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The Dzyaloshinskii-Moriya (DM) interaction has become an essential factor that should be taken into account in the operation of

modern spintronic devices. In this review article, we derive Moriya’s rules, which determine the direction of the DM vector, by

employing relativistic Rashba field, crystal field effects, and symmetry arguments including introduction of the concept of

pseudotensor.
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Dzyloshinskii-Moriya(DM) 상호 작용은 오늘날 스핀트로닉스 소자의 동작에서 반드시 고려되어야 할 중요한 요소로 자리잡았

다. 본 해설 논문에서는 DM 상호작용을 결정하는데 중요한 역할을 하는 DM 벡터의 방향을 알려주는 Moriya의 법칙을 상대론

적 라쉬바(Rashba) 효과, 결정장, 대칭성 및 유사텐서 개념을 통해 유도하는 과정을 상세히 설명한다.

주제어 : Dzyaloshinskii-Moriya 상호작용, Dzyaloshinskii-Moriya 벡터, Moriya의 법칙

I. 서 론

Dzyaloshinskii-Moriya(DM) 상호작용은 1950~60년대에 반

강자성체에서 나타나는 약한 강자성(weak ferromagnetism)을

설명하기 위해 Dzyaloshinskii에 의해 도입되었고[1] 이후

Moriya의 논문에서 스핀-궤도 결합을 포함한 비등방 초교환

(anisotropic superexchange)으로 설명됨과 동시에 DM 벡터

의 방향을 결정하는 Moriya의 법칙이 제시되었다[2]. 그러나

이때까지만 해도 DM 상호작용은 자성체, 고체 물리학의 학

문적인 영역에서만 중요 문제였고 응용 측면에서 그 중요성

이 크게 인식되지 않았다.

1980년 A. Fert와 P. M. Levy에 의해 비자성 불순물이

스핀-궤도(spin-orbit) 산란을 통해 DM 상호작용을 만들어 낼

수 있다는 것이 제안[3]되었으나 여전히 DM 상호작용은 크

게 주목받지 못했다. 2007년, W 기판위에 단결정 성장된

(epitaxial) Mn에서 DM 상호작용에 의해 카이럴(chiral) 자기

구조가 나타남이 실험적으로 관측[4]되었음에도 스핀트로닉스

분야에서 DM 상호작용은 여전히 그다지 중요한 요소로 받

아들여지지 않았다. 이는 해당 실험이 극저온 환경의 단결정

시료에서 수행되었기 때문으로, 상온에서 동작하는 다결정
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(polycrystalline) 자성 박막을 주로 다루는 스핀트로닉스 분야

에서는 ‘DM 상호작용이 과연 존재할까?’라는 의문이 자연스

럽게 따라붙었고, 중요한 요소로 간주되지 않았던 것이다.

그러던 것이 2013년 즈음부터 스핀트로닉스에서의 DM 상

호작용의 존재와 중요성이 활발히 인식되기 시작했고, 이후

10여 년 동안 DM 상호작용은 스핀-궤도 토크(spin-orbit

torque)와 함께 스핀트로닉스 분야의 중요한 키워드로 자리

잡았다. 2013년 스퍼터링으로 성장시킨 Pt/[Ni/Co]N 다층 박막

에서 자구벽이 DM 상호작용에 의해 Néel 자구벽 형태가 된

다는 것이 상온에서 실험적으로 관측되었다[5]. 곧이어 이전

까지 스핀트로닉스에서 일반적인 물질로 사용되어 오던 Pt/Co

다결정 박막에서도 DM 상호작용에 의해 Néel 자구벽이 만

들어지며, 그것이 비대칭적 자구벽 운동을 만들어 낸다는 것

이 보고되면서[6], DM 상호작용은 자구벽 운동으로 매개되

는 자성소자의 자화 스위칭에도 역시 결코 무시할 수 없는

요소로 자리 잡게 되었다[7]. 또한 DM 상호작용이 자기 스

커미온[8]의 형성에 중요한 역할을 한다는 점 역시 그 중요

성을 더하였다.

DM 상호작용이 카이럴 Néel 자구벽을 만들어 낸다는 사실

은 다음의 DM 상호작용의 에너지 공식으로부터 간단히 알

아 낼 수 있다.

(1)

여기서 Si(j)는 i(j)번째 사이트에 있는 자기 스핀 모멘트, Di,j

는 사이트 i와 j에 있는 스핀 자기모멘트를 매개하는 DM 벡

터에 해당한다. Fig. 1(a)의 경우는 DM 상호작용의 에너지가

낮은 상태가 되고 Fig. 1(b)는 에너지가 높은 상태가 되어

특정한 방향성을 가진 Néel 자구벽 구조가 안정될 수 있다.

Fig. 1의 자구벽 상황에서 알 수 있듯이 DM 벡터의 방향

이 자기 모멘트가 기울어지는 방향을 결정하는데 중요한 역

할을 하는데, 이제 우리가 다룰 문제는 왜 DM 벡터가 두

사이트 i, j와 비자성 금속 원자를 포함하는 면에 수직 방향

으로 주어지는가이다. 이러한 DM 벡터의 방향은 아래의

Moriya의 법칙[2]으로 주어진다(Fig. 2).

(제 1법칙) 사이트 i, j 사이에 반전(inversion) 중심이 있는

경우, Di,j = 0, 즉, DM 상호작용이 존재하지 않는다(Fig.

2(a) 참조).

(제2법칙) 사이트 i, j를 연결하는 선에 수직이면서 그 중심

점을 통과하는 거울면이 존재할 때(mirror symmetry), Di,j는

거울에 나란하다(Fig. 2(b) 참조).

(제 3법칙) 거울면이 사이트 i, j를 포함할 때, Di,j는 거울

면에 수직하다(Fig. 2(c) 참조).

(제 4법칙) i, j를 연결하는 선분에 수직이면서 중심을 통과

하는 2회 회전축(2-fold rotation axis)이 있을 때, Di,j는 회

전 축에 수직하다(Fig. 2(d) 참조).

(제 5법칙) i, j를 연결하는 선 상으로 N회 회전축(N  2)이

존재할 때, Di,j는 i, j를 연결하는 선분에 나란하다(Fig. 2(e)

참조).

본 해설 논문에서는 Moriya의 법칙을 전자가 느끼는 상대

론적인 라쉬바 효과로부터 시작해, 결정장 효과, 그리고 대칭

성에 대한 고려를 통해 차례로 유도한다. 마지막으로 유사텐

서(pseudotensor)의 개념을 통해 DM 상호작용에 대한 대칭

분석을 일반적인 물리계에 적용할 수 있는 방법을 소개하고

자 한다.

E
DM

 = D
i,j

S
i

S
j

 .

Fig. 1. (Color online) DMI energy for spin configurations rotating in

opposite directions. (a) Low-energy state. (b) High-energy state. Si(j)

represents spin magnetic moment.

Fig. 2. (Color online) Schematics of Moriya’s rules. (a) The 1st rule

with an inversion center. (b) The 2nd rule with a mirror plane

perpendicular to and bisecting the ij bond. (c) The 3rd rule with a

mirror plane containing the site i and j. (d) The 4th rule with a 2-fold

rotation axis perpendicular to the ij bond. (e) The 5th rule with a N-

fold rotation axis along the ij bond.



≪해설논문≫ Journal of the Korean Magnetics Society Vol. 35, No. 6, December 2025  275 

II. Moriya 법칙의 유도

1. 자성층/중금속 이종접합 구조에서 라쉬바 효과를 이용한

설명

먼저 가장 일반적으로 사용되는 자성층/중금속 이종접합 구

조(Fig. 1)에서 DM 벡터가 자성 원자의 사이트 i, j와 비자성

금속원자가 만드는 평면에 수직으로 주어지는 이유를 라쉬바

효과를 이용해 이해하고자 한다[9,10]. 이종접합 구조는 기본

적으로 구조적 반전 대칭성(structural inversion symmetry)이

깨진 상황이다. Fig. 3(a)에서 붉은 점을 기준으로 위치 반전

을 시키면 원래의 구조와 같지 않은 상황을 두고 구조적 반

전 대칭성이 깨어졌다고 말한다. Fig. 3(b)와 같이 이러한 이

종접합 물질의 계면에서는 비대칭적 구조로 부터 z 축 방향

(계면에 수직한 방향)으로 전기장 E가 발생한다(계면에서의

전위차). 이때 전기장의 방향(+z 또는 z)은 비자성 중금속층

의 성질에 따라 달라진다. 이러한 전기장 하에서 계면을 통

해 움직이는 전자는, 전자의 운동량이 k라고 할 때, 상대론적

인 효과에 의해 z × k에 나란한 방향으로 라쉬바 자기장 BR

을 느낀다. 이것을 더 쉽게 설명하면, 계면 전기장이 존재한

다는 것은 계면에 초과 전하가 존재한다는 것이고, 이들의 운

동은 전자 입장에서 상대론적으로 반대 방향으로 움직이는 전

하의 흐름(전류)에 해당한다. 즉, 이러한 전류는 움직이는 전

자 관점에서 마치 자기장이 형성된 것과 같은 상황을 만들어

낸다고 이해할 수 있다. 따라서 Fig. 3(b)와 같이 전자가 사

이트 i와 j 사이를 움직일 때, 라쉬바 자기장은 사이트 i, j와

비자성 원자가 만드는 평면에 수직으로 발생한다. 전자 입장

에서 이러한 라쉬바 자기장의 존재는 특정 방향성을 가진 카

이럴 세차운동(precession)을 유발하고, 시료에 고정된 좌표계

에서는 공간 변화에 따른 자기 스핀 모멘트의 선호되는 변화

방향(카이럴성)이 나타나는 것으로 이해할 수 있다. 따라서 라

쉬바 자기장의 효과와 동일한 자기 스핀 모멘트의 카이럴성

을 만들어 내는 DM 벡터는 라쉬바 자기장과 같은 직선상에

놓여야(평행 또는 반평행) Fig. 1과 같은 상황을 설명할 수

있다. 이제 Fig. 1의 상황을 Moriya 법칙으로 해석해 보자.

Fig. 3(c)와 같이 두 사이트 i, j와 비자성 원자를 포함하는

평면이 거울대칭면이 된다고 해석하면 제 3법칙을 적용해 거

울면에 수직인 DM 벡터를 얻는다. 한편 두 사이트 i, j를

연결하는 선분을 수직으로 이등분하는 평면이 거울대칭면이

된다고 생각하면 제 2법칙을 적용할 수 있는 상황이 되어

DM 벡터는 거울면에 나란 해야 한다는 결론도 얻을 수 있다

(Fig. 3(c)). 이때 두가지 조건 모두 만족하는 DM 벡터는 3

법칙에 의한 DM 벡터 방향이 된다.

2. 결정장에 의한 DM 벡터의 방향 결정

앞 장의 라쉬바 효과를 이용한 설명에 따르면 DM 벡터는

사이트 i, j를 연결하는 선과 전기장에 각각 수직인 방향으로

생긴다는 것을 알 수 있다. 이러한 논리를 확장하면 이종접

합 구조의 계면뿐 만 아니라 다양한 경우에 대해 DM 벡터

의 방향을 예상할 수 있으며, 이를 통해 자연스럽게 Moriya

법칙을 유도할 수 있다.

(제 1법칙 유도) 먼저 Fig. 2(a)와 같이 반전 대칭이 존재

하는 경우는 사이트 i, j를 잇는 선 상으로 모든 전기장은 상

쇄되어 0이 된다(Fig. 4(a)). 따라서 상대론적인 라쉬바 자기

장이 발생할 수 없고, DM 벡터 또한 0이 된다.

(제 2법칙 유도) Fig. 2(b)와 같이 거울 대칭이 존재하는

경우, 결정장(전기장) E는 비자성 금속이 i, j를 잇는 방향의

성분을 가질 수 없다. 즉, 결정장은 거울면 내에만 존재할 수

Fig. 3. (Color online) (a) A case with structural inversion asymmetry.

(b) Schematic illustration for the relationship between Rashba effect

and DMI. (c) Schematic illustrations of showing the application of the

3rd and the 2nd Moriya’s rules, respectively, to the configuration

depicted in Fig. 1.
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있고(Fig. 4(b)), 라쉬바 자기장과 DM 벡터 Di,j가 E × k 방

향으로 생긴다. 그러므로 Di,j는 거울 평면에 나란해야 한다.

(제 3법칙 유도) Fig. 2(c)와 같이 거울 대칭이 존재하는

경우, 위와 동일한 논리에 의해 결정장은 거울면 내에만 존

재할 수 있다(Fig. 4(c)) 이 경우 DM 벡터는 거울면에 수직

이 된다는 것을 쉽게 예상할 수 있다.

(제 4법칙 유도) Fig. 2(d)와 같은 상황에서는, 결정장은

C2 축 방향에 수직한 성분을 가질 수 없다 (그림 4(d)). 예를

들어 C2 축을 z 방향이라 하면 E = (Ex, Ey, Ez)를 z 축을

중심으로 180도 회전을 할 경우 E = (Ex, Ey, Ez)가 되어

대칭성에 의해 x와 y 성분이 존재할 수 없기 때문이다. 이

경우 DM 벡터(|| E × k)는 C2 축에 수직인 방향으로 생겨날

수 있으며, 제 4법칙과 일치한다.

지금까지 결정장과 그로인한 라쉬바 자기장에 대한 고려를

통해 Moriya 법칙을 대부분 유도할 수 있다는 것을 확인했다.

이 방법은 직관적으로 빠르게 DM 벡터의 방향을 유추할 수

있다는 장점이 있으나, 제 5법칙의 경우는 위와 같은 논리를

적용하는 것은 어렵다. 예를 들어, Fig. 2(e) 상황에서 비자성

금속이 만들어 내는 결정장은 축에 수직한 성분은 모두 상쇄

되고 CN 축 방향 결정장만 상쇄되지 않을 수 있다(Fig.

4(e)). 이 경우 E × k = 0 이 되어 라쉬바 자기장을 기대하기

어렵다. 따라서 DM 벡터가 CN 축에 나란하다는 제 5법칙은

Fig. 4. (Color online) Illustrations of crystal fields and DM vectors for

the five cases with different crystal symmetries: (a) inversion

symmetry (the 1st rule). (b) mirror symmetry with a yz-mirror plane

(the 2nd rule). (c) mirror symmetry with a xy-mirror plane (the 3rd

rule). (d) 2-fold rotation symmetry with a 2-fold rotation axis

perpendicular to the ij bond (the 4th rule). (e) N-fold rotation

symmetry along the ij bond (the 5th rule).

Fig. 5. (Color online) (a) Transformation of a polar vector under

inversion. (b) Transformation of a pseudovector under inversion. (c)

Mirror transformation of polar vectors. (d) Mirror transformation of

pseudovectors. (e) Transformations of polar vectors under the -

rotation. (f) Transformations of pseudovectors under the -rotation.

이끌어낼 수 없다. 다음 절에서는 이러한 한계를 극복하기 위

해 보다 체계적으로 대칭 변환을 고려하여 Moriya 법칙을 다

시 유도하고자 한다.

3. 대칭 변환을 이용한 유도

이 장에서는 대칭 변환에 의한 DM 벡터의 조건을 기반으

로 Moriya 법칙을 유도하고자 한다. 이를 위해서는 3-1에서

극벡터와 유사벡터의 개념을 설명하고자 하는데, 이에 대해

친숙한 독자들은 바로 3-2로 넘어가도 무방하다. 3-2에서는

DM 벡터의 대칭적 특성에 대해서 정리하고자 한다. 이를 이

용해서 3-3에서 Moriya 법칙을 유도하고자 한다.

3-1. 극벡터와 유사벡터

여기서는 벡터가 대칭 변환에 대해 어떻게 바뀌는 지, 이

를 기반으로 두 종류의 벡터에 대하여 설명하고자 한다. 벡

터에는 극벡터(polar vector)와 유사벡터(pseudovector) 두 종

류가 있다. 위치, 속도, 전기장 등이 극벡터에 해당하고 자기

장, 각운동량, 자기 모멘트 등이 유사벡터에 해당한다. 상기

두 종류의 벡터 모두 회전에 대해서는 동일한 성질을 가지는

반면 반전변환에 대한 거동이 다른데, 극벡터의 성분(Ax, Ay,

Az)은 반전변환에 대해 (Ax, Ay, Az)로 바뀐다. 이는 위치

나 속도를 원점을 기준으로 정반대의 위치로 보내는 것을 생

각하면 자명하다(Fig. 5(a)).
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반면 유사벡터의 성분(Ax, Ay, Az)은 반전변환에 대해 성분

이 그대로 유지되어 여전히 (Ax, Ay, Az)가 된다. 이는 두가지

방법으로 이해할 수 있다. 첫째로, 그림을 통해 이해해 보자면,

자기장을 만들어 내는 것은 전류 고리인데, 전류 고리는 반

전에 대해 Fig. 5(b)와 같이 변환되고 그 결과 만들어지는

자기장은 변환 전후가 같다는 것을 알 수 있다. 이는 각운동

량 등에도 동일하게 적용되는 논리이다. 둘째로, 수학적으로

살펴볼 수 있는데, 예를 들어 각운동량 L = r × p과 같이 극

벡터의 외적으로 주어지는 벡터의 경우 반전을 취하게 되면

(r) × (p)가 되어 L의 부호를 그대로 유지하게 된다. 자기

장의 경우도 비오-사바르의 법칙에 있는 극벡터의 외적을 통

해 동일한 논리가 적용된다.

상술한 반전거동의 차이는 거울 변환에도 영향을 미치는데,

이는 거울 변환이 반전과 회전의 조합으로 주어지기 때문이

다. 이를 직관적으로 표현하기 위해 Fig. 5(c)와 같이 극벡터

에 거울 변환을 취하면 거울면에 수직인 성분의 부호만 바뀌

고 나머지는 그대로 유지됨을 쉽게 알 수 있다. 반면 유사벡

터의 거울 변환은 Fig. 5(d)처럼 전류고리를 생각해 보면, 거

울에 수직인 성분은 그대로 유지가 되고 거울에 나란한 성분

은 부호가 뒤집히는 것을 알 수 있다. 이러한 점에서 거울

변환은 단순한 180o 회전과는 차이가 있다. 가령, 극벡터는

Fig. 5(e)와 같이 회전축에 나란한 성분은 유지가 되고 회전

축에 수직인 성분은 부호가 뒤바뀜을 알 수 있다. 유사벡터

역시 Fig. 5(f)에 묘사되었듯 회전축에 나란한 성분은 유지되

고, 회전축에 수직인 성분은 부호가 바뀐다. 이것은 극벡터와

동일하다.

3-2. DM 벡터의 대칭적 특성

대칭 분석을 통해 Moriya의 법칙을 알기 위해서는 DM

벡터가 유사벡터인지 극벡터인지 파악할 필요가 있다. 이를

위해 식(1)의 DM에너지 형태를 살펴보자. 에너지는 스칼라

이므로 거울 변환에 대해 불변이어야 한다(10 m/s로 움직이는

물체는 거울 안에서 10 m/s로 움직일 수는 있으나 운동에너

지는 동일하다는 점을 상기하자. 거울 변환에 대하여 부호가

변하는 스칼라를 유사스칼라라고 부르며, B·r  B·(r) = B·r

과 같은 값이 예시가 될 수 있으나 본 해설 논문과는 무관하

다.). Si와 Sj는 유사벡터이므로 반전을 취해도 부호가 유지되

므로, Di,j·(Si × Sj)가 스칼라(즉, 반전에 대해 부호가 유지)이

기 위해서는 Di,j도 반전에 대해서 부호가 유지되어야 한다.

이를 통해 Di,j 또한 유사벡터임을 알 수 있다.

DM 벡터가 유사벡터임은 다른 여러 방법으로도 확인할 수

있다. 예를 들어 지난 절에서 우리는 DM 벡터의 방향이

E × k로 주어진다는 논증을 하였고, 이는 극벡터의 외적으로

주어지는 유사벡터이다. 또한, 식(1)을 변형하면 (Di,j × Si)·Sj를

얻는데 이는 Di,j × Si가 마치 자기장(유사벡터)과 같이 거동한

다는 의미이다. 이를 위해서는 Di,j도 유사벡터여야 하는데, 토

크(τ)는 자기 모멘트(m)와 자기장(B)의 관계식(τ = m × B)을

통해 생각해보면 유사벡터 간의 외적은 또 다른 유사벡터를

주는 것으로부터 유추가 가능하다. 이렇게 다른 물리적인 양

과의 연결을 통해 주어진 벡터의 극벡터 및 유사벡터 여부를

손쉽게 판정할 수 있다.

DM 벡터의 또 한가지 중요한 특성은 사이트 i와 j에 의존

한다는 점이다. 식(1)에서 사이트 i, j는 임의로 지정할 수 있

는 것이므로 둘의 순서를 바꾸더라도 식(1)은 문제없이 DM

에너지를 제대로 정의하는 방식이어야 한다. 따라서

Di,j·(Si × Sj) = Dj,i·(Sj × Si) = Dj,i·(Si × Sj)을 만족해야 하고,

i, j 순서를 바꾸는 경우에 Di,j = Dj,i 또한 항상 만족해야 한

다. 이는 거울 반전에 대해서 i, j가 서로 바뀔 수 있다는 점

에서 중요한 의의를 가지며, DM 벡터가 일반적인 유사벡터

와는 다른 대칭 특성을 가진다는 점을 시사한다. 이는 4절에

서 보다 자세하게 논의될 예정이다.

3-3. Moriya 법칙의 유도

이제 3-2에서 언급한 내용들을 바탕으로 Moriya의 법칙을

유도한다. DM 벡터는 물질의 결정 구조에 기인하므로, 해당

물질의 대칭성을 바탕으로, 대칭 변환 이후 DM 벡터의 형태

가 유지되어야 한다는 점을 통해 Moriya 법칙의 유도가 가능

하다.

(제 1법칙 유도) 먼저, Fig. 6(a)와 같이 반전 변환이 적용

된 전-후, 두 상황을 비교하자. 반전은 i, j의 위치를 바꾸는

것에 해당한다. 또한 반전은 Di,j 자체에도 작용해야 하는데,

Di,j는 유사벡터이므로 그 성분은 바뀌지 않는다(즉, Di,j = (Dx,

Dy, Dz)라고 하면, 그에 대한 반전은 D'

i,j = (Dx, Dy, Dz)가

된다.). 그런데 반전 전-후 상황을 살펴보면, 반전에 의해 i, j

를 매개하는 결합벡터 l의 방향이 바뀌어 l'이 되었으므로, 전-

후를 동등하게 비교하려면 l'인 상황을 생각해야 한다. 이것

은 앞서 설명한 i, j 순서를 바꾸는 것에 해당하므로, 이에

해당하는 DM 벡터는 D'

i,j = (Dx, Dy, Dz) = D'

j,i가 된다.

반전 대칭이 존재하는 경우, 반전 전-후 결합벡터의 방향도

일치하기 위해서는 Di,j = D'

i,j가 성립해야만 한다(Fig. 6(a)에

서 i, j 인덱스는 다르지만 결합벡터 방향이 같음). 이는

Di,j = (0,0,0)인 경우만 가능하므로 반전 대칭이 있는 경우

DM 벡터가 0이라는 제 1법칙을 유도할 수 있다.

(제 2법칙 유도) Fig. 6(b)에서 거울면이 y-z 면이라면, 거

울 변환에 대해 유사벡터인 Di,j는 거울 속 세상에서

D'

i,j = (Dx, Dy, Dz)로 변환된다. 거울 변환에 의해 i, j를

매개하는 결합벡터 l의 방향이 바뀌어 l'이 되고, 거울 변환

전-후를 동등하게 비교하려면 마찬가지 이유로 결합 벡터의
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방향을 바꾼, 즉 거울 변환 전과 같은 상황을 생각해야 한다.

이 경우의 DM 벡터는 D'

i,j = (Dx, Dy, Dz)이 된다. 거

울 변환에 의해 완전히 동일한 결정 구조가 만들어졌고(거울

대칭성), DM 벡터는 결정 구조에 의존한다는 것을 생각하면,

거울 변환 전-후의 DM 벡터는(같은 방향의 결합 벡터인 경

우) 동일해야만 한다. 따라서 Di,j = D'

i,j = (Dx, Dy, Dz)를

만족하야 하고, 그에 따라 Dx = 0임을 알 수 있다. 즉, DM

벡터는 거울면에 나란해야 하고 이것은 Moriya 제 2법칙에

해당한다.

(제 3법칙 유도) Fig. 6(c)와 같이 거울면이 x-y 평면이라면,

거울 변환의 결과는 i, j를 매개하는 결합 벡터의 방향은 바

뀌지 않고 단순히 Di,j만 거울 변환 이후 D'

i,j = (Dx, Dy,

Dz)로 바뀐다. 그런데 x-y 면에 대한 거울 대칭이 존재하는

상황이므로 거울 변환에 의해 원자 배열은 완전히 동등하므

로, 결정 구조에 의존하는 DM 벡터는 Di,j = D'

i,j라는 조건을

만족해야 한다. 따라서 Dx = 0, Dy = 0이다. 이것은 DM 벡

터가 거울면에 수직이라는 제 3법칙에 해당한다.

(제 4법칙 유도) Fig. 6(d)처럼 회전 축 z에 대해  회전

을 하면 i와 j는 뒤바뀌므로 결합 벡터의 방향이 뒤바뀐다.

한편 유사벡터는 극벡터와 회전 성질이 동일하므로 회전축에

나란한 성분은 그대로 유지가 되고 회전축에 수직인 성분은

부호가 바뀌어 Di,j는 D'

i,j = (Dx, Dy, Dz)가 된다. 회전 전-

후 동일한 비교를 위해 결합 벡터 방향을 같게 만들어 주면

D'

i,j는 D'

i,j가 된다. 이제 180o 회전을 해도 격자 구조는 완

전히 동일하므로 Di,j = D'

i,j가 성립해야 하고 Dz = 0, 즉

DM 벡터는 회전축에 수직이라는 제 4법칙이 유도된다.

(제 5법칙 유도) Fig. 6(e)와 같이 i, j를 연결하는 선분(x

축)이 N회 회전 대칭 축이 된다면, 결합 벡터의 방향은 그대

로 유지가 된다. 회전축인 x 축에 대해 -회전을 하면

(n = 0, …, N  1) Di,j는 D'

i,j =

로 바뀐다. N회 회전 대칭이 존재하

므로 만큼 회전한 상황은 회전 전과 완전히 동일해야

하고 따라서 Di,j = D'

i,j을 만족해야 한다. 이것을 만족하는 조

건은 Dy = 0, Dz = 0임을 알 수 있고 따라서 DM 벡터는 x

성분만을 가진다. 이는 제 5법칙과 일치한다.

4. 유사텐서의 개념을 도입한 유도

이전 절에서 확인하였듯이 DM 벡터는 유사벡터의 대칭 분

석법을 따르되, 추가적으로 i, j의 인덱스 변화를 고려해 주어

야 한다. 다른 대칭 분석에 익숙한 독자들도 이 지점이 가장

헷갈리는 부분일 것으로 생각된다. 그리하여 본 절에서는 유

사텐서라는 개념을 통해 이들을 통합하여 간략하게 기술할 수

있는 방법을 제시하고자 한다. 여기서 제시되는 내용들은 3

절에서 제시된 내용과 정확히 같은 내용을 다른 방식으로 기

술한 것이므로, 대칭 분석에 익숙하지 않은 독자들은 본 절

을 건너뛰고 바로 결론으로 넘어가도 무방하다.

4-1. 텐서

우선 DM 벡터는 스핀 간의 상대적인 방향(Fig. 6에서의

l 벡터)에 의존함을 상기하도록 하자. 사이트 i, j의 상대적인

방향은 x, y, z의 모든 방향이 될 수 있고, 결정구조가 주어

지면 각기 다른 방향 간의 DM 벡터가 결정된다. 이를 통합

2
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2

N
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N
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Fig. 6. (Color online) Illustrations showing how the DM vector and

the connecting vector l between sites i and j transform under various

symmetry operations. The left panels depict the configurations before

transformation, and the right panels show those after transformation.

When there exists a symmetry operation, the configurations before

and after transformation must be identical. (a) Case with inversion

symmetry (the 1st rule). (b) Case with a mirror plane in the yz plane.

(c) Case with a mirror plane in the xy plane. (d) Case with a twofold

rotation axis perpendicular to and bisecting the ij bond. (e) Case with

an N-fold rotation axis along the ij bond.
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적으로 기술하기 위해서 l이 x 방향인 스핀 간의 DM 상호

작용을 나타내는 DM 벡터를 D(x), l이 y 방향인 스핀 간의

DM 상호작용을 나타내는 DM 벡터를 D(y), l이 z 방향인 스

핀 간의 DM 상호작용을 나타내는 DM 벡터를 D(z)라고 정

의하겠다. 이들을 모아놓은 D = (D(x), D(y), D(z))라는 값이 바

로 결정구조에 의해 결정되는 DM 벡터를 모은 상위 벡터가

된다.

이렇게 벡터를 모은 상위 벡터를 텐서라고 부른다. 좀 더

일반적으로는 벡터를 1차 텐서로 정의하고 n  1차 텐서를 벡

터로 모아놓은 것을 n차 텐서로 정의하면, D는 2차 텐서가

된다. 텐서의 회전 변환 성질은 벡터와 유사하게 주어지는데,

회전 변환을 가하면 서로 다른 D(i)가 회전 변환으로 인해 섞

이게 되고, D(i)들 각각이 벡터이므로 서로 다른 j에 대해

Dj
(i) 값들이 섞이게 된다. 이러한 2중 회전(n차 텐서는 n중

회전)성질이 텐서의 중요한 특성이다. 2차 텐서의 가장 대표

적인 예는 두 벡터의 다이아딕(dyadic) 곱이다. 두 벡터 a와

b가 있을 때에 cij = aibj로 정의되는 9개의 c를 모으면 하나

의 2차 텐서를 이루며, 이는 C = ab라고 표기한다. 즉, 2차

텐서(n차 텐서)는 인덱스가 2개(n개)인 물리량인데, 각각이 벡

터처럼 회전하는 성질을 가진다고 이해하면 편리하다. 위의

DM 벡터 역시 Dj
(i)와 같이 두 인덱스 i, j가 존재하고 각각

이 x, y, z와 같이 벡터의 방향을 준다는 것을 보면 알 수

있다.

4-2. 유사텐서로서의 DM 벡터

이제 3절에서 이야기한 유사벡터의 개념을 텐서에 그대로

적용할 수 있다. 예를 들어 C = ab로 주어지는 2차 텐서가

있고, a와 b가 모두 극벡터라고 하겠다. 이를 반전시키면

C  (a)(b) = C가 되어 반전에 불변이다. 같은 원리로 ‘n차

텐서는 n이 홀수일 때에 반전 변환에 대해 부호가 바뀌며(극

벡터 반전 r r이 대표적인 예이다) n이 짝수일 때에는 반

전에 대해 부호가 바뀌지 않는다’는 결론을 내릴 수 있다. 하

지만 a와 b 중에 하나가 유사벡터라면 어떻게 될까? 일반성

을 잃지 않고 a가 유사벡터, b가 극벡터라고 하겠다. 그러면

반전 변환에 대해 C  (a)(b) = C가 되어 부호가 바뀌어

위 반전 법칙을 따르지 않게 된다. 즉, n이 홀수인데 반전

변환에 불변이거나, n이 짝수인데 반전에 대해 부호가 바뀌

는 텐서를 유사텐서라고 부를 수 있다.

유사텐서의 예는 생각보다 많다. 위에서 언급하였듯이 임의

의 유사벡터와 극벡터의 다이아딕 곱은 유사텐서이다. 일반적

으로 유사벡터가 홀수개 곱해진 텐서곱이면 유사텐서가 된다.

가장 흔히 발견되는 예로는 벡터의 외적에 등장하는 반대칭

텐서 ijk가 있다. 극벡터 a와 b에 대해서 (a × b)i = jkijkajbk

로 주어진다. 여기서 좌변은 유사벡터이고 우변의 aj와 bk는

모두 극벡터의 성분이므로 ijk가 유사텐서여야 정합성이 맞는

다. 또한, 스칼라 삼중곱으로 알려진 (a × b)·c = ijkaibjck 역시

우변에 유사텐서가 하나 있으므로 좌변은 유사스칼라가 된다.

반면 a, b, c 중에 하나가 유사벡터라면 우변에 2개의 유사

텐서/벡터가 있으므로 이 스칼라 삼중곱은 일반 스칼라가 된

다. 가장 대표적인 예시는 L·S = (r × p)·S로 주어지는 스핀-

궤도 상호작용 에너지로, 에너지가 일반 스칼라라는 사실과

일치한다.

이제 4-1에서 정의한 텐서 D = (D(x), D(y), D(z))가 유사텐서

인지 아닌지를 따져보도록 하겠다. 반전을 취하면 D(i) 각각은

유사벡터이므로 부호가 바뀌지 않는다. 하지만 위 첨자에 있

는 x, y, z의 부호가 반전되면서 전체적으로 D (D(x),

D(y), D(z)) = D가 되어 부호가 반전된다(Di,j = Dj,i로부터

D(x) = D(x)임을 상기하자) 2차 텐서인데 반전 변환에 대해

부호가 반전되므로 D는 유사텐서이다.

4-3. Moriya의 법칙 유도

이제 D = (D(x), D(y), D(z)) = ((Dx
(x), Dy

(x), Dz
(x)), (Dx

(y), Dy
(y),

Dz
(y)), (Dx

(z), Dy
(z), Dz

(z)))가 유사텐서라는 사실을 기반으로

Moriya의 법칙을 유도하도록 하겠다.

(제 1법칙 유도) 상술하였듯이 반전 변환에 대해 D는

D D로 변환된다. 하지만, 반전 대칭이 있는 경우 반전

전-후의 결정 구조가 같으므로 D = D, 즉 D = 0을 얻는다.

(제 2법칙 및 제 3법칙 유도) 일반성을 잃지 않고 거울면

을 yz 평면으로 놓겠다. 거울 변환에 대하여 D(x) D(x)로

변환되고(yz 평면 거울에 의해 x 방향 결합벡터 l이 뒤바뀜을

상기하자) 추가적으로 D(i) 각각이 유사벡터이므로 y와 z 성분

의 부호가 바뀐다: D  ((Dx
(x), Dy

(x), Dz
(x)), (Dx

(y), Dy
(y),

Dz
(y)), (Dx

(z), Dy
(z), Dz

(z))). 거울 변환 전-후의 결정 구조가

같으므로 이 값이 D와 같으려면 Dx
(x) = 0(제 2법칙)과

Dy
(y) = Dz

(y) = Dy
(z) = Dz

(z) = 0(제 3법칙)을 얻는다.

(제 4법칙 유도) 일반성을 잃지 않고 회전 축 z에 대해  회

전 대칭이 있다고 가정하자. 이 회전변환에 대해 D(x) D(x),

D(y) D(y)로 변환되고 추가적으로 D(i) 각각의 x, y 부호가 바

뀐다: D ((Dx
(x), Dy

(x), Dz
(x)), (Dx

(y), Dy
(y), Dz

(y)), (Dx
(z),

Dy
(z), Dz

(z))). 회전 변환 전-후의 결정 구조가 같으므로 이 값

이 D와 같으려면 Dz
(x) = Dz

(y) = 0을 얻는다.

(제 5법칙 유도) x 축에 대해 -회전을 하고 Dj
(x) 성분

만 취하면 3-3에서의 유도와 정확히 같은 과정을 얻는다.

III. 결 론

이상의 논의를 통해 현재 스핀트로닉스에서 결코 무시할 수

2

N
------n
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없는 DM 상호작용의 DM 벡터 방향을 결정해 주는 Moriya

의 법칙들을 다양한 관점을 통해 유도해 보았다. DM 상호작

용은 스핀-궤도 결합과 관련된 문제로 간단한 라쉬바 효과를

이용한 설명부터 시작해, 결정장에 대한 직관적인 그림을 통

한 설명, 마지막으로 시스템에 주어진 대칭성이 부여하는 성

질을 이용해 Moriya의 법칙을 하나하나 유도해 내었다. 또한,

DM 벡터가 유사텐서라는 관점을 통해 보다 일반적으로 DM

벡터에 대한 대칭 분석법을 제시하였다. Moriya 법칙의 유도

과정이 상세히 제시된 논문을 찾기 어려운 만큼 본 국문 해

설이 특별한 도움이 되길 바란다.
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