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Tuning of Magnetic Properties through Ru Spacer Thickness
in CoFeB/Ru/NiFe Trilayer Structures
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We investigated the magnetic properties of a NigoFe,/Ru/CoxgFeqB,yy magnetic multilayers designed as a free layer for in-plane
tunnel magnetoresistance sensors. Films with the stack Ta/Ru/Ta/Ru/Ta/NiggFe, (70 nm)/Ru (tr,)/CoxFesoBao (3 nm) is deposited by
DC magnetron sputtering. Magnetic hysteresis loops were recorded by longitudinal magneto-optical Kerr effect (MOKE) while
rotating the in-plane azimuth for tg, = 0.3 and 0.9 nm. To map the Ruderman-Kittel-Kasuya-Yosida (RKKY) interlayer coupling
versus spacer thickness, additional MOKE measurements were performed over tg, = 0.3~2.6 nm. The first antiferromagnetic coupling
maximum appeared at tg, & 0.9 nm, and the second half-period near tz, = 2.0 nm. We also carried out a single field-anneal and

confirmed a rotation of the in-plane magnetic anisotropy axis induced by annealing.
Keywords : RKKY, uniaxial inplane anisotropy, Maneto-optic Kerr effect
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Fig. 1. (Color online) (a) Top view of the face-to-face DC magnetron
sputtering geometry with the sample at the center of a 101.6 mm stage
and an alignment pin guiding the shadow-mask travel. (b) Schematic
of the shadow-mask translation used to tune the Ru spacer thickness
during deposition.
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X (synthetic antiferromagnet, SAF) Z%re] F71438 &1}
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3= transmission electron microscope(TEM) ©|H]| A&
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Fig. 2. (Color online) (a) Schematic stack of the sample, NigoFey (70
nm)/Ru (fr, nm)/CoxFegBy (3 nm), designed for in-plane tunnel
magnetoresistance sensors. (b) Cross-sectional TEM image highlighting
smooth, well-defined interfaces among.
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Fig. 3. (Color online) Longitudinal MOKE hysteresis loops measured

along the magnetic easy and hard axes for (a) 7z, = 0.3 nm (synthetic

ferromagnetic coupling) and (b) #&, = 03 nm (synthetic
antiferromagnetic coupling).
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Fig. 4. (Color online) (a) Azimuthal angle dependence M,/M; for tr, =
0.3 nm showing clear in-plane uniaxial anisotropy with maxima at 0°
and 180° and minima near 90° and 270°. (b) Azimuthal dependence of
H., for tz, = 0.9, peaking along the hard axis and vanishing along the
easy axis, consistent with coherent SAF rotation.
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Fig. 5. (Color online) Exchange field, H. versus Ru spacer thickness,
fr, measured at the hard-axis orientation, revealing an oscillatory
RKKY interlayer coupling. The first antiferromagnetic maximum
appears near fg, ~ 0.9 nm and the second half-period near ~2.0 nm,
with coupling strength decaying at increasing .
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Fig. 6. (Color online) Effect of field annealing on in-plane anisotropy
(a) polar plot of H,, for #z, = 0.9 nm showing rotation of the uniaxial
easy axis to align with the annealing field. (b) Typical hysteresis loops
measured by VSM.
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