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Low-dose CT imaging reduces patient radiation exposure but inevitably increases noise, thereby degrading diagnostic accuracy. This

study compares two hybrid denoising approaches that combine a U-Net-based deep learning model with wavelet transform. The first

structure applies wavelet preprocessing followed by U-Net (WaveletU-Net), whereas the second applies U-Net first and wavelet

postprocessing (U-NetWavelet). Experiments were conducted using chest CT datasets from Kaggle with artificially added noise,

and performance was evaluated in terms of PSNR and SSIM. Results indicate that the WaveletU-Net structure achieved superior

PSNR but showed decreased SSIM under high-noise conditions. In contrast, the U-NetWavelet structure produced slightly lower

PSNR but maintained stable SSIM. These findings demonstrate that the sequence of algorithmic integration critically affects

performance, suggesting that selection should depend on clinical application objectives.
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저선량 CT 영상은 방사선 피폭을 줄일 수 있으나, 노이즈 증가로 인해 진단 정확도가 저하된다. 본 연구에서는 이를 개선하기

위해 U-Net 기반 딥러닝과 웨이블릿 변환을 결합한 두 구조를 비교하였다. 첫 번째는 웨이블릿을 전처리로 적용한 뒤 U-Net을

사용하는 구조(WaveletU-Net), 두 번째는 U-Net 이후 웨이블릿을 후처리로 적용하는 구조(U-NetWavelet)이다. Kaggle Chest

CT 데이터셋에 인위적으로 노이즈를 추가하여 실험을 수행하였으며, PSNR과 SSIM을 통해 성능을 평가하였다. 그 결과

WaveletU-Net은 PSNR에서 우수했으나 SSIM은 고노이즈 조건에서 감소하였다. 반면 U-NetWavelet은 PSNR은 낮았지만

SSIM은 안정적으로 유지되었다. 이러한 결과는 알고리즘 결합 순서가 성능에 중요한 영향을 미침을 입증한다.

주제어 :전자기 방사선, 노이즈 제거, U-Net, 웨이블릿 변환, 영상 품질 평가

I. 서 론

의료 영상(Computed Tomography; CT, Magnetic Resonance

Imaging; MRI)은 인체 내부 구조를 비침습적으로 확인할

수 있고 정확도와 공간 해상도가 뛰어나 현대 의학의 다양

한 임상 분야에서 널리 활용되고 있다[1]. 특히 폐질환, 종

양 등의 진단에 있어서 CT와 MRI 등을 포함하는 의료 영

상은 필수적인 영상 기법으로 자리매김하고 있다[2-4]. 그러

나 CT 검사는 비교적 높은 방사선량이 수반되기 때문에 소

아처럼 방사선에 민감한 환자 또는 정기적 추적 검사가 필

© The Korean Magnetics Society. All rights reserved.

*Corresponding author: Tel: +82-51-320-4274, e-mail: byungdujo@gdsu.dongseo.ac.kr



≪연구논문≫ Journal of the Korean Magnetics Society Vol. 35, No. 6, December 2025  325 

요한 환자에게는 저선량 CT(Low-Dose CT)가 대안으로 사

용된다[5].

저선량 CT는 방사선량을 줄여 환자의 안정성을 높일 수

있지만, 낮은 방사선량으로 인해 촬영된 영상 내에 노이즈가

증가하여 영상의 품질이 저하되는 단점이 존재한다. 이는 병

변의 경계가 불명확해지고 세부 구조의 식별이 어려워져 진

단 정확도에 부정적인 영향을 미칠 수 있다[6]. 따라서 저선

량 CT 영상의 품질을 개선하기 위한 노이즈 제거 알고리즘

개발은 매우 중요한 과제다.

이에 따라 최근에는 딥러닝 기술의 발전에 힘입어, U-Net

과 같은 심층 신경망 모델이 의료 영상 복원 분야에서 뛰어

난 성능을 보여주고 있다[7]. U-Net은 인코더-디코더 구조를

기반으로 한 딥러닝 네트워크로, 세부 구조를 보존하면서 전

체적인 복원이 가능하며 특히 영상의 경계나 윤곽 같은 정밀

한 구조 보존에 강점을 가진다[8].

또 다른 접근법으로는 웨이블릿 변환을 통해 영상 신호를

고주파 및 저주파 성분으로 분해하여 노이즈를 선별적으로 제

거하는 방식이 있다[9]. 기존 연구에서는 웨이블릿 변환을 먼

저 적용한 후 분해된 주파수 성분을 U-Net에 입력해 복원하

는 방식을 사용했으며, 이를 통해 웨이블릿과 U-Net의 결합

구조가 U-Net만 단독으로 사용한 구조와 비교했을 때 피크

신호 대 잡음비(Peak Signal-to-Noise Ratio; PSNR)가 약

10.3% 복원 성능이 향상되었고, 구조적 유사성 지수

(Structural Similarity Index Measure; SSIM)는 약 14.7%

복원 성능이 향상된다는 결과가 확인되었다. 본 연구에서는

기존 접근 방식의 처리 순서를 역으로 구성하여, U-Net을 먼

Fig. 1. Wavelet Subband Decomposition of a CT Image (LL, LH, HL, HH).

저 적용한 후 웨이블릿을 후처리로 사용하는 구조를 제안하

고 그 성능을 비교·분석하였다. 두 방식 모두 동일한 데이터

셋과 조건에서 학습 및 테스트를 수행했으며 PSNR과 SSIM

지표를 통해 정량적으로 평가하였다. 이 연구의 목적은 웨이

블릿과 U-Net의 처리 순서가 노이즈 제거 성능에 미치는 영

향을 분석하고 최적의 순서를 도출하는 것에 있다.

II. 대상 및 방법

1. 웨이블릿 변환

웨이블릿 변환은 시간-주파수 영역을 동시에 분석할 수 있

는 기법으로, 영상을 다중 해상도로 분해하여 국소적인 노이

즈나 경계선 등을 효과적으로 처리하는 데 적합하다. 웨이블

릿 변환의 종류에는 연속 웨이블릿 변환(Continuous Wavelet

Transform; CWT)과 이산 웨이블릿 변환(Discrete Wavelet

Transform; DWT)이 있다. CWT의 경우 식(1)로 표현된다.

(1)

여기서 x(t)는 원본 신호, W f(a, b)는 x(t)의 웨이블릿 계수

를, 변수 a는 주파수 정보, b는 시간 정보이며, (t)는 모함

수(Mother Wavelet function)를 의미한다. 식(1)의 적분 과정

은 x(t)와 (t)간의 합성곱 연산으로 x(t)를 웨이블릿 변환시

키기 위해 a와 b를 이용해 시간과 주파수 모두 국소화시키는

과정을 의미한다. DWT는 W f(a, b)의 값을 실수 범위 R이

아니라 식(2)와 같이 이산 격자 상의 정수 범위 Z에서 구현

W
 f
a, b  x t , j k t 

1

a
------ x t 

tb
a

-----------
 
 dt a, b R 






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한 형태로, 중복을 최소화하여 계산 효율과 압축·재구성에 유

리하다.

(2)

Fig. 1과 같이 영상에 DWT를 적용하면 Low-Low(LL),

Low-High(LH), High-Low(HL), High-High(HH)의 네 가지

주파수 대역으로 분할된다. 여기서 LL은 저주파 정보로 주로

영상의 윤곽이나 구조 정보를 포함하며, LH, HL, HH는 고

주파 성분으로 노이즈와 경계 정보가 주로 이 영역에 분포한

다. 이러한 분해를 통해 영상의 주요 정보를 보존하면서 불

필요한 고주파 성분의 노이즈만 제거할 수 있기 때문에, 국

소적인 세부 특징이 중요한 의료 영상의 복원에 적합하다

[9,10-12].

본 연구에서는 모함수로 Daubechies 4(db 4)를 채택하였다.

식(3)에서 나타내는 것처럼 dbN은 N개의 소실 모멘트

(Vanishing Moments)를 가지기 때문에, N-1차 이하의 다항식

추세 성분을 제거할 수 있는 능력을 지니고 있다.

(3)

즉, db4는 3차 이하의 다항식 성분을 제거할 수 있기 때문

에 영상 내 구조적 특징은 보존하면서 노이즈 및 불필요한

추세 성분을 억제하는 데 유리하다[13,14]. 또한, 고주파 성분

a = 2
j

, b = k 2
j

 , j, k Z

t
 k
 t dt = 0, if k = 0, 1, 2, …N1







Fig. 2. (Color online) Architecture of the U-Net model for CT image denoising.

에 대해 Soft Thresholding 기법을 적용하여 의미 있는 계수

만 보존하였다. 본 연구에서 사용된 Soft Thresholding에 대

해 식(4)와 같이 정의한다.

(4)

계수들의 보존·제거를 결정하는 기준인 임계값 보다 작은

계수는 0으로 수렴시키고, 보다 절댓값이 큰 계수는 그 크

기를 의 크기까지 줄이면서 보존하는 방식으로 동작한다

[9,11]. 이 방법은 Hard Thresholding과 달리 계수의 급격한

제거가 일어나지 않기 때문에, 불연속적 변화로 인한 계단 현

상(Ringing Artifact)을 방지할 수 있어, CT 영상과 같이 해

상도에 민감한 영상에 적합하다[12,15].

Soft Thresholding 처리를 마친 후, 임계값 처리된 고주파

성분과 LL 성분을 다시 결합하는 역 이산 웨이블릿 변환

(Inverse Discrete Wavelet Transform; IDWT)을 수행함으로

써, 노이즈가 제거된 복원 영상을 얻는다[13].

2. U-Net

U-Net은 특징의 추출을 담당하는 인코딩 경로와 해상도 복

원을 위한 디코딩 경로가 대칭을 이루는 구조이다[16]. 특히

인코더의 특징 맵을 디코더로 직접 전달하는 스킵 커넥션

(Skip Connection)은 업샘플링 시 손실되는 공간 정보를 보완


s


djk  = 
0, if   djk  



 if   djk  




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하여 세부 구조의 복원 성능을 높이는 핵심적인 역할을 한다

[8,17].

본 연구에서는 Fig. 2와 같이 256 × 256 크기의 단일 채널

패치로 입력층이 구성된 U-Net을 사용하였다. 최종 계층은

값을 [0, 1] 범위로 제한하고, 후처리 과정에서 원래 범위로

복원했다. 네트워크는 32-64-128 채널로 이루어진 인코더와

디코더로 특징을 압축하고 다시 복원했으며, 출력 계층은

1 × 1 컨볼루션으로 픽셀 단위 복원을 수행하여 최종 영상을

생성했다.

모델 학습에는 Adaptive Moment Estimation(Adam) 옵티

마이저(Optimizer)를 사용하였고, 학습률은 0.0001, 배치 크기

는 8, 에포크(epoch) 수는 100으로 설정하였다. 손실함수는

PSNR은 MSE를 사용하였고 SSIM은 SSIM 지수를 1에서

뺀 형태로 정의하여 SSIM 유사도가 높을수록 손실이 작아지

도록 설계하였으며, 데이터의 손실이 5 epoch 이상 개선되지

Fig. 3. (Color online) Schematic diagram of Wavelet-preprocessed noise reduction algorithm.

Fig. 4. (Color online) Schematic diagram of U-Net-preprocessed noise reduction algorithm.

않을 경우 조기 종료를 적용하였다[18].

3. 알고리즘 구성

본 연구에서는 웨이블릿 변환과 U-Net의 적용 순서에 따른

성능 차이를 분석하기 위해 다음 두 가지 실험군을 구성하여

서로 비교하였다. 첫 번째 실험군은 Fig. 3에서와 같이 웨이

블릿 선처리 기반 방식으로, 입력 영상에 DWT를 적용하여

고주파 성분에 임계값 처리를 수행함으로써 노이즈를 억제한

다. 그로 인해 얻어진 4개의 분리된 성분을 U-Net에 입력하

였으며, 이후, 복원 영상을 획득한다. 두 번째 실험군은 Fig

4에서 설명하는 U-Net 선처리 기반 방식으로, 노이즈가 포함

된 입력 영상을 U-Net에 먼저 적용해 노이즈 패턴 학습을

통한 1차 복원을 수행하였다. 이후 출력 영상에 DWT를 적

용하여 고주파 성분 임계값을 처리하고 IDWT를 통해 복원

영상을 재구성하였다.
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4. 평가 지표

복원된 저선량 CT 영상의 품질을 정량적으로 평가하기 위

해 PSNR과 SSIM을 지표로 채택하였다. PSNR은 복원 영상

의 충실도를 평가하는 전통적인 지표로, 원본 영상과 복원 영

상 간의 픽셀별 평균 제곱 오차(Mean Squared Error;

MSE)에 기반하여 산출된다. PSNR 값은 데시벨(dB) 단위로

표현되며, 높을수록 노이즈로 인한 왜곡이 적고 원본에 가깝

게 복원된 것을 나타낸다. SSIM은 픽셀 단위의 오차보다 인

간의 시각 시스템이 인지하는 구조적 정보의 유사성에 초점

을 맞춘 지표이다. 이는 영상의 밝기, 대비, 구조 정보를 복

합적으로 비교하여 두 영상 간의 지각적 유사성을 0과 1 사

이의 값으로 정량화한다. SSIM 값이 1에 가까울수록 원본의

구조적 특성이 잘 보존되었음을 의미한다. 이처럼 PSNR이

수치적 오차를 평가하는 데 강점이 있다면 SSIM은 시각적

품질 및 구조 보존을 평가하는 데 유용하므로, 두 지표를 상

호보완적으로 활용하여 알고리즘의 성능을 다각적으로 분석

하였다[19].

5. 데이터셋 및 노이즈 모델

본 연구에서는 Kaggle에서 공개된 Chest-Abdomen CT 영

상 데이터셋을 사용하였다. 모든 영상은 DICOM 형식이고

Fig. 5. Denoising results of CT images; A to C illustrate the U-Net then Wavelet structure, and D to F illustrate the Wavelet then U-Net structure

( = 0.05).

흉부와 복부 영역의 CT 영상으로 구성되어 있다. 실험을 위

해 원본 영상에 인위적으로 노이즈를 추가하여 저선량 환경

을 가정하였다. 노이즈의 표준편차는 0.01부터 0.1까지 0.01

단위로 조절해 다양한 조건에서 성능을 평가했다. 또한 단일

실험에서 발생할 수 있는 우연적인 오차를 최소화하고 데이

터의 신뢰도 향상을 위해 모든 노이즈 값에서 동일한 조건으

로 각 실험을 총 5회 반복 수행하였으며, 각 반복 실험에서

얻은 결과값들의 평균을 최종 결과값으로 사용하였다.

III. 결 과

본 연구는 저선량 CT 이미지를 알고리즘의 적용 순서만을

달리한 두 가지 방식(WaveletU-Net, U-NetWavelet)으로

진행하였다. Fig. 5는 제안된 두 방식의 노이즈 제거 성능을

시각적으로 비교한 대표적인 결과이다. 상단(A-C)은 U-Net을

먼저 적용한 후 웨이블릿 변환을 적용한 U-NetWavelet 방

식의 결과이며, 하단(D-F)은 웨이블릿 변환을 선처리로 적용

한 WaveletU-Net 방식의 결과를 나타낸다. 각 행은 원본

영상(A, D), 인위적으로 노이즈가 추가된 영상(B, E), 그리고

최종 복원된 영상(C, F)으로 구성하여 나타낸다.

본 연구에서 사용된 참조 영상은 저선량 영상을 생성하기
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위해 노이즈를 추가하기 전의 원본 CT 영상으로, Kaggle에

서 제공된 흉부 및 복부 CT 영상이다[20]. 복원 성능 평가는

두 모델의 정량적 평가를 위해 이 원본 영상을 참조 영상으

로 하여 PSNR과 SSIM을 계산했고 수치 결과를 비교하였다.

실험 과정에서 결과의 오차를 줄이고 데이터의 신뢰도 향상

을 위해 각 노이즈 조건마다 PSNR과 SSIM 값을 5회씩 측

정해 평균값을 산출하였고, 그 결과를 Table I에 제시하였다.

PSNR에서 WaveletU-Net 방식은 U-NetWavelet 방식에

비해 우수한 성능을 보였으며, 특히 높은 노이즈 환경에서도

평균값이 상대적으로 일정하게 유지되었다. 예를 들어, 노이

즈 표준편차가 0.05인 조건에서 WaveletU-Net 방식의

PSNR 값은 32.56 dB로, 동일한 조건에서 29.59 dB을 기록한

U-NetWavelet 구조보다 뚜렷하게 높은 값을 나타냈으며,

노이즈가 증가할수록 격차는 점차 확대되는 경향을 보였다.

반면 SSIM에서는 WaveletU-Net의 성능이 상대적으로 저

하되는 양상이 관찰되었다. 노이즈 표준편차가 0.04 이하인

조건에서는 두 알고리즘 간 SSIM 수치 차이가 약 0.01 이

하로 미약하였으나, 노이즈 표준편차가 0.05 이상으로 증가함

에 따라 차이가 점차 확대되어 최대 약 0.04까지 벌어졌다.

방법별 PSNR과 SSIM 평균값을 그래프로 나타낸 Fig. 6

으로 두 구조 간의 결과값을 비교하면, PSNR 수치에서 낮은

노이즈 구간은 약 2%로 차이의 폭이 크지 않았지만 높은 노

이즈 값으로 갈수록 최대 약 5%까지 격차가 벌어지며 U-

NetWavelet 구조가 상대적으로 저조한 성능을 보였다.

SSIM의 경우 저노이즈 구간에서는 WaveletU-Net 방식이

약 1% 더 높은 수치를 나타냈다. 반면 0.05 보다 높은 노이

즈부터 수치가 역전되어 최대 약 5%까지 차이가 벌어지며

U-NetWavelet 방식에 비해 불안정한 모습을 보였다.

또한, 각 알고리즘으로 복원된 영상의 동일한 위치에서 선

형 강도 변화를 비교하기 위해 픽셀값의 편차를 기반으로 한

Line Profile 분석을 수행하였다. Fig. 7과 Fig. 8은 원본 영

상, 복원 영상, 그리고 노이즈 영상에서 동일한 위치(붉은 선

표시)를 따라 추출된 강도 변화를 나타낸다. WaveletU-Net

구조의 Line Profile은 복원 영상의 신호가 노이즈 영상에 비

해 상대적으로 안정적인 값을 보이며, 정량적 평가 결과와 일

관된 경향을 확인할 수 있었다. 반면, U-NetWavelet 구조

Table I. Denoising performance evaluation using PSNR and SSIM.

PSNR SSIM

Noise U-Net+Wavelet Wavelet+U-Net U-Net+Wavelet Wavelet+U-Net

0.01 35.2678 35.8833 0.9390 0.9456

0.02 33.6940 34.9215 0.9196 0.9309

0.03 32.3246 33.7251 0.9064 0.9192

0.04 30.4345 33.3109 0.8954 0.8966

0.05 29.5892 32.5639 0.8759 0.8823

0.06 28.8790 32.0505 0.8752 0.8562

0.07 27.6754 31.4289 0.8625 0.8452

0.08 27.8556 30.3017 0.8579 0.8135

0.09 26.8810 30.0518 0.8316 0.7959

0.10 26.4908 29.1712 0.8240 0.7795

Fig. 6. (Color online) Comparison of PSNR (denoised) according to noise standard deviation.
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Fig. 7. (Color online) Comparison of U-Net-Wavelet denoising results with corresponding line profiles ( = 0.05).

Fig. 8. (Color online) Comparison of Wavelet-U-Net denoising results with corresponding line profiles ( = 0.05).
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에서는 복원 영상의 진폭 변동이 오히려 노이즈 영상보다 크

게 나타나는 양상을 보였다. 이러한 결과는 노이즈 제거의 효

과보다는 구조적 정보 손실의 영향으로 인한 현상일 가능성

이 존재한다. 또한 두 알고리즘 모두 복원 영상의 그래프 형

태가 원본 영상과는 상이하게 관찰되었다. 따라서 향후 연구

에서는 구조 손실을 최소화할 수 있는 최신 복원 모델을 적

용하여 해당 현상을 추가적으로 검증할 필요가 있다.

IV. 고 찰

본 연구에서는 의료 영상의 대표적인 복원 기술로 활용되

고 있는 U-Net과 웨이블릿 변환 알고리즘의 결합 순서가 영

상 복원 성능에 미치는 영향을 비교·분석하였다. 기존 연구는

딥러닝 모델에 기반하여 CT 영상의 노이즈를 제거하는 성능

에 중점을 두었으나, 본 연구는 동일한 알고리즘이라도 적용

순서에 따라 영상 내 정보 처리 방식이 어떻게 달라지고, 이

로 인해 복원 품질이 어떻게 변화하는지를 분석했다는 점에

서 의의를 갖는다. 특히, 저선량 CT 환경에서 영상의 품질이

저하되는 문제가 있고, 이를 해결하기 위해 알고리즘 구조의

순서가 결과에 어떤 영향을 미치는지에 대해 확인하였다.

WaveletU-Net 방식은 노이즈 억제 측면에서 우수한 성능

을 보이며, 전반적으로 높은 PSNR 수치를 보였다. 이는 웨

이블릿 변환의 고주파 임계값 처리가 노이즈를 제거하여, 후

속 학습 단계에서의 노이즈 정도를 최소화하기 때문이다. 그

러나 SSIM 수치에서 일부 한계가 발견되었다. 낮은 노이즈

환경에서는 U-NetWavelet 구조와 수치가 비슷했지만, 노이

즈가 강해질수록 불안정해지며 SSIM의 수치가 급격하게 낮

아지는 모습을 보였다. 이러한 정량적 결과를 시각적으로 비

교하기 위해 두 복원 방식의 결과 영상에서 동일 부위를 확

Fig. 9. (Color online) Comparison of LDCT noise reduction results before and after denoising in ROI regions ( = 0.05).

대하여 Fig. 9에 제시하였다. 시각적 비교 결과, Wavelet

U-Net 구조의 영상이 U-NetWavelet 구조보다 영상 전반에

서 배경 노이즈가 효과적으로 제거되어 매끄럽고 깨끗한 영

상이 구현되었으나, 영상의 화살표로 표시된 부위에서 확인되

듯 구조 정보까지 손실되어 영상이 뭉개져 표현되는 평활화

현상이 관찰되었다. 이는 정량적 평가에서 보여준 값과 일관

된 결과이다.

U-NetWavelet 방식은 SSIM 지표에서 우수성을 보였으

며, 이는 영상 내 구조 보존 능력이 뛰어나다는 정량적 근거

가 된다. 다만 U-Net의 학습 초기부터 노이즈가 포함된 데이

터를 기반으로 하는 만큼, 노이즈의 제거 성능 측면인 PSNR

이 다소 낮게 나타나는 경향이 있다. 이와 같은 결과는 Fig.

9의 시각적 비교에서도 유사하게 나타났다. U-NetWavelet

구조의 경우 노이즈 억제 효과가 상대적으로 미약하여 영상

내에 잔여 노이즈가 일부 관찰되었지만 세밀한 구조가 비교

적 잘 보존되어 정량적 지표에서의 결과와 동일한 양상을 보

인다. 이러한 결과는 웨이블릿 변환과 U-Net이 서로 상이한

정보 처리 특성을 지니기 때문이다[8,9].

WaveletU-Net 구조에서는 먼저 웨이블릿 변환을 통해 고

주파 노이즈가 억제된 영상이 생성되고, 이후 U-Net이 이를

다시 패턴 학습 기반으로 복원함으로써 두 단계에 걸친 노이

즈 제거 과정이 연속적으로 수행된다. 이로 인해 노이즈 억

제 성능은 탁월하게 나타났으나, 동시에 세부 구조 손실 또

한 누적되어 SSIM이 상대적으로 낮아지게 된다[21-24]. 반면

U-NetWavelet 구조에서는 원본 영상에서 U-Net이 우선적

으로 노이즈를 제거한 뒤, 웨이블릿 변환이 후처리 단계로 적

용된다. 그러나 이 경우, U-Net에 의해 이미 노이즈 성분이

제거되었으므로 웨이블릿 변환에서 임계값을 초과하는 주파

수 성분이 충분히 남아 있지 않게 된다. 따라서 웨이블릿 변
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환은 추가적인 노이즈 억제 효과를 수행하지 못하며, 전반적

인 노이즈 제거 능력은 제한적이었지만 세부 구조 보존이 비

교적 우수하게 유지되었다.

한편, 두 하이브리드 구조 모두 정도에 차이만 있을 뿐 복

원 영상이 원본 대비 전반적으로 평활화 되어 보이는 경향을

보였다. 이러한 한계는 노이즈 억제 과정에서 발생하는 일반

적인 현상으로, U-Net의 인코딩-디코딩 과정과 Wavelet의

Thresholding 과정에서 주요 성분 손실이 발생하였기 때문이

다. 향후 연구에서는 보다 최신 딥러닝 기술인 U-Net++나

Transformer 기반 복원 모델 등을 도입하여 구조 보존 성능

을 향상시키려 한다.

두 알고리즘 구조 간 성능 차이는 U-Net과 웨이블릿 변환

이 지니는 정보 처리 특성의 차이에서 기인하며, 결합 순서

에 따라 처리되는 정보의 성격이 달라짐으로써 발생하였다.

이러한 차이는 PSNR과 SSIM에서 관찰된 상반된 경향성이

설명하며, 이는 알고리즘의 결합 순서가 영상 복원 품질에 영

향을 미친다는 사실을 입증한다. 더 나아가, 영상 복원 알고

리즘을 단순히 성능 수치만으로 평가하는 것이 아니라, 실제

활용 목적에 따라 전략적으로 선택해야 함을 보여준다. 예를

들어, 임상적으로 특정 병변의 윤곽이나 해부학적 구조의 명

확한 식별이 중요한 경우, SSIM이 우수한 U-NetWavelet

방식이 적합할 수 있다. 반면, 영상 판독 시 노이즈로 인한

오진 가능성을 줄이기 위해 고강도의 노이즈 억제가 우선될

경우에는 WaveletU-Net 방식이 더 유리할 수 있다. 즉,

영상 복원의 목적이 노이즈의 최소화인지, 구조 정보의 보존

인지에 따라 적용 순서가 결정되어야 하며, 이는 영상 복원

모델의 설계 시 중요한 요소가 될 수 있다. 더불어, 단일 지

표에 의존한 평가보다 복수의 지표를 종합적으로 해석하여 복

원 품질을 판단하는 것이 바람직하다.

V. 결 론

본 연구는 동일한 알고리즘 조합이라도 결합 순서와 구조

적 배치에 따라 영상 복원 성능에 유의미한 차이가 발생할

수 있음을 확인하였다. 이는 영상 복원 기법의 설계에서 알

고리즘의 종류뿐 아니라 적용 방식과 구조적 연결이 중요한

변수로 작용함을 보여준다.

WaveletU-Net 구조는 노이즈 억제에서 우수한 성능을 보

였으며, 그 결과 PSNR 지표에서 높은 수치를 나타냈다. 반

면, U-NetWavelet 구조는 상대적으로 구조 손실이 적었으

며, 이에 따라 SSIM 지표에서 높은 값을 기록하였다. 이러한

결과는 영상 복원 알고리즘은 정량적 성능 지표만으로 평가

하기보다 활용 목적에 따라 전략적으로 선택되어야 함을 의

미한다. 향후 연구에서는 직렬 결합에서 나아가 병렬 또는 반

복 구조를 적용하거나, 3차원 U-Net 및 최신 딥러닝 모델과

결합한 연구 또한 확장 방향으로 제안함으로써, 복원 기법을

보다 발전시킬 수 있을 것으로 기대된다.
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