that with Ti insertion. Moreover, both
cases exhibit larger EMCA in AB-stacking than ABC-stacking. MCA is investigated in the flamework of the
perturbation theory [4], where occupation change of bands is responsible. In particular, we analyze occupation

change of low lying Ti d-states for all cases.
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(a) AB-stacking (b) ABC-stacking

Fig. 1. Schematic diagram of stacking sequence of Co/Pt/Ti,
(a) AB- and (b) ABC-stacking. Each sphere denotes as green (Co),
orange (Pt) and Grey (Ti). Co/Pt/Ti consists of 5 layers of Co and Pt, and one layer of Ti.
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Bulk photovoltaic effect characterized by the generation of a steady photocurrent without the aid of external
p-n junction has attracted a lot of attention due to its novel physics and potential for high-performance solar cell
device. We briefly introduce basic theory of bulk photovoltaic effect and show the electronic origin and
photocurrent mechanism in organic molecular solids (TTF-CA), hybrid halide perovskite (MAPbI3 and FAPbI3),
and transition metal dichalcogenides (TMDs). For TTF-CA, we show the electronic origin of the photovoltaic
property of TTF-CA at low temperature (< 81 K). In the high-temperature phase, despite a net zero current, a
non-vanishing shift current can be generated by the interchain effect. In addition, we find that the ferroelectric
polarization of the hybrid halide perovskite is largely dominated by the ionic contribution of the molecular cation.
In contrast, the photovoltaic nature is mostly determined by the intrinsic electronic band properties near the Fermi
level, originating from iodine to lead atoms (inorganic backbone). At last, we investigate the underlying physics
of the large bulk photovoltaic effect of the one-dimensional WS, nanotube and present the possibility of giant
shift current over four times larger than the experimental value in the near-infrared region. Our results provide
a fundamental understanding of intriguing bulk photovoltaic materials and pave a way for their practical

applications.
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Ultrafast Resonant Magnetic Responses of Non-magnetic
2D Semiconductors to Low-Frequency Optical Fields
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All-optical helicity-dependent switching of magnetism has attracted broad attention from the perspective of
non-magnetic fast control of spins [1],[2]. We examine ultrafast spin dynamics of two-dimensional non-magnetic
semiconductors, particularly focusing on alteration of material’s time-reversal and valley symmetries driven by a
circularly polarized light. Monolayer MoS, was selected as an exemplary system and the real-time time-dependent
density functional theory (rt-TDDFT) calculations were carried out, together with a model Hamiltonian analysis.
As a distinction from some of the previous reports, this study was circumscribed to the non-excitonic regime,

i.e.,, an interval of frequency values below the band gap.
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Fig. 1: (a) The band structure of MoS,. (b) The real-time profile of the laser pulse (upper panel) and the
induced magnetization as a response to left circular (A=+1), right circular (A=-1) and linear (A=0) polarized
laser field (lower panel). A finite magnetization remains after the pulse fades away at 100fs. The frequency

of the applied field is selected as half of the band gap as depicted by an arrow in (a).

Our real-time ab initio calculations show that a circularly polarized light can induce a net magnetization in
a non-magnetic two-dimensional material. We demonstrate that the magnetic responses are particularly amplified
when the applied electric fields are in resonance with the spin-flipping band transition between valence and
conduction bands through the second harmonic of the light. We forecast that a tunable spin dynamics can be
achieved from these non-magnetic semiconductors when the light of the resonant frequency is combined with a

proper setting of a few parameters such as field strength, pulse duration and the magnitude of spin-orbit coupling.
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Mn3;Ga has drawn interest in spintronics for potential applications due to large perpendicular magnetic
anisotropy, high Curie temperature (~760 K), and low magnetization [1]. Motivated by previous studies on tunability
of magnetism through transition metal substitutions in Mn;Ga [2,3], we investigate magnetic and structural
properties of Mn3;Ga upon Co substitution using first-principles calculations. In the absence of Co, Mn;Ga is in
tetragonal phase. With Co, both tetragonal and cubic phases occur. x < 0.5, tetragonal phase is preferred, while
x > 0.5, cubic one is favored. Co magnetic moment in two phases exhibit different magnetic behaviors. In tetragonal
phase, unlike other Co compounds, Co magnetic moment nearly vanishes. On the other hand, in cubic phase,
it retains a usual moment at about 1 pp. Nearly vanishing Co magnetic moment in tetragonal structure is elucidated
phenomenologically by the magnetic exchange coefficient [4], where coupling between Co and Mn is much smaller
than cubic one. Furthermore, anomalous Hall conductivities (AHC) are investigated for x = 0, 0.5, and 1. The

magnitude of AHC is about 100~500 S/cm, where the sign change occurs at 0.5 < x < 1.
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Anomalous Hall effect (AHE) is believed to be occur with non-zero magnetization. However, even with zero
magnetization, anomalous Hall conductivity can exist [1-3]. In this context, AHC of compensated ferrimagnet
Mn;Al under hydrostatic pressure is investigated using ab initio calculations. Even with volume change,
magnetization is still compensated. Volume change shifts bands thereby peak of density of states (DOS) moves
under Fermi level. Anomalous Nernst conductivity (ANC) is also calculated. DOS, AHC, and ANC shows peaks
in specific energy range where van Hove singularity (VHS) is found. To analyze interplay of ANC, AHC, and

vHS, Fermi velocity and Berry curvature is investigated on Fermi surface.
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Stabilization and dynamical switching of skyrmions and
skyrmioniums in magnetic hemispherical shells
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We explored the topological magnetic textures of vortices, skyrmions, and skyrmioniums in magnetic
hemispherical shells by varying surface-normal uniaxial magnetic anisotropy constant (Ku), Dzyaloshinskii-Moriya
interaction (DMI) constant (Djy), and the shell diameter 2R. For given values of 2R, the combination of Ku and
Dint plays a crucial role in the stabilization of those different spin textures [1]. With decreasing 2R, the
geometrical confinement of hemispherical shells more significantly affects the stabilization of skyrmions owing
to curvature-induced DM-like interaction. This effect is contrastingly dependent on the sign of Dint: skyrmion
formation is more favorable for positive Dint values, whereas it is less favorable for negative ones. A quite
promising feature is that skyrmions can be stabilized even in the absence of intrinsic DMI for 2R < 25 nm. We
also explored characteristic dynamic properties of skyrmions excited by in-plane and out-of plane oscillating
magnetic fields. Similar to the fundamental dynamic modes found in planar dots, in-plane gyration and azimuthal
spin-wave modes as well as out-of-plane breathing modes were found, but additional higher-frequency hybrid
modes also appeared due to coupling between radially quantized and azimuthal spin-wave modes. Finally, we
found a switching behavior of skyrmion polarity through a transient skyrmionium state using very-low-strength
AC magnetic fields [2]. This work provides further physical insight into the static and dynamic properties of
skyrmions in curved-geometry nanodots and suggests potential applications to low-power consumption and

ultra-high-density information-storage devices.
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For semiconductor spintronics, efficient spin generation in semiconductor and spin transfer to ferromagnetic
metal (FM) are essentially required. Two-dimensional electron gas (2DEG) of semiconductor quantum wells is
a promising system for generating spin via Rashba—Edelstein effect (REE) because of its strong inversion
symmetry breaking. In this study, we investigate spin accumulation through REE and spin Hall effect (SHE) in
the 2DEG of an InAs quantum well. We use spatial- and vector-resolved measurements of spin, which reveals
that REE dominates SHE in 2DEG. Furthermore, REE in 2DEG induces a spin-orbit torque on FM in a
2DEG/insulator/FM heterostructure. Using vector- and time-resolved measurements of FM magnetization, we
determine a sizeable field-like torque, which is attributed to the phonon-mediated spin transport from 2DEG to
FM.
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Fig. 1. Optical detection of spin accumulation in InAs quantum well.
(a) A quantum well of InAs 2 nm is formed between InGaAs and InAlAs layers. A 2DEG channel with
the InAs quantum well is fabricated. (b) The REE-driven y-polarized spin along the channel position. (c)
The SHE-driven z-polarized spin along the channel position. Black/red colors are with charge current of

+1 mA, corresponds to a 2D current density of 50 A m™.
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Coupling of Distant Magnets via Standing Acoustic Waves
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We study the coupled dynamics of two magnets on both sides of a thick crystal spacer. The magnets
communicate by acting as "speakers" as well as "microphones" for sound waves. The system can be tuned into
tripartite hybridization by carefully tuning the two ferromagnetic resonance frequencies to a degenerate acoustic
resonance of the crystal. Being in a regime where the interaction strength between the magnetic excitations is
larger than their decay rate, the system is in the strong coupling regime in which the entire system of
magnetization and lattice can only oscillate coherently. We show there that illumination of the bright and dark
collective modes by a uniform microwave field depends on the parity of the phonon mode, which decides if the
lattice displacement at the position of the two magnets is out-of-phase or in-phase. Depending on the parity of
intermediate standing lattice waves, the interference is constructive or destructive, giving rise to the bright and
dark collective modes.

Our solid state realization consists of a half-millimeter thick slab of nonmagnetic gallium gadolinium garnet
coated epitaxially on both sides by the ferrimagnet yttrium iron garnet. The magnetoelastic coupling in itself is
not so strong so it is the exceedingly high crystal quality and long lifetimes of magnons and phonons in garnets
that are key to unveil strong coupling. The frequency can be tuned by applied magnetic field strength and
directions, while we measure the magnetization dynamics electrically by induced voltages in Pt contacts and
microwave absorption. Besides the electrical detection, we demonstrate the detection of magnon-phonon coupling
using the inelastic light scattering technique. By virtue of the local detection, we obtain the line width close to
the intrinsic value of magnetic damping. A clear signature of magnon-phonon coupling will be shown as a dip

in the magnetic resonance spectrum.
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absorption in photon-magnon coupling
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The prospect of a full control of electromagnetic waves has inspired intensive efforts on light-matter
interactions in recent years. The two most interesting phenomena applicable to quantum information technology
[1-3] are electromagnetically induced transparency (EIT) and absorption (EIA), arising from atomic coherences
occurring in light-matter interaction. it is very difficult to construct a single system that exhibits both the
phenomena simultaneously, due to the fact that conventional coupled systems often lack independent tenability
and controllability of their eigenmodes. It is interesting to find a plausible method that would permit a single
device where energy conversion or information transfer can be maximized through coupling induced transparency
(CIT) or absorption (CIA).

In this regard, we fabricated a hybrid system composed of magnons (collective spin excitations) and
microwave photons (electromagnetic excitations) in order to make them strongly couple with flexibly tailored
dispersion and damping rate [4-5]. Here we report on an experimental demonstration of the simultaneous
occurrence of CIT and CIA phenomena in photon-magnon coupling (PMC) in a planar hybrid system that consists
of a yttrium iron garnet (YIG) film and a multi-concentric inverted-split-ring resonator (ISRR). The coexistence
of both CIT and CIA behaviors is ascribed to magnon-mediated interactions between individual decoupled (or
very weekly coupled) ISRRs. In order to capture the generic physics of the magnon-mediated photon-photon
interactions, we made an analytical model based on competition between the coherent and dissipative
photon-magnon interactions, which model precisely reproduces the experimental findings. The coupling parameters
associated with the CIT/CIA behaviors are tunable by changing the direction of applied static magnetic fields and
the position of YIG film on the microstripline. The demonstration of multifunctional characteristics of PMC in
a single planar device provides a crucial stepping stone for the development of more complex, controllable, and

sensitive photon-magnonics devices that are highly demanded in the development of quantum technologies.
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ferromagnetic resonance in ferrite nanoparticles for
hyperthermia application
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The magneto-thermal effect, which represents the conversion of magnetostatic energy to heat from magnetic
materials, has been spotlighted for potential therapeutic usage in hyperthermia treatments [1-3]. However, the
realization of its potential has been challenged owing to limited heating powers from magnetic nanoparticles.
Here, we explored a new paradigm of magneto-thermal modality using low-power driven spin excitations followed
by consequent energy dissipation, which has yet to be realized for hyperthermia applications [4]. We
experimentally demonstrated that distinctly efficient heat-dissipation power driven by ferromagnetic resonance
(FMR) in ferrimagnetic MFe204 (M = Fe, Mn, Ni) nanoparticles gives rise to a targeted temperature increment.
The power is two orders of magnitude higher than that of conventional Néel-Brownian mechanism. From
micromagnetic simulation and analytical derivation, we found robust correlations between the temperature
increment and intrinsic material parameters, the damping constant as well as the saturation magnetizations of
nanoparticles’ constituent materials. Furthermore, the temperature increments were reliably manipulated by
extremely low strengths of applied AC magnetic fields under resonance field conditions. Our experimental results
and theoretical formulations provide for a better understanding of the effect of FMR on the efficiency of heat
generation as well as a straightforward guidance for the design of advanced materials for a control of highly
localized incrementation of targeted temperatures using magnetic particles for magnetic hyperthermia

bio-applications.
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Thickness-dependent spin-orbit torques in normal
metal/Nb/ferromagnet tri-layers
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When electrical current flows to normal metal (NM)/ferromagnet (FM) heterostructures, a transverse spin
current that exerting torque to the magnetization is generated [1]. This torque, called spin-orbit torque (SOT), is
drawing massive attention due to its applicability for the energy-efficient writing method of a next-generation
memory device. For the application of SOT to memory or logic devices, it is crucial to quantify the mechanisms
of this new physical phenomenon. Most SOT studies designed the simple NM/FM bilayer structures where NM
(or NM/FM interface) serves as spin current source [2-4]. Recently, the experimental system has been improved
to more complicate structures containing more than one source [5, 6]. This study discussed the thickness-
dependent SOT efficiency in NM/Nb/FM tri-layer structures where either NM1/NM2 or NM/FM bilayer serves
as an additional spin current source. We investigate two types of NM/Nb/CoFeB tri-layer in which the NM was
either Ta or Pt. The SOT value increased and saturated with increasing the Nb thickness in both series. However,
there is switching polarity reversal in Pt/Nb/FM structures due to the different spin-orbit coupling signs between
Pt and Nb when #y, changed around critical thickness. In contrast, there would be no such reverse in the
Ta/Nb/FM structure. We confirm this polarity reversal behavior by both second harmonics and current-induced
SOT switching measurements, suggesting well-designed systematical observation of the thickness dependence of

SOT. These results provide a systematic understanding of the thickness-dependent SOT properties.
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Prediction of large anomalous Hall conductivity
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Recently, a combined experimental and theoretical study has shown that anomalous Hall conductivity (AHC)
can be tailored via tuning Berry curvature regardless of magnetization[1], which may pave a new way to achieve
large AHC without net magnetic moment. For instance, non-negligible AHC of 330(133) Q'ecml and 300 Q'cm’
were predicted in non-collinear antiferromagnetic and compensated ferrimagnetic Heusler compounds Mn;Ge
(Sn)[2] and Ti;MnAl[3]. In this work, using the PAW and FLAPW methods implemented in VASP and Fleur
codes, AHC of a ferrimagnet quaternary Heusler compounds TiZrMnAl (F43m) is studied. Among three possible
structural phases[4] (Fig. 1), a-phase is energetically most stable, by energy differences of 0.34 eV/fu and 0.03
eV/fu compared to B- and y-phase. The local magnetic moment of Mn is antialigned with those of Ti and Zr.

As a result, total magnetic moment is fully compensated (m¢ = 0.0 ;) in a- and B-phase, and nearly compensated

@Ti @Zr @ Mn @ A]

Fig. 1. Three possible structural phases of quaternary Heusler compound TiZrMnAl.
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Fig. 2. Band structure and Berry curvature along the k-point symmetry lines.
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(m; = 0.1py) in y-phase. Interestingly, a-phase possesses a large AHC of 1470 Q'cm™, while p- and y-phase
show moderate AHC of 200 and 100 Q'cm”, consistently in both the PAW and FLAPW methods. The large
AHC in a-phase stems from the direct gapless band along the symmetry line LM, which shows a gigantic Berry

curvature and nontrivial topology with non-zero Chern number x = +1.
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Development of heat-resistant insulation coatings for pure
iron SMCs (Soft Magnetic Composites)
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Field-induced Bose-Einstein condensation and supersolid
in the two-dimensional Kondo necklace
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We report our numerical calculation using two-dimensional tensor network ansatz, infinite projected
entangled-pair state (iPEPS), on the 2D Kondo-necklace model where a local spin-singlet phase can be real- ized.
By introducing an external magnetic field, the singlet-triplet gap reduces and eventually closes, leading to the
well-known triplon condensation. Moreover, after introducing XXZ anisotropy, this model gives rise to a
field-induced supersolid before entering a fully polarized phase. In 3D, the Kondo-sieve model is regarded as the
spin Hamiltonian for Ba2NiO2(AgSe)2 (BNOAS), and thus we believe our numerical estimation can be realized
and provide a new platform for such exotic field-induced condensation. Finally, we propose a t-J-K many-body

Hamiltonian that is appropriate for exploring the expected superconductivity upon doping electrons into BNOAS.
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Figure 1. The anisotropy-field phase diagram for 2D XXZ Kondo necklace model
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Design of MgAl,O4 Spinel-Oxide-Based Tunnel Barriers for
Advanced Spintronics Devices
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Tunnel magnetoresistance (TMR) in magnetic tunnel junctions (MTJs) is one of the central properties to
develop high-performance spintronics devices. MgO(001) with bce-Fe or CoFe electrodes has been mostly studied
as a tunnel barrier of MTJs for the last decades because of its giant TMR ratio originating from the spin-filtering

effect of Aj-symmetric evanescent states (s, p,, d, . . orbitals) [1], as predicted in 2001 [2,3]. However, the TMR

ratio of MgO-MTIJs reduces significantly by bias voltage applications, indicating a limitation of the output voltage
of the MTJ. Recent experiments show that the use of a (001)-oriented spinel-type oxide, MgALO4, as a tunnel
barrier improves the robustness of the TMR ratio under bias applications [4], but a theoretical TMR limit in
Fe/MgAl,04/Fe(001) MTJs is very small compared to the MgO-MTJs. This is because the in-plane lattice
periodicity of Fe electrode is half of that of MgAl,O4 and a band-folding effect is induced in the two-dimensional
Brillouin zone of the in-plane wave vector in the Fe electrode [5,6]. This effect provides additional conductive
states at the A line in MgAL,O4-MTJ, contributing to the reduction of the TMR ratio. In this talk, we propose
a combined trilayer tunnel barrier, MgO/MgAl,04/MgO, to overcome the above issue of the small TMR limit of
MgAl,04-MTlJs on the basis of the first-principles calculations.

We performed ballistic-conductance calculations in an Fe/MgO(n)/MgAl,04/MgO(n)/Fe(001) MTJ using the
non-equilibrium Green’s functions method to clarify the TMR ratio under bias voltage application. Here, number
of MgO layers (n-ML) is changed as n = 1, 2, 3. In the case of » = 1, a large TMR ratio of 1184% is obtained
at a zero-bias voltage and this large value is almost maintained up to V' = 1.2 V (see blue in Fig. 1), leading
to a large voltage output. In contrast, a single barrier MgAl,O, shows only a small TMR ratio (~125%), which
is constant below V' = 1.6 V (see orange in Fig. 1). These results indicate that both the models have a similar
tendency in bias voltage dependence of TMR, except for the magnitude of a TMR ratio. Moreover, we clarified
that the presence of an MgO interlayer between Fe and MgAL,O4 plays an important role in retaining (blocking)
the A; evanescent state for majority (minority) spin. The former leads to the robustness of the TMR ratio against
bias voltage as observed in single MgAl,O4 MTJs, while the latter does to the large TMR ratio as in single MgO
MTIJs [7].

This work is supported, in part, by TDK Corporation; Grants-in-Aid for Scientific Research (Grants No.
JP16H06332, JP17H06152, JP20H02190, and JP20K14782) from the Japan Society for the Promotion of Science;
the Tatematsu Foundation, and the Data-Science Research Center for Material, Quantum, and Measurement
Technologies, Mie University. Computations are performed using the facilities of the Numerical Materials
Simulator at NIMS.
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Fig. 1 Bias-voltage dependence of TMR ratio for MgO/MgAl,O4/MgO-MTJ and single MgAI1204-MTJ.
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Magnetics in the two-dimensional layered materials

Wei Ren’
Physics Department, International Centre for Quantum and Molecular Structures,
Shanghai University, Shanghai 200444, China
‘renwei@shu.edu.cn

Based on the first-principles prediction, we report the magnetoelectric coupling effect in two-dimensional
multiferroic bilayer VS,. The ground-state 3R-type stacking breaks space inversion symmetry, therefore introducing
a spontaneous polarization perpendicular to the layer plane. We further reveal that the out-of-plane ferroelectric
polarization of bilayer VS, can be reversed upon interlayer sliding of an in-plane translation. Each VS, layer has
a ferromagnetic state with an opposite magnetic moment between two antiferromagnetically ordered layers. We
found that ferroelectricity and antiferromagnetism can be coupled together by a ferrovalley in bilayer VS; to
realize electronic control of magnetism. Remarkably, a net magnetic moment is generated by reducing the
interlayer distance, and an electric field is able to achieve linear and second-order nonlinear magnetoelectric

coupling in bilayer VS,.
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Manipulating emergent properties of Hund metal:
SIRUO;-SITiIO; heterostructure

Minjae Kim"?', Chang-Jong Kang®, Jaeho Han*, and Bongjae Kim®

'Korea Institute for Advanced Study, Seoul 02455, South Korea
’Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
*Department of Physics, Chungnam National University, Daejeon 34134, South Korea
“Center of Theoretical Physics of Complex Systems, Institute for Basic Science (IBS) Daejeon 34126, South Korea
’Department of Physics, Kunsan National University, Gunsan 54150, South Korea

We investigate strain dependent emergent electronic properties of SrRuO;-SrTiO; heterostructure in the
theoretical framework of the combination of density functional theory and dynamical mean field theory
(DFT+DMFT). The SrRuOs-SrTiO; heterostructure in the presence of strain was recently proposed as a possible
platform for studying unconventional superconductivity of Sr,RuO4, a paradigmatic Hund metal, in the DFT
computation. [1] Here, from the DFT+DMFT method, we show that the SrRuO;-SrTiOs heterostructure has a
possibility of strain induced manipulation of low temperature emergent orders of Hund metal, covers
ferromagnetic (FM) metal to Neel type antiferromagnetic (NAFM) insulator with orbital polarization. In between
these emergent orders in the strain dependent phase diagram of the SrRuOs-SrTiOs heterostructure, we confirmed
that there is a regime in which a Fermi liquid quasiparticle experiences competing magnetic interactions of FM,

NAFM, and spin density waves, indicating a clue for possible unconventional superconductivity.
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2-Dimensional van der Waals Antiferromagnets Studies
with Optical Spectroscopy

Hyeonsik Cheong’
Department of Physics, Sogang University, Seoul 04107, Korea

Two-dimensional magnetic van der Waals materials are attracting much interest recently. Magnetism in low
dimensional systems is an interesting topic for the fundamental physics, and atomically thin magnetic materials
are promising candidates for novel spintronic devices. Antiferromagnetic 2-dimensional materials are particularly
interesting both for fundamental physics and also for antiferromagnetism-based spintronic devices. However,
traditional research tools to probe antiferromagnetic ordering such as neutron scattering cannot be employed for
atomically thin materials due to the small sample volume. Although magneto-optical Kerr effect measurements
can be used to monitor the magnetic ordering in ferromagnetic materials, the lack of net magnetization precludes
the use of the Kerr effect in probing antiferromagnetic ordering. Optical techniques such as Raman spectroscopy
or second-harmonic generation (SHG) are becoming increasingly important for the study of antiferromagnetic
2-dimensional materials. Raman spectroscopy, for example, can be an invaluable tool to probe the magnetic
transition in antiferromagnetic van der Waals materials that show spectroscopic features that correlate with
magnetic ordering. Furthermore, recent spectroscopic studies revealed a novel coherent state in some of these
materials stabilized by the antiferromagnetic ordering. In this presentation, I will review recent achievements in

the study of antiferromagnetism in 2 dimensions using optical spectroscopy.
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Machine Learning Quantum Data

Eunah Kim’
Department of Physics, Cornell University, USA

Impressive progress in classical and quantum simulations put us in the luxurious position of having rich
quantum data at hand. However, it can be challenging to extract theoretical insight from quantum data for states
that are intrinsically quantum mechanical and characterized by quantum fluctuations or topological properties. This
talk will discuss recent successes using machine learning approaches to meet the quantum data challenge and

discover new physics in unbiased and interpretable manners.
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Artificial Neural Networks for Analyzing Quantum
Many-Body Problems

Yusuke Nomura’
RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

It is a great challenge to accurately represent quantum many-body states. In this talk, we will show that
Boltzmann machines used in machine learning can be useful for analyzing quantum many-body systems.

First, we introduce a method for representing quantum states using Boltzmann machines proposed by Carleo
and Troyer in 2017 [1]. Then, we discuss the progress of the neural-network wave function method for
zero-temperature simulations [2-6]. Through various extensions, the neural-network wave functions are beginning
to be applied to challenging problems (e.g., frustrated spin systems) in physics [5].

Next, we discuss two finite-temperature calculation methods using deep Boltzmann machines (DBMs) with
two hidden layers [7]. Both methods use the idea of “purification,” where a finite-temperature mixed state is
represented by a pure state of an extended system. The former analytically constructs a pure state corresponding
to thermal equilibrium, realizing quantum-to-classical mapping [3]. The latter method obtains the pure state by
numerically optimizing the DBM parameters. This method can be applied to, e.g., frustrated systems for which
the former method suffers from the negative sign problem. We will discuss the applications to the transverse-field
Ising model and J;-J, Heisenberg model.

These works were done in collaboration with Andrew S. Darmawan, Youhei Yamaji, Masatoshi Imada,

Giuseppe Carleo, Nobuyuki Yoshioka, and Franco Nori.

hidden layer

visible layer

Fig. 1. Structures of (a) restricted Boltzmann machine (RBM) and (b) deep Boltzmann machine (DBM).
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Ground-state Properties via
Machine Learning Quantum Constraints

Yi Zhang"?*
'International Center for Quantum Materials, Peking University, Beijing, 100871, China
*School of Physics, Peking University, Beijing, 100871, China

Ground-state properties are central to our understanding of quantum many-body systems. At first glance, it
seems natural and essential to obtain the ground state before analyzing its properties; however, its exponentially
large Hilbert space has made such studies costly, if not prohibitive, on sufficiently large system sizes. Here, we
propose an alternative strategy based upon the expectation values of an ensemble of selected operators and the
elusive yet vital quantum constraints between them, where the search for ground-state properties simply equates
to classical constrained minimization. These quantum constraints are generally obtainable via sampling then
machine learning on a large number of systematically consistent quantum many-body states. We showcase our
perspective on 1D fermion chains and spin chains for applicability, effectiveness, and several unique advantages,

especially for strongly correlated systems, thermodynamic-limit systems, property designs, etc.
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Thermal fransport and thermodynamic properties of
Kitaev guantum spin liquid candidate material a-RuCls;

Yuji Matsuda’
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Half-integer thermal quantum Hall conductance recently reported in the two-dimensional honeycomb material
a-RuCl3 indicates the presence of non-ablian anyons, which are relevant for fault-tolerant topological quantum
computations, in a quantum magnet [1]. Here, based on recent studies of thermal transport and thermodynamic
measurements in the magnetic field of a-RuClI3, we discuss the topological Chern number of Majorana band [2],

Majorana gap [3], and field induced topological phase transition [4] of the Kitaev spin liquid.
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Teraheriz spectroscopy of antiferromagnetic
resonances in YFe,Mn,O; (0<x<0.4) across a spin
reorientation transition

Howon Lee', Taek Sun Jung', Hyun Jun Shin’, Sang Hyup Oh', Kyung Ik Sim?,
Taewoo Ha?, Young Jai Choi' and Jae Hoon Kim"

'Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
*Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea

We have conducted a terahertz spectroscopic study of the antiferromagnetic resonances in bulk orthoferrite
YFe;xMnxO; (0<x<0.4). Both the quasi-ferromagnetic resonance mode and the quasi-antiferromagnetic resonance
mode in the weak ferromagnetic I'y phase disappear near the spin reorientation temperature, Tsg, for the onset
of the collinear antiferromagnetic I'; phase (x>0.1). Below Tsg, an antiferromagnetic resonance mode emerges and
exhibits a large blue-shift with decreasing temperature. However, below 50 K, this mode softens considerably,
and this tendency becomes stronger with Mn doping. We provide a deeper understanding of such behavior of
the antiferromagnetic resonance modes in terms of the influence of the Mn’ ions on the magnetocrystalline
anisotropy. Our results show that terahertz time-domain spectroscopy is a useful, complementary tool in tracking
magnetic transitions and probing interaction between disparate magnetic subsystems in antiferromagnetic materials

with multiple ionic species.
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Oxide Heterostructures for Quantum Magnetism

Changhee Sohn’
Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Korea

Magnetism with strong quantum fluctuation and entanglement has received rising attention due to its exotic
excitations and potential application to spintronics and quantum computations. However, realizing genuine
quantum magnetic ground state in real matter remains extremely challenging up to now. In almost every candidate
for Kitaev quantum spin liquid, for example, the presence of additional spin exchange interaction results in
classical long-range antiferromagnetic ground states. In this regard, heterostructure approach on quantum magnet
might provide a unique route to realize quantum magnetism owing to its wide tunability of spin Hamiltonian.
Here, we will introduce our recent attempt to realize quantum magnetic ground states in strongly correlated oxide
heterostructures. We will present successful growth of quantum spin liquid candidates in thin film geometry and
its basic characterization including structure, stoichiometry, electronic and magnetic ground states. The similarity

and difference between bulk and thin film will be discussed.
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Finite-Temperature Spin Dynamics and Transport
Phenomena in Kitaev Quantum Spin Liquids

Joji Nasu’
Department of Physics, Tohoku University, Sendai 980-8578, Japan

Quantum spin liquids (QSLs) have been the subject of great interest since Anderson’s suggestion. Recently,
Kitaev proposed a canonical model of QSLs termed the Kitaev model on a honeycomb lattice (Fig. 1), which
provides exact realizations of QSLs with topological order and fractional excitations. Moreover, exchange
interactions in transition metal compounds with the strong spin-orbit coupling, such as iridium and ruthenium
compounds, are suggested to be dominated by the Kitaev-type interaction.

To discuss experimental results in the viewpoint of the Kitaev physics, we investigate the thermodynamic
properties and spin dynamics of the Kitaev model [1]. We calculate the specific heat using the quantum Monte
Carlo simulations and find a double-peak structure, where half of the entropy is released at each peak. The result
suggests that a quantum spin is fractionalized into two types of elementary excitations, itinerant Majorana
fermions and localized Z, fluxes, due to quantum many-body effects. We also find fingerprints of fractionalization
in the spin dynamics. The fermionic temperature dependence in the Raman scattering and incoherent broad
structure in the dynamical spin structure factor are the manifestations of the itinerant Majorana fermions [2,3].
We also examine the thermal transport governed by the itinerant emergent Majorana fermions in the presence of
the magnetic field [4]. The thermal Hall conductivity shows nonmonotonic temperature dependence due to the
Majorana chiral edge mode and the thermally fluctuating Z, gauge field emergent from the fractionalization of
quantum spins.

Finally, we discuss disorder effects on the Kitaev QSL, which inevitably exist in real materials. We investigate
the impact of two types of disorder, bond randomness and site dilution, on the spin dynamics and transport in
the Kitaev model [5,6]. We compare the calculation results with experimental ones. The relevance to real materials

will be discussed in the presentation.
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Fig. 1. Schematic picture of Kitaev model and spin fractionalization.
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Assessments of Kitaev physics in 3d transition metal
magnets via first-principles calculations

Heung-Sik Kim’

Kangwon National University, Korea, heungsikim@kangwon.ac.kr

Since the first suggested realization of Kitaev’s exchange Hamiltonian in layered S5d-transition metal oxide
systems by G. Jackeli and G. Khaliullin, 4d- and 5d-transition metal elements have been considered “a must”
ingredient to conjure Kitaev physics in solid state systems. In search of other candidate systems, recently there
have been several studies on reducing the need of the spin-orbit-entangled j.;=1/2 orbitals as the basic building
block. There have been generally two different approaches in that direction; i) employing S=1 or S=3/2
higher-spin elements or ii) many-body J=1/2 states. Both approaches involve in the presence of 3d transition metal
elements despite their apparently weak spin-orbit coupling. In this talk I’d like to review both approaches, make
assessments on candidate systems for each cases via first-principles electronic structure calculations, and try to

suggest a couple of ways to enhance Kitaev physics in the relevant systems.
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New spin hall system for high spin efficiency materials

Young Chan Won"", Young Rae Kim?, Jae Ho Jung? and Sang Ho Lim'?

'Department of Nano Semiconductor Engineering, Korea University, Seoul 02841, Korea
’Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea

In this study, various experiments have been performed to develop a new system for the spin-orbit torque
(SOT) device. In Pd/Co/Pt/MgO structure, 0.2 nm thick Ti layer is inserted in the Pt layer to control SOT
efficiency. The SOT efficiency is changed by a thickness of Pt layer and position of Ti layer. The perpendicular
magnetic anisotropy (PMA) and crystalline structure of Pt/Co/AIN structures are also investigated. Before the
annealing, the stack shows no magnetic moment with a 0.5 nm thick Co layer. However, dramatic increase in
magnetic moment value is observed after annealing at 300°C. Simultaneously, strong PMA is obtained. The
magnetic dead layer and interfacial PMA energy density are investigated to determine a relative interfacial effect.
The microstructural experiments are also performed by XRD and TEM experiments. The AIN layer is inserted
in Pt/Co/MgO structure which is known for a strong PMA. The variation of PMA and SOT is studied by
changing a position of AIN layer.
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Field-free spin-orbit torque switching of
perpendicular magnetization

Soogil Lee and Byong-Guk Park’
Department of Materials Science and Engineering, KAIST, Korea

Spin-orbit torque (SOT) arising from spin-orbit coupling has gained much attention because it promises
efficient magnetization switching in spintronic devices [1]. It is important for device applications that the SOT
switches perpendicular magnetizations without an external magnetic field. In this talk, I will present two
approaches to field-free SOT switching of perpendicular magnetization. First, we investigate SOT in
antiferromagnet IrMn/CoFeB/MgO structures, where an in-plane effective field and a sizable SOT generated from
IrMn can switch the magnetization perpendicular CoFeB without an external magnetic field [2]. Second, we
demonstrate that out-of-plane SOT created at a ferromagnet/non-magnetic interface deterministically switches

magnetization in a magnetic trilayer [3].
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Various approaches for the more effective spin-orbit
torque switching

Suhyeok An, Eunchong Baek, Yeh-Ri Kim, Dongryul Kim, Jin-A Kim,
Hyeongjoo Seo, and Chun-Yeol You
Department of Emerging Materials Science, DGIST, Daegu 42988, Korea

Spin orbit torque (SOT) induced magnetization switching is promising technique for the logic-in-memory
applications [1]. SOT switching has many advantages compare to the spin transfer torque switching: separated
read/write current paths, faster switching speed, independent switching behavior on the free layer damping
constant, and less energy consumption. Despite many advantages, there are still unresolved issues in SOT
switching. We studied various technique to improve the efficiency of SOT switching. First, we will discuss about
the effect of the He+ ion irradiation on the SOT switching, He+ ion irradiation leads not only the magnetic
anisotropy, but also the spin Hall angle variations. We will also introduce several approaches in order to achieve

field-free SOT switching by introducing lateral in-plane symmetry breaking.
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Interfacial Dzyaloshinskii-Moriya Interaction in
Ferromagnetic Thin Films

Sug-Bong Choe’
Department of Physics and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea

Interfacial phenomena play decisive roles in modern science and technology as the scale shrinks down to a
few atomic layers. Such minute nanostructures require more comprehensive understanding beyond the
conventional concepts of interfaces and interfacial phenomena generated at interfaces. The Dzyaloshinskii—-Moriya
interaction (DMI) generates intriguing chiral magnetic objects such as magnetic skyrmions and chiral domain
walls that can be used as building blocks in emerging magnetic nanodevices. Precise control of the DMI strength
is one of the key issues to achieve better stability and functionality of these chiral objects. Here we present two
major experimental results on the interfacial DMI and spin-orbit torque (SOT) in ferromagnetic films. First, we
report an experimental observation that in magnetic trilayer films, the DMI strength exhibits a noticeable
correlation with the work functions of the nonmagnetic layers interfaced to the magnetic layer [1]. Such
correlation with the intrinsic material parameters provides a guideline for material selection to engineer the DMI
strength. Second, from series of a-few-atomic-layer-thick magnetic films, here we demonstrate experimentally that,
contrary to the common notion, interfacial phenomena require finite thickness for their full emergence [2]. The
layer thickness dependences revealed that the interfacial DMI begins to appear with thickness and emerges
completely in the thickness of 2 to 3 atomic layers, at which the magnitude is maximized. This implies that the
DMI is suppressed, when the “bulk” layer adjacent to interfaces is thinner than the threshold thickness. The
existence of the threshold thickness indicates the need to refine conventional perspectives on interfacial
phenomena and imposes the lowest structural bound and optimum thickness to maximize interfacial effects for

technological applications.
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Spin Hall conductivity of Tungsten alloys

Sonny H. Rhim"", Quynh Anh T. Nguyen', Do Duc Cuong’, and Soon Cheol Hong'
'Department of Physics, University of Ulsan, Korea
’Department of Physics and Computer Science, Faculty of Physics and Engineering Physics, University of Science,
Vietnam National University, Ho Chi Minh City, Vietnam

In this talk, spin Hall conductivities of three Tungsten alloys, W-V alloy, W-Nitrides, and W-Silicide, are
presented with comparison of their values and underlying Berry curvatures. First-principles calculations are
performed using VASP package along with Wannierization, where Kubo formula is used to evaluate Berry
curvature and spin Hall conductivities. In all cases, anti-crossing regions guaranteed by symmetry, crossing due
to symmorphic and nonsymmorphic little group, are responsible for large Berry curvature: each stemming from
bee structure and rock-salt structure. Regarding W-Si, we show preliminary result of 6.25 % Si concentration
comparing other higher concentrations with less stability. Further, unexplored task in spin Hall conductivity using

DFT calculations is revealed.

- 155 -



Ferromagnet-induced spin-orbit torques

Kyung-Jin Lee’
Department of Physics, KAIST, Korea

Spin-orbit torque (SOT), which is considered as a write scheme for next-generation MRAMSs, arises from the
charge-to-spin conversion via spin-orbit coupling (SOC). For commercialization of SOT-MRAM, it is of critical
importance to enhance the charge-to-spin conversion efficiency, which requires a detailed understanding of various
SOC effects. In addition to the widely studied spin Hall effect of non-magnet (NM), recent studies found that
SOC of ferromagnet (FM) also contributes to the SOT [1], including (i) interface torque [2-4], (ii) anomalous
torque [5-7], and (iii) orbital torque [8-10]. In this talk, we will discuss about FM-induced SOTs, which provide
additional knobs to enhance the net SOT efficiency.
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High-performance Ce-substituted Nd-Fe-B hot-deformed
magnets produced by dual alloy method

Ga-Yeong Kim'?', Tae-Hoon Kim', Hee-Ryoung Cha', Yang-Do Kim? and Jung-Goo Lee""
'Department of Magnetic Materials, Korea Institute of Materials Science, Changwon, Korea
*Department of Materials Science and Engineering, Pusan National University, Busan, Korea

Nd-Fe-B magnets have been used for the traction motor of hybrid or electric vehicles due to its excellent
magnetic properties. With increasing demand on Nd-Fe-B magnets, the shortage of Nd resource is becoming more
serious. Ce and La is the most abundant rare earth elements and constitute more than 70% of the total rare earth
element, and the price of Ce is about 10 times lower than Nd. Hence, from both industrial and academic
viewpoints, it is a technologically important to develop high-performance Ce or La substituted Nd-Fe-B magnets.
However, the magnetic properties of Nd-Fe-B magnets could be drastically deteriorated after replacing Nd with
Ce and La due to inferior intrinsic magnetic properties of Ce,Fe;sB (4nM; = 11.7 kG, H, = 26 kOe) and La,Fe 4B
(4nM; = 13.8 kG, H, = 20 kOe) compared to Nd,Fe;uB (4nM; = 16 kG, H, = 73 kOe). Despite of the inferior
intrinsic magnetic properties of Ce,Fe;sB and La,FesB to Ndy,Fe 4B, it is reported that deterioration of magnetic
properties due to Ce and La substitution could be largely suppressed by constructing a multi-main-phase (MMP)
structure in Nd-Fe-B sintered magnets. RE elements are inhomogeneously distributed within a 2:14:1 grains when
sintering a mixture of Ce, La-free and Ce, La-containing RE,Fe;sB powders. Compared to single-main-phase
(SMP) magnets, where Ce and La is homogeneously substituted Nd in the 2:14:1 phase, MMP magnets show
much better magnetic performance. In this study, effect of dual-phase of Nd-Ce-Fe-B hot-deformed magnets using
melt-spun powder was investigated. Initial ribbons with the nominal compositions of Nd;3 ¢FepaBssGagsCose and
(Ndo.6Ceo.a)13.6FeraBs.cGag sCos s Were prepared by a single-roller melt-spinning technique and then pulverized into
powders. By tuning the mass ratios of the Ce-free and Ce-containing powder, Ce-containing magnets with 0-30
wt.% (named as ND, CE0.2 and CEO0.3, respectively) Ce content were prepared by dual alloy method. The
melt-spun powders were then hot-pressed and subsequently die-upsetted. In our previous study, the remanence and
coercivity gradually decreased with increasing Ce content. This dependence of magnetic properties on Ce content
could be ascribed to the magnetic dilution effect that Ce substitution for Nd in the 2:14:1 phase decreased the
intrinsic magnetic properties. However, dual-phase hot-deformed magnets shows higher magnetic properties than
single-phase hot-deformed magnets at the same composition. From SEM observation, it was confirmed that the
Ce-free and Ce-containing area is quite different, the crystallographic alignment of Ce-containing area is inferior
to that of Ce-free areca. After annealing at 973 K, the composition of the flake interface changes due to
interdiffusion during the annealing process. In sintered magnet, it has been reported that the peculiar chemical
heterogeneity of dual-phase magnet is that the short-range exchange coupling and long-range magnetostatic
interaction can induce higher remanence and coercivity simultaneously than those of single-phase magnets with
the same composition. In this study as well, it is thought that the coercivity and remanence were improved due
to the interdiffusion of elements between the flake interface by annealing. Compared to the Nd-Fe-B magnet (4n
M; =13.1kG, H,=17.3kOe), with CE0.3, H, decreases drastically to 15.6 kOe, accompanied with significant falls
in 4nM; to 11.5kG. In contrast, for the dual-phase magnet with CE0.3, H, reaches 16.74 kOe and 4nM; is 12.1
kG, which are 7.3% and 9.2% higher than those of single-phase magnet, respectively. Based upon these results,

effect of interdiffusion conditions of magnetic properties of Nd-Ce-Fe-B hot-deformed magnets will be discussed.
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Synthesis and Characterization of SmFe;,-based
compounds prepared by reaction-diffusion reaction

Kang-Hyuk Lee", Jun-sun Hwang', Min Kyung Seng?, and Sang-Im Yoo™"
'Department of Material Science and Engineering, Research Institute of Advanced Materials (RIAM),
Seoul National University, Seoul, Korea
*Department of Physics, Sookmyung Women’s University, Seoul 04310, Republic of Korea

The ThMni,-type structure has attracted attention as permanent magnetic material due to the high anisotropy
field, saturation magnetization (M), and Curie temperature (T¢). The Sm(FeosCoo2)i1Ti (SFCT) materials have
been intensively studied to synthesize high permanent magnets by controlling the doping element. In this study,
we tried to investigate SFCT materials prepared by reaction-diffusion reaction. we prepared the Smy(FeosCoo2)iiTi
(x= 1~4) precursor was prepared by a common co-precipitation method. The samarium nitrate hexahydrate, cobalt
nitrate hexahydrate, titanium tetrachloride, and iron nitrate hexahydrate were dissolved in deionized water at 70
C to form a homogeneous solution. The 3M KOH solution was slowly dropwise in the solution. Then the pH
of the solution was adjusted slowly to pH 12 by adding dropwise ammonium hydroxide solution. The precipitates
were collected by filtration. The precursors were heat-treated at 600°C for 4h in H, gas. The hydrogen-reduced
powders were mixed with calcium granules and pelletized. The pelletized samples were heated at 950 - 1050 C
for 1 h in Ar gas. Samples were characterized by using an x-ray diffractometer (XRD) with Cu-Ko radiation
source, a vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM). The samples were
obtained ThMn,-type phase at 1050 C for 1 h in Ar gas. The M, and H. values of Sm(FesCoo2)1;1Ti samples

were 95 emu/g and 1935 Oe. Detailed microstructures and magnetic properties will be presented for discussion.
SmFel2-based compounds, ThMnl12-type, hard magnetic material

Acknowledgments: This research was supported by Future Materials Discovery Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2016M3D1A1027835).
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Magnetic performance of hybrid Nd-Fe-B/Ce-Fe-B
hot-deformed magnets

Ye Ryeong Jang", Wonjin Kim', Seung Yong Lee?, Hyun-Sook Lee', and Wooyoung Lee'"
'Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea

With a rapid increase in demand for Nd-Fe-B magnets, Ce-based magnets have received a lot of attention
in recent years for their potential use of permanent magnets. This is because Ce has much more natural reserves
and a relatively lower selling price compared to Nd and Pr. However, Ce substitution for Nd in the 2:14:1 phase
weaken the magnetic properties due to the low intrinsic magnetic properties of Ce,Fe 4B (saturation magnetization
11.7 kG, magnetocrystalline anisotropy field 30 kOe). Therefore, the fabrication of high performance Nd-Fe-B
magnet, in which Nd is partially or completely replaced by Ce, is still challenging issues. In this study, we
investigated the magnetic performance of hybrid Nd-Fe-B/Ce-Fe-B hot deformed magnet. We designed a dual
main phase (DMP) hot deformed magnets by mixing Ce-free and Ce-containing Nd-Fe-B powders. The melt-spun
ribbons of Ce-Fe-B and Nd-Fe-B were mixed in various ratios and prepared into powders. The magnetic
performance of the magnets was investigated by changing the contents of Ce-Fe-B and Nd-Fe-B in the range
of 50-100 wt% and 50-0 wt%, respectively. For best magnetic performance, the hot deform temperature was
adjusted in the range of 700-850 C. We analyzed the microstructure of the DMP magnets compared to SMP
(single main phase) magnets. Finally, we evaluated the possibility of the hybrid Nd-Fe-B/Ce-Fe-B hot deformed

magnet as a potential candidate for low-cost medium performance ((BH)max = 20 MGOe) permanent magnet.
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Fabrication and magnetic properties of Iron-rich
intermetallic compounds with ThMn,, structure

Hui-Dong Qian"%, Jung Tae Lim', Yang Yang"?, Jong-Woo Kim', Tian Hong Zhou',
Su Yeon Ahn', Hankuk-Jeon', Kyung Mox Cho?, Jihoon Park", Chul-Jin Choi'"
"Powder Materials Division, Korea Institute of Materials Science,

Changwon, Gyeongsangnam-do 51508, Republic of Korea
*School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea

Rare-earth intermetallic compounds of R(Fe,M);, (R = rare earth elements, M = transition metals) with
ThMnj;, structure have been known to be promising permanent magnetic materials since the 1980s [1]. Recently,
increasing rare earth price has pushed the industry to seek ways to reduce the R-content in the hard magnetic
materials. In case, strong magnets with the ThMn;, type of structure received much attention [2]. However, during
the several tens of years, the research about ThMn;, magnetic materials was not made a breakthrough. As a
turning point of the ThMnj,-type Fe-rich compounds research, ThMn,,-type Sm(Fe;..Co,);> compound films with
a saturation magnetization of 1.78 T, an anisotropy field of 12 T, and a Curie temperature of 586 °C, all of which
are superior to those for Nd,Fe;4sB [3], were successfully produced. However, it still has difficulty in stabilizing
the unstable ThMn;, phase in magnetic powders and bulks. In previous research, the ThMn;, structure is also
unstable and partial Fe atoms must be substituted with phase stabilizing element(s), such as Ti, V, Cr, Mn, Mo,
W, Al, and Si, which results in magnetization reduction. So, decreasing magnetization or coercivity with the
non-magnetic elements substitution is a new challenge for the ThMn,-type Sm(Fe;..Co,)12 compound research.
Therefore, we have developed a new fabrication method to produce a high-density Sm(FeysCog2)1i1Ti bulk with
high purity and magnetic properties and investigated Si substitution or doping effects on this work's magnetic and
physical properties.

The purity of the hard magnetic ThMn,;, phase in the bulk magnet reached higher than 97 wt.%. The remanent
magnetization and maximum energy product of the prepared Sm(FeysCoo2)11Ti bulk reached high values of 96.0

emu/g and 12.22 MGQOe, respectively. The phase transformation behavior from amorphous to ThMn,, phase during
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Fig. 1 (a) Magnetic properties and grain sizes of Sm(FeosCoo2)11Ti bulk magnets with different annealing
times and (b) magnetic properties of Sm(FepsCop2)105i; with different wheel speeds and
Sm(FeqsCoo2)1i Ti+Si, (x = 0, 0.5, and 1) ribbons with wheel speed of 39 m/s.
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heat treatment was systematically investigated by transmission electron microscopy. The magnetic properties and
grain sizes of Sm(Feq3Coo2)1;Ti bulk magnets with different annealing times were shown in Fig. 1 (a). To
investigate the effect of substituted elements in the ThMnj,-type Fe-rich compounds and compare with the Ti
substitution, Si was selected to dop into the ThMnj-type Fe-rich compounds. Sm(FeysCo¢2)1051z and
Sm(Fep5Coo2)1 Ti+Si, (x = 0, 0.5, and 1) ribbons were produced using a melt spinning method. The magnetic
properties of the Sm(FepsCog2)105i; ribbons with different melt spinning speeds and the Sm(FesCog2)1iTi+Si,
ribbons with melt spinning speed of 39 m/s are shown in Fig. 1 (b). The maximum coercivity of the
Sm(FeC002)10Si; and Sm(Fe3Coo2)11 TitSi, ribbons reached 1745 and 3140 Oe, respectively. The details of the

fabrication procedure, microstructure, and magnetic properties of as mentioned compounds will be discussed.
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Microstructure and Magnetic Properties of
Sn added MnBi Bulk Magnets

Yang Yang'#, Jung Tae Lim’, Jihoon Park’, Hui-Dong Qian'?, Oi Lun L,
Jong-Woo Kim', Chul-Jin Choi'"
'Korea Institute of Materials Science, Changwon 51508, Republic of Korea
?School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea

Rare-earth free permanent magnets are current emerging issues of industry for the growing market demands.
Among the rare-earth free permanent magnets, MnBi has attracted attention for large magnetocrystalline
anisotropy constant (K; =~ 1.6 MJ/m’, at 300 K) [1] and unique positive temperature coefficient of coercivity (H.)
[2]. The low-temperature phase (LTP) of MnBi exhibits a saturation magnetization (M) of 80 emu/g, and the
theoretical maximum energy product (BH)max 17.7 MGOe at room temperature [3]. However, it is a challenge
to fabricate MnBi bulk magnets while maintaining the superior magnetic properties of the powder, especially to
prevent the reduction of H. from powder to bulk. The effects of Sn adding on the microstructure and magnetic
properties of MnBi bulk magnets have been systematically investigated. As kwon, the pure MnBi bulk magnets
are challenging to reach high H. in previous studies, and a few reference works have been reported about research
on fabrication of high H. MnBi bulks by adding the third element. It was found that the Sn-added MnBi bulk
magnets show the increased H. and the improved squareness, apparently related to restructuring the intergranular
phase due to Sn element addition. The H. of MnBi bulk magnet with 3 wt.% Sn reaches 11.6 kOe, which is
35 % higher than that of the pure MnBi magnet. In the sample of 1 wt.% Sn added MnBi bulk magnet, the
H. was elevated to 10.0 kOe, and the maximum energy product (BH)m. Was recorded of 7.84 MGOe at room
temperature. This makes Sn added MnBi bulk magnet a promising candidate for next-generation rare-earth-free

bulk magnets.
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42 <10 08 06 04 02 00
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Fig. 1. Room temperature demagnetization curves of the MnBi bulk magnets added
with Sn contents of (0, 1, 3, and 5 wt.%).
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Giant Magnetic Anisotropy in Metastable FePt Alloy

T. Ochirkhuyag'’, S. C. Hong?, D. Tuvshin, E. Uranbaigal, and D. Odkhuu"
'Department of Physics, Incheon National University, Incheon 22012, South Korea
’Department of Physics, University of Ulsan, Ulsan, South Korea

As information storage and high-speed permanent magnet motor technologies have evolved, high-performance
permanent magnetic materials with large saturation magnetization and magnetic anisotropy (MA) become
indispensable. In this presentation, we report results of first-principles calculations on structural and intrinsic
magnetic properties of L.10-ordered FePt alloy along the so-called Bain path. Our total energy calculations reveal
that the body centered tetragonal (bct) structure of FePt with c¢/a=0.85 is identified as a metastable phase, which
can be epitaxially grown on an appropriate substrate. More remarkably, both saturation magnetization and uniaxial
MA of this bct metastable phase are significantly larger compared with those of the ground state L10-FePt and
other known magnetic materials. Single-particle energy spectrum analyses indicate that while the Pt 5d orbital
states determine the MA-driven permanent magnetic properties in L10-FePt alloy, the large enhancement of MA
in the metastable structure mainly originates from the Fe 3d orbital states. We will also discuss our more recent
findings on possibilities of further improving the performance of the metastable permanent magnet FePt with a

series of 3d and 4d transition metal dopant elements.
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Effect of Cu addition on the magnetic and
microstructural properties of multi-main phase
Nd-Ce-Fe-B sintered magnet
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'Powder Materials Division, Korea Institute of Materials Science, Changwon, Korea
2R&D center, Star Group, Daegu, Korea

As the demand for Nd-Fe-B magnets increases, replacing Nd in the magnets with abundant and inexpensive
Ce has become an important technology to develop cost-effective Nd-Fe-B magnets [1]. Developing a multi-main
phase (MMP) microstructure by the mixture of Ce-free and Ce-containing powders is an efficient way to improve
the coercivity (H.) and to minimize the remanence reduction of Nd-Ce-Fe-B sintered magnets [1]. Nevertheless,
the insufficient H. of the MMP Nd-Ce-Fe-B sintered magnet, owing to the low intrinsic magnetic properties of
the CeFesB phase, is still a major obstacle to be overcome. The practical H, of Nd-Ce-Fe-B sintered magnet
can be improved when the 2:14:1 grains are magnetically isolated by continuous and uniform non-magnetic grain
boundary phase (GBP) [2]. A small amount of Cu addition promotes the effects of post-sintering annealing (PSA)
on microstructural improvements in the magnetic properties of Nd-Fe-B sintered magnet because of the reduced
melting point of the Nd-rich GBP [3]. However, in the case of MMP Nd-Ce-Fe-B sintered magnet, the role of
Cu in the rare-earth (RE)-rich triple-junction phase (TJP) and GBP has not yet been clearly clarified. In addition,
since the melting temperature of the RE-rich phase is sensitive to the Cu content, the effect of the Cu content
on the optimal PSA conditions should be considered. Therefore, we investigated the effects of various amounts
of Cu addition on the microstructural and magnetic property changes of MMP Nd-Ce-Fe-B sintered magnet and
clarified the optimum PSA temperature for the Cu-doped MMP sintered magnet. Ce-free and Ce-containing
magnetic powders with nominal compositions of (Pr,Nd)s; oFepaMi90B1o and [(Pr,Nd);9Cei2]31.0FepaM1.90B1.o
M(wt.%, M=Al, Ga, Nb, Cu, and Co) were prepared using the powder metallurgical method. Ce-free and
Ce-containing powders, with a mean particle size of less than 3.0 um, were mixed (ratio of 20:80) and these
powders were mixed with Cu powder (0.05 and 0.15 wt.%). The Cu contents of the magnets were 0.15, 0.2,
0.3 wt.%. The green compacts were sintered at 1060°C for 2h. The 1% PSA temperatures were varied from 850
to 600°C to optimize the PSA temperature, then annealed again at 480°C for 2h (2" PSA). The microstructure,
phase identify and magnetic properties of samples were investigated by using EPMA, HRTEM, DSC, and
BH-tracer. In this presentation, the role of Cu in MMP Nd-Ce-Fe-B sintered magnets and the change in the triple
junction and grain boundary structures and phases will be discussed, and the optimum PSA temperature according

to the change in Cu content will be proposed.
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Fabrication of fine-grained Nd-Fe-B hot-pressed magnet
using anisotropic HDDR powders aligned by a pulsed
magnetic field
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'Department of Magnetic Materials, Korea Institute of Materials Science, Changwon, Korea
*Department of Materials Science and Engineering, Pusan National University, Busan, Korea

The hot-deformation process is the most promising industrial process to fabricate fine-grained anisotropic
Nd-Fe-B bulk magnets using melt-spun or HDDR powders. However, the problem of the hot-deformed magnets
produced from the isotropic melt-spun powders is that an abnormal grain growth occurs during the
hot-deformation process or the grain boundary diffusion process due to the fine nature of grains in the initial
melt-spun powders. To use the isotropic HDDR powders with a relatively larger grain size as an initial powder
is an effective way to fabricate the anisotropic hot-deformed magnets while suppressing the abnormal grain
growth. However, the hot-deformed magnet produced from isotropic HDDR powders is difficult to obtain high
remanence, B,. Because the [001] texture is not well developed during the hot-deformation due to the higher
deformation resistance of the HDDR powders.

Therefore, magnetically aligning the anisotropic HDDR powders before the densification can be a great
solution for achieving higher Br in the magnets. In addition, if the HDDR powders can be magnetically well
aligned before the densification, the fine-grained anisotropic bulk magnet could be obtained by the hot-press alone
without undergoing subsequent die-upsetting process. Thus, in this study, we fabricated the anisotropic Nd-Fe-B
hot-pressed using the anisotropic HDDR powders aligned by a pulsed magnetic field, and observed the influences
of the magnetic and microstructural properties of initial HDDR powders on the magnetic alignment and hot-press

behaviours.

14 T
Hot-pressed magnet using low-Br HDDR powder
12 Hot-pressed magnet using high-Br HDDR powder
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Figure 1. Demagnetization curves of hot-deformed magnets using low-and high-Br HDDR powders.
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Especially, higher Br is obtained after the hot-press of the anisotropic HDDR powders when the remanence
of the HDDR powders are controlled to be lower. This implies that higher-remanence HDDR powders generate
stronger local magnetic field during the magnetic alignment, thereby disrupt the alignment of adjacent particles
as observed by R. Soda et al [1]. A detailed influences of the magnetic and microstructural properties of initial
HDDR powders on the magnetic alignment and hot-press behaviours will be discussed, and a method to further
increase the remanence of the hot-pressed magnets when align the anisotropic HDDR powder by pulsed magnetic

field will be proposed based on the results.

Reference
[1] R. Soda et al, Scr. Mater., 41-44, 120 (2016).
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Fabrication of high-M; amorphous/nanocrystalline soft
magnetic materials for high-frequency and
high-efficiency electromagnetic applications

Jae Won Jeong"’, Yeong Gyun Nam"2, Hyun Aha Im'?, Su-Bong An'?,
Hea-Ran Kim'*, Min-Sun Jang', and Sangsun Yang'

'Metal Powder Department, Korea Institute of Materials Science (KIMS),
797 Changwondae-ro, Seongsan-gu, Changwon 51508, Korea
*School of Materials Science and Engineering, Pusan National University, Busandaehak-ro 63beon-gil,
Geumjeong-gu, Busan 46241, Korea
Department of Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea

Soft magnetic materials are widely used in diverse fields of applications including electronics, motor/
generators, electromagnetic wave shielding/absorbing. As the working frequency of electronic devices is
continuously increasing and high-efficiency operation is required, the development of reliable and low-loss soft
magnetic materials has become an import work.

Fe-based soft magnetic amorphous/nanocrystalline materials are considered ideal materials for magnetic
powder cores due to their excellent magnetic properties such as low coercivity, high resistance, and good DC
bias characteristics. Due to the disordered configuration of atoms in amorphous alloys, these materials have zero
magnetocrystalline anisotropy, which ensures high permeability and low coercivity. In addition, due to their high
resistivity, Fe-based amorphous alloys exhibit extremely-low eddy current loss at high frequencies, making them
suitable as high frequency soft magnetic composite (SMC) materials.

The most significant limitation of SMCs comprising low-M; amorphous/nanocrystalline materials is poor DC
bias. Enhancing the M; of amorphous/nanocrystalline materials by carefully managing alloy composition is the
best way to enhance permeability retention even with high bias field; however, increasing Fe content in the alloy
significantly deteriorates the glass-forming ability of the alloy, and processing through gas or water atomization
becomes extremely difficult due to the limited cooling rate (10°~10° K/s) of the process

In this presentation, the fabrication and processing of novel amorphous/nanocrystalline soft magnetic materials
for high-frequency and high-efficiency electromagnetic applications will be discussed. Ultra-fine soft magnetic
micro powders having amorphous phase were prepared by high-pressure gas/liquid co-injection atomization and
their soft magnetic properties were examined. High-M; nanocrystalline soft magnetic ribbons were also fabricated
through the rapid-cooling planar flow casting process. The examination of their soft magnetic properties and

demonstrations of commercial applications will also be presented.
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Changes in magnetic properties and microstructure
according fo composition and annealing conditions of
Fe-based nanocrystalline alloys

Kwiyoung Lee” and Jongryoul Kim
Department of Materials and Chemical Engineering, Hanyang University, Ansan 15588, South Korea
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Fig. 1. TEM images and SAED patterns of one-step and two-step annealed Fegs3B;37Cu,C, ribbons.
(a) Txt30 °C for 1 s. (b) Tx+30 °C for 300s. (c¢) Ty for 150s after Ty, +30 °C for Is.

Fig. 2. TEM image and SAED pattern of the annealed Fe-B-C-Cu-Nb alloy ribbons at Ty +10C(left side)
and Tx1+40°C (I’lght side). (a) : F680B12‘5C1Cule5,5, (b) . FCgoB12,5C4Cu1Nb2‘5, (C) : F631B12_5C1Nb5‘5
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Soft magnetic properties and nanocrystallization
behavior of cast-iron based bulk amorphous alloy

Ji Yong Hwang and Hyo Yun Jung’
Korea Institute of Industrial Technology

With great potential for extensive industrial application, iron-based bulk amorphous alloy developed with
industrial raw materials have attracted increasing attention. Among them, multi-component cast-iron (CI) based
bulk amorphous alloy have emerged as one of the promising amorphous materials characterized by their low cost,
good mechanical strength and excellent magnetic softness. In addition, it has been revealed that nanocrystalline
phases precipitated in amorphous matrix can enhance tensile strength as well as soft magnetic properties of
Cl-based bulk amorphous alloy. Thus, more recently, the development of nanocrystallized Cl-based bulk
amorphous alloy has also drawn significant attention. In the present study, we aimed to investigate the effect of
minor elements addition on soft magnetic properties and nanocrystallization behavior of cast-iron based bulk
amorphous alloy. The alloy with basic compositions of Fe76.5C6.0Si3.3B5.5P8.7 was synthesized by melt
spinning and Cu mold casting. As indicated by increased critical diameters (dmax) for the amorphization, the
minor alloying of Cu and Al enhanced the glass-forming ability of the alloy. However, it was revealed that the
decreased thermal stability of the amorphous phase is strongly related to the enhanced crystallization tendency
to form primary a-Fe phase. Upon the nanocrystallization of primary a-Fe phase the alloy shows enlarged Ms
of 176 emu/g, still keeping a reasonable small Hc value of 0.086 Oe. However, due to the increased tendency
to form secondary Fe3C and Fe2P phase, the bulk metallic glass with combined Cu and Nb addition had a
reduced processing window for nanocrystallization. It was revealed that the classical nanocrystallization strategy
introducing combined Cu and Nb addition is not a suitable alternative to facilitate nanocrystallization of the

cast-iron based bulk metallic glasses.
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Fig. 1. M-H hysteresis loops of Fe76.0-xC6.0Si3.3B5.5P8.7Cu0.5Nbx (x=0, 2.0)

ribbon upon different annealing time.
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Development of hexaferrite-based electromagnetic
wave absorbers

Young-Min Kang, Jin-Young You, Su-Mi Lee, Jun-Pyo Lim, Min-Gu Kang

Department of Materials Science and Engineering, Korea National University of Transportation,
Chungju, 27469, Republic of Korea
"Corresponding author email: ymkang@ut.ac.kr

Recently, needs of electromagnetic interference (EMI) suppression by the EM wave shielding or absorbing are
increasing because a large increase in electronic devices that are working in an environment of electromagnetic
(EM) radiation raises the EMI issues among the electric devices and circuits. One of the promising candidates
for EM wave absorbers working at several tens gigahertz (GHz) range is the hexaferrite materials. The
hexaferrites are magneto-dielectric materials and have high ferromagnetic resonance (FMR) frequencies in the
range of a few to several tens gigahertz owing to their high magnetocrystalline anisotropies. EM wave absorption
of insulating hexaferrites is mostly dependent on the magnetic loss mechanism, which is closely related to the
imaginary part of the permeability (u'"). The p" of hexaferrites increases at the FMR frequency, which is
proportional to magnitude of magnetic anisotropy field (H,,). Herein, we report the EM wave absorption
characteristics of various types of hexaferrite-based composites. The methods of tuning and broadening of EM
absorption frequency range by compositional and structural controls, the correlation between the substitutional

composition, structure, magnetic properties, and EM absorption properties will be presented and discussed.
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Machine Learning Directed Prediction of
Saturation Magnetization

Chunghee Nam’
Department of Electrical and Electronic Engineering, Hannam University, Daejeon 34430, Korea

Research to predict the various physical properties of inorganic materials using material data has been actively
conducted in recent years. Among them, magnetic properties are important features for functional material
applications and have been predicted, such as the Curie temperature, coercivity and magnetocaloric properties. In
this study, saturation magnetization value was predicted using the DFT quantum calculation-based material data
(open source) via machine learning. Ensemble algorithms have been used to compare the performance of models
with two metrics of R? (coefficient of determination) and RMSE (root-mean-squared error), as shown in Fig. 1.

Detailed results will be presented.

dataset

% Training Trained
data model Evaluate model

Feature generation i .
Figure of merit :

Learning
Feature test data [ RMSE, R2 score]

correlation algorithm
SVR/RF/XGboost

Feature engineering

Fig. 1. Machine learning Architecture
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Current Status and Research Trend of Soft Magnetic Core

JinBae Kim’
H&A Research Center, LG Electronics, Seoul, Korea

High performance non-oriented electrical steels have become the subject of considerable attention because of
the potential applications in electrical appliances and devices, such as transformers and motor cores, because of
its excellent soft magnetic properties and low cost. Significant reductions of the magnetic core losses in electrical
steel have been sought in order to improve efficiency in electrical appliances. It is well known that the magnetic
properties of electrical steel are strongly dependent on the strip thickness, silicon concentration, grain size, and
crystallographic texture. Among these factors, the increase in crystalline alignment is one of the most effective
ways to reduce magnetic core loss. This article describes the research trend in high performance non-oriented

electrical steels.
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Manufacturing strategy for a powder-based Fe-6.5%Si
steel with high density

Ki Hyuk Kwon", Do Hee Kim', Eon Sik Lee?, Tae-Wook Na®, Yong Seok Choi*

'Materials Research Division, RIST, Pohang, Korea
*Department of Material Science and Engineering, POSTECH, Pohang, Korea
*Functional Materials and Components R&D Group, KITECH, Gangneung, Korea
“Material Division R&D part, ZENIX Co., Ltd., Gumi, Korea

In order to manufacture the high performance of high speed and high horsepower electric vehicles, it is
essential to use the traction motors that operate efficiently in higher frequency. However, since the core loss of
soft magnetic materials increase in the high frequency band, it is required to develop the soft magnetic material
capable of exhibiting low core loss with high magnetic flux density even in high frequency. Among the several
soft magnetic materials, Fe-6.5%Si steel is a promising candidate because it can simultaneously show high
magnetic flux density, low core loss and low magnetostriction in high frequency compared to the existing
Fe-3.5%Si steel and amorphous materials. However, in order to realize the mass production of this material, it
is needed to develop the new manufacturing process with lower cost compared to the commercial CVD process
even using SiCly toxic gas.

Among the various candidate of manufacturing processes, the powder rolling process is promising with the
advantage of low cost and being able to manufacture alloys containing high Si and Al, which are traditionally
difficult to cast. In order to commercialize this process, manufacturing the steel sheets with high density and
design of manufacturing process are important. In this study, the technical ideas for the densification of steel sheet
were verified such as a modification of powder size distribution and addition of metal powders with low melting
point resulting in a liquid phase sintering. For improving a cold rolling properties, the degree of silicon diffusion

was optimized to avoid a brittle phase of B2/DO:s.
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Soft Magnetic Composites:
Basics and Methods to Minimize Core Loss

Min-Sun Jang"’, Bonuk Koo'?, Jong-Min Park'?, Hea-Ran Kim'?,
Young-Tae Kwon', Sangsun Yang' and Jae Won Jeong'
'Metal Powder Department, Korea Institute of Materials Science (KIMS),
797 Changwondae-ro, Seongsan-gu, Changwon 51508, Korea
*School of Materials Science and Engineering, Pusan National University, Busandaehak-ro 63beon-gil,
Geumjeong-gu, Busan 46241, Korea
*Department of Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea

Soft magnetic composite (SMC) which can produce an innovative 3-dimensional core has been much attraction
as the potential in various electrical machinery fields because of their superior soft magnetic properties such as
a high magnetic permeability and a low core loss at a high frequency range [1]. In general, SMC is composed
of Fe-based ferromagnetic particles, and the surface of the iron particles is covered with an inorganic or organic
insulation layer. It is possible to improve the surface resistance and thus form an insulated space between them,
which can remarkably reduce the eddy-current losses [2]. SMC is generally used as a part of a machine, but
in the case of some electric machines, the need for developing high-strength SMC parts is being raised against
the material is damaged by fatigue due to exposure to continuous vibration or external shock. There is a method
to develop high-strength SMC by the densification of the surface insulating materials through annealing at high
temperature (600 °C~1000 °C). However, in general, there is a disadvantage in that insulation is weakened after
annealed at high temperature, so an evaluation is necessary to secure both strength characteristics and insulation
coating layer retention. Herein, SMC with different inorganic coating materials which is well-known to withstand
at high temperature; SiO,, MgO, and PO, and stacking layer; mono or double parameters have been considered
for magnetic characterization. All of the coated iron particles were prepared by a chemical sol-gel method, and
the thickness of the formed coating layer was confirmed to be 500-600 nm on average through a scanning
electron microscope and an energy dispersive X-ray spectrometer. Based on the excellent insulating layer condition
(i.e. mono-layers and double-layers, @SiO,@MgO and @MgO@SiO,), the core loss evaluation were conducted
at high temperature (> 600 °C). Toroidal cores with an outer/inner diameter of 25/15 mm and a thickness of 3
mm were manufactured by cold pressing under a pressure of 500 MPa and then annealed for 1 h at 600 °C,
700 °C, 800 °C, and 900 °C, respectively, in Ar atmosphere to figure out the retention of insulation layer. As
a result, as the annealing temperature increased, the core loss with phosphating layer rapidly increased at 1 kHz
and 1T because it was carbonized and lost above 650 °C. As compared to the phosphating layer, on the other
hand, the SMCs coated with SiO, or MgO or double layers annealed at 800 °C exhibited higher retained flux
density as well as a significantly low increasing rate of core loss as the frequency and external magnetic field
strength increased (at 0.05~1 kHz and 0.3~1 T). This work might be offered a noticeable ideal to design inorganic

insulation layer for SMC applications under the high temperature atmospheres.
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A Study on the Magnetic Properties of Soft Magnetic
Powder using Water Atomized Iron Powder for Eco-Friendly
Automotive Application

Joonchul Yun", Hyungon Lyu’, Jinwoo Kim', Wonseog Koo' and Shingyu Kim?
'Powder Development & Quality Management Team, Hyundai Steel, Korea
*Powder Materials Development Team, Hyundai Motors, Korea

This study has developed technology for manufacturing process of soft magnetic iron powder for eco-friendly
automotive part application. Especially, this study investigated the effect of particle size distribution and impurity
contents on the magnetic properties of iron powder. The iron based soft magnetic powder was prepared by
fluidized bed process using water atomized iron powder, phosphoric acid solution and additional insulation
materials. The measurement of magnetic property revealed that the iron based soft magnetic powder had a
magnetic flux density of 1.5~1.6T and core loss of 140~200W/kg at frequency of 1kHz. It is expected that the
magnetic properties of soft magnetic iron powders can be improved by follow research which is controlling the

insulation coating process based on this study.
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Additive manufacturing of soft magnetic Fe-Si alloys:
a new strategy for 3D components of novel
high-performance motors
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Hak-sung Lee', Won-Ho Kim?, and Jae Won Jeong'

'Powder/Ceramic Research Division, Korea Institute of Materials Science(KIMS),
797 Changwondae-ro, Seongsan-gu, Changwon, 51508, Korea
*School of Materials Science and Engineering, Pusan National University,
Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Korea
*Department of Electrical Engineering, Gachon University,
1342 Seongnamdaero, Sujeonggu, Seongnam, 13120, Korea

Fe-6.5 wt% Si alloys have been reported excellent magnetic properties such as high permeability over than
20000, low core loss, and zero magnetostriction. In particular, Fe-6.5wt%Si alloys are expected to be suitable for
electric motor applications, because they can significantly increase power density and efficiency of the motors
by virtue of their high permeability and low core loss. However, Fe-6.5wt%Si alloys have high brittleness and
poor formability so that they are difficult to manufacture electrical sheets by cold rolled process which is
traditional manufacturing process.

In order to apply the electrical sheets as the motor components, it goes through the process of casting or
powder compaction and cutting and lamination. However, they do not have design freeform of 3-dimensional
structures, it is difficult to fabricate a next-generation electric motor component with a complex and complicated
shape which have optimized magnetic path and considerably increased power density.

Additive manufacturing (AM) have been considered to be suitable for solving the 3D design freeform.
Accordingly, many researchers have reported successful fabrication of Fe-6.5wt%Si alloys through various AM
processes including selective laser melting, direct energy deposition, and binder jetting but the problems of the
insertion of the insulating layer inside the alloy has not been solved.

In this work, we demonstrate additive manufacturing designs for two difference types of soft magnetic stator
cores that one is single-rotor-type and the other is dual-rotor-type based on selective laser melting. First design
is novel shell-shaping of single-rotor-type stator core, it has inner insulation layers based on selective laser
melting. Secondly, design of dual-rotor-type stator core, we devised an inter-racking structure which consists of
some separate parts with coated surface insulation layer.

In particular, we analyzed soft magnetic properties of each shells (or sheets) heat-treated at temperatures of
1000-1200 °C and surface-insulated with silica. Finally, we demonstrated single-rotor-type stator cores for electric

motors which are hard to be realized with conventional electrical steel sheets.
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Effects of Neuromuscular Electrical Stimulation Applied
After 1 Hz Low Frequency Repetitive Transcranial
Magnetic Stimulation on Upper Limb Motor Function and
Electroencephalography in Chronic Stroke Patients

Jung-Woo Jeong’
Department of Occupational Therapy, Bobath Memorial Hospital, Seongnam 13552, Republic of Korea

The purpose of this study was to investigate the effect of neuromuscular electrical stimulation applied after
1 Hz low-frequency repetitive transcranial magnetic stimulation on upper extremity motor function and EEG in
chronic stroke patients. For 16 chronic stroke patients who satisfied the selection criteria, 8 patients in the
neuromuscular electrical stimulation group applied after 1 Hz low-frequency repetitive transcranial magnetic
stimulation and 8 patients in the neuromuscular electrical stimulation group combined with intrinsic muscle
treatment of the hand were classified into 4 weeks. times, the study was conducted for 3 weeks. In the
experimental group, the intervention was performed for a total of 40 minutes, including 15 minutes of 1 Hz
repeated transcranial magnetic stimulation and 25 minutes of neuromuscular electrical stimulation. In the control
group, 15 minutes of intrinsic hand muscle treatment and 25 minutes of neuromuscular electrical stimulation
treatment were performed for a total of 40 minutes. For the evaluation used in this study, electroencephalography,
electromyography, and fugl-meyer assessment were performed, and all groups were evaluated before, after, and
2 weeks after the intervention. As a result, the experimental group showed a significant improvement in
sensorimotor rhythm wave during the electroencephalography, and there was no significant difference in the
control group. In the electromyography among upper extremity motor functions, there was a significant
improvement in the experimental group and no significant difference in the control group. In the fugl-meyer
assessment, there was a significant difference in both the experimental group and the control group. Through the
results of these studies, it was possible to confirm the positive effect of neuromuscular electrical stimulation
applied after 1 Hz low-frequency repetitive transcranial magnetic stimulation on upper extremity motor function

and electroencephalography in chronic stroke patients.
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Fig. 1. Comparison of changes in electroencephalography between the two groups.
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A Computational Algorithm to Classify Active and Resting
Motion during Finger Tapping Task for evaluation of
Rehabilitation Therapy

Na-Yeon Seo", Seung-Min Hwang?, Young-Jin Jung"?'
'School of Healthcare and Biomedical Engineering, Chonnam National University, Korea
*Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu-si, Republic of Korea

With the aging of the population approaching, digital health care technology for the elderly has become
important. The most elderly people who have a stroke or a brain dysfunction will take a brain therapy including
Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to enhance their brain
function. Especially, the preventive rehabilitation therapy for brain function will be requested using digital health
care technology. In order to provide the preventive rehabilitation therapy, quantitative and object tool to estimate
brain function is essential. In this study, the AI based digital health care technique that can easily classify the
human motion was proposed to evaluate a brain function indirectly. To demonstrate, the finger tapping task was
employed. Although the finger tapping test is made by subjective judgment based on human eyes currently, the
proposed technology will be a first step (preprocessing) for objective judgment index using motion information
(range of motion, velocity etc.). To estimate the velocity and angle, a computation algorithm was developed to
classify the Active and Resting period to identify the starting point of the motion during the finger tapping task.
Then, motion feature can be calculated from video data with Al-based motion estimation algorithm. The results
showed that the proposed computational algorithm provide significantly result to how people evaluate. We believe

that the algorithm will be a useful tool in medical field.
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Effect of Gradient physical linearity and Static Magnetic
Field homogeneity on diffusion weighted image :
A phantom study

Ho-Beom Lee"’, Yong-Soo Han?

'Korea2 Asan medical center, 88, Olympic-ro, Songpa-gu, Seoul 05505, Korea
’Department of Radiological Science, Hanlym Polytechnic University, Chuncheon 24210, Korea

Gradient strength affects spatial resolution and imaging scan time, as well as the gradient switching rates
(dB/dt) for simultaneously switching the encoding gradients in all three axes, and these parameters are critical
for MRI. The linearity of the gradient coil describes the deviation from an ideal linear ‘steepness’ of the magnetic
field. A low physical linearity of the gradient coil will result in image distortions and in a smaller maximum
field of view (FOV). In this study, we assessed image quality and geometric accuracy as a function of the gradient
physical linearity used for diffusion-weighted imaging (DWI) on both conventional-bore and wide-bore scanners.
The signal to noise ratio (SNR) was calculated using b = 1000 DWI images for all acquisitions. To evaluate
geometric accuracy, the diameter of a phantom on an image slice was measured in four directions. In comparison
with the enhanced gradient mode, the default and maximum gradient modes showed higher SNRs with both bore
sizes. There were significant differences in SNR among the various gradient modes of the two bore sizes (p <
0.05, ANOVA). The geometric accuracy evaluations showed no statistically significant differences in the measured
lengths among the various gradient modes and both bore sizes (p > 0.05). The wide bore using default and

maximum gradient mode showed higher SNR than the conventional bore, and comparable geometric accuracy.
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Fig. 1. Images used to assess geometric accuracy. The diameter of the phantom image on slice 5 was measured

in four directions on images acquired for each of the gradient modes and both scanner bore sizes.
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Conjugation element analysis and Brownian motion
observation of magnetic nanoparticle structure
conjugated with Corona-19 immune antibody

Jong-Gu Choi', Sang-Heon Choi', Ji-Won Ha', Yebin Bae?, Hyunsook Lee', and Sang-Suk Lee"”
'Department of Digital Healthcare, Sangji University, Wonju 26339, Republic of Korea
’Department of Visual and Media Design, Sangji University, Wonju 26339, Republic of Korea

Magnetic nanoparticles (MNPs, Fe;O4) are getting a lot of attention as substances widely applied in
medical/science fields such as separation of cells, genetic cloning, biosensor, magnetic resonance imaging (MRI),
etc for use biomolecular diagnosis and biological application. In a very serious pandemic situation around the
world, even after vaccination, coronavirus disease 2019 (COVID-19) treatments for cytokine inhibition has
cytokine receptor inhibition and specific immune cell depletion other than steroid hormone. Among them there
is a monoclonal antibody (mAb) treatment among the methods of depletion of specific immune cells. Monoclonal
antibody treatment is a way that inhibits cytokine secretion by inhibiting cluster of differentiation 3 (CD3) that
is one of the important signaling molecules for activation of T cell receptors. An optimal Fc-directed conjugate
of humanized anti-CD3 monoclonal antibody (Foralumab) and amine group-MNPs was prepared by the SiteClick
antibody labeling kit. The SiteClick antibody labeling kit, which includes antibody control, buffer exchange,
antibody carbohydrate domain modification, azide attachment, and azide-modified antibody purification and
concentration procedures, was used. The mAb-MNP conjugate was confirmed by observing transmission electron
microscopy (TEM) and energy dispersive spectrum (EDS) mapping images included of S elemental spectra and
images. The average values of drift movement speed due to Brownian motion of MNPs and mAb-MNPs in
phosphate-buffered saline (PBS) were measured as +3.16 pix/frame, 0.76 pix/frame, and +6.70 pix/frame and
+1.98 pix/frame on the x-axis and y-axis, respectively. In the case of MNPs and mAb-MNPs having an actual
size of 35 nm, from the graphs of the particle size, concentration distribution, and intensity distribution analyzed
by nanoparticle tracking analyzer (NAT). For mAb-MNPs, the size of the hydrodynamic diameter was found to
be 180.0 nm and 218.8 nm on average, respectively. For mAb-MNPs, the reason why the drift velocity was
in-creased by 2 times due to Brownian motion was proved to be increased by 2 times in proportion to the square
of the radius of the particle according to Stokes' law. This means that the anti-CD3 antibody (Foralumab) having
a biocompatible ligand functional group conjugated to the surface of the MNP has better fluidity in PBS.

(a) Foralumab 3D structure (b) Foralumab 2D structure (c)
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Fig. 1. (a) Hypothetical 3D structure and (b) schematic diagram of 2D structure of Fc-directed Foralumab
as anti-human CD3 epsilon therapeutic antibody with a magnitude of a few nm. (c) The schematic diagram

of conjugation between monoclonal antibody-azide-DIBO and amine-magnetic nanoparticles.
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Fig. 2. (a) Structure of one aminated silica shelled magnetite (F;O4), (b), (c), and (d) TEM photos of amine-SiO>-Fe;04
of nanocomposix Cat. No. SCM0067 with surface area of Dia.: ~ 33 £ 5 nm and particle surface: aminated.

3000

2400

1800

Counts

1200

600

y 4 5
o0 o ramen | S0 ek ¢ oD % Energy (keV)

Fig. 3. TEM images and atomic intensities of elements and EDS spectrum of mAb-MNPs (anti-CD3
Foralumab mAb-azide-DIBO-MNPs of aminated silica shelled magnetite).
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Fig. 4. Single shots of flow images and analysis results of Brownian motion obtained by NTA device in 5 different
groups of MNPs and mAb-MNPs samples immersed in a liquid with PBSx1 magnetic particles of 1 pg/mL.
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New CT Scanner with Photon-Counting Detector

Chang-Lae Lee’
PCD R&D Group, Health and Medical Equipment Business Unit,
Samsung Electronics, Suwon-si, Gyeonggido, Korea

Dual-energy computed tomography (DECT) has provided new opportunities for X-ray CT. The major
advantage of DECT is that it shows different attenuations of two materials using two different energy spectra,
thereby allowing the separation of two materials that can hardly be distinguished by single energy CT. DECT
reduces the use of contrast media as it improves the contrast among different tissues. Several applications of
DECT have been reported since its introduction. For example, virtual monochromatic images (VMIs), synthesized
from DECT data, are utilized to locate abdominal tumors (such as liver and kidney tumors), intracerebral
hemorrhage, pulmonary embolism, and vascular calcification. Moreover, VMI enables the detection and
characterization of chemical compositions of materials that help in assessing specific disease processes. However,
the DECT approach suffers from certain limitations related to its mechanism of image acquisition. For instance,
difference in the acquisition time of high- and low-energy datasets and acquiring images with substantial spectral
overlap are major challenges. Recently, photon-counting detector (PCD) CT scanners, which use an X-ray detector
with improved energy-resolving power, have emerged as a diagnostic technique. Energy-integrating-detectors
(EID) integrates all photon energies while PCD can discriminate by counting the number of photons according
to the energy of a defined threshold (Figure 1). PCD CT provides significant benefits such as reduced electronic
noise, increased contrast-to-noise ratio, decreased metal artifacts, and improved spatial resolution, material

decomposition, and dose efficiency compared to conventional EID CT.

(A) X-ray Photon (B) X-ray Photon
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Fig. 1. Schematic particle detection schemes of x-rays (a) Conventional EID and (b) PCD. Different color

indicates energy of photons. Conventional EID integrates all photon energy, while PCD counts the number of

photons corresponding energy level.
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A review of AAPM Task Group 241: A medical physicist’s
guide to MRI-guided focused ultrasound body systems

So Hyun Park’
Department of Radiation Oncology, Jeju National University Hospital, Jeju University College of Medicine, Korea

As treatment techniques such as intensity-modulated radiation therapy (IMRT) and volumetric arc therapy
(VMAT) are actively applied in radiation therapy, accurate and localized radiation delivery is becoming more
important. Accordingly, image-guided therapy plays a very important role in accurate radiation delivery. Currently,
the most active work for image-guided is cone beam computed tomography (CBCT) coupled to a linear
accelerator. In the case of CBCT, not only radiation is used, but additional doses are delivered to the patient
depending on the number of uses, not for the purpose of treatment. Recently, the magnetic resonance linear
accelerator (MR-linac) equipment, which combines the magnetic resonance imaging (MRI) and linear accelerator,
has started to be used. Instead of images acquired with the radiation before treatment, images are acquired using
MR without radiation, and the setup is being done in consideration of the patient's position and anatomical
structure. And Hyperthermia was also used because it can help cancer treatment without radiation. A number of
techniques have been developed and applied for cancer treatment that allow the body to be minimally or not
exposed to radiation while focusing only on the treatment area. As the latest trend in non-ionizing image guided
and treatment, AAPM 241 reported the Magnetic resonance image-guided focused ultrasound (MRgFUS) in 2021.
The MRgFUS uses ultrasound instead of radiation during treatment, and apply MRI as image-guided. It is
completely non-invasive, potentially resulting in shorter recovery times and reduced infection risks. In this report,
integrated procedures such as patient preparation, positioning, treatment planning, assessment, and safety are
covered in detail. The process recommendations are also dealt with. It emphasized that key points and best
practice recommendations will allow the identification and management of the uncertainties that can potentially
arise during MRgFUS body treatments, ultimately affecting the treatment outcome. The review for the AAPM
241 will help to understand and effectively deal with novel MRgFUS.
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Implementation and Clinical Considerations of
Elekta MR-linac

Kwang Hyeon Choo’
Elekta Ltd Korea, Republic of Korea

Major advantages of online magnetic resonance-guided radiotherapy are the superior soft-tissue contrast and
the acquisition of continuous imaging without additional exposure over X-ray based imaging. In this presentation,
a MR-Linac (magnetic resonance linear accelerator) system Unity (Elekta AB, Stockholm, Sweden) consisting of
a 1.5T MRI (magnetic resonance imaging) and a 7 MV photon beam will be introduced including implementation

and clinical considerations.
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Experience with 1.5T MR-Linac system:
a medical physicist’s point of view

Ho Lee’, Jiwon Sung, Yeonho Choi

Department.of.Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Korea

This talk will discuss the 1.5T MR Linac Unity equipment installed at Gangnam Severance Hospital for the
first time in Korea. First, the physical characteristics are briefly described compared to conventional linear
accelerators. Second, we describe the implementation of MR-based workflows for adaptive radiation therapy.
Third, we introduce the experience of commissioning, including beam data acquisition/validation and
patient-specific quality assurance, as well as device acceptance test after Unity installation. Finally, we provide

information on clinical applications that have been treated with Unity.
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Semimetallic Nature of and Magnetic Polarons in EuB
Studied by using Angle-Resolved Photoemission
Spectroscopy

Hyeong-Do Kim"", Chul-Hee Min?, Boyoun Kang?®, Beong Ki Cho?,
En-Jin Cho*, Byeong-Gyu Park'
'Pohang Accelerator Laboratory, Pohang 37673, Korea
“Institut fiir Experimentelle und Angewandte Physik, Christian-Albrechts-Universitit zu Kiel, D-24098 Kiel, Germany
3School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
“Department of Physics, Chonnam National University, Kwangju 500-757, Korea

Temperature-dependent  angle-resolved photoemission —spectroscopy (ARPES) was carried out on
single-crystalline EuBs samples. By measuring ARPES spectra in an extended Brillouin zone, we clearly observed
a B 2p hole pocket centered at the X point as shown in Fig. 1, thus proving the semimetallic nature of EuBs.
Below the Curie temperature Tc, ARPES spectra show two B 2p bands of which separation is due to an exchange
interaction between local Eu 4f and itinerant B 2p electrons. The exchange splitting becomes smaller as the
temperature increases and disappears well above Tc. Additionally, a diffuse structure near the Fermi level survives
at temperatures just above Tc. Such behavior is well described by using Monte Carlo simulations of a Kondo
lattice model, thus supporting the formation of magnetic polarons in EuBg, which accounts for the resistivity

upturn slightly above T¢ as the temperature is lowered.
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Fig. 1. Upper panels: ARPES spectra of EuB6 at various temperatures above and below Tc. Lower panels: MDCs
at the binding energies of 0 and 0.3 eV.
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Weyl points in magnetic metals
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In three-dimensional crystals, Weyl points are ubiquitous as long as PT (spacetime reversal) symmetry is
broken. If Weyl points are close to the Fermi energy as in Weyl (semi)metals, small and topologically nontrivial
Fermi surface leads to many fascinating physics such as chiral magnetic effect. In ordinary metals, on the other
hand, the Fermi surface is not small and does not necessarily possess nontrivial Chern number. In this work, we
study Weyl points in magnetic metals in the context of anomalous Hall effect. We show avoided crossings are
equally crucial as Weyl points in general. We also discuss some mplications of the Nielsen-Ninomiya theorem

on magnetic metals.
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