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In recent years, ultrathin high-efficiency electrical steel sheets, which serve as the core material for electric vehicle motors, have

been studied to improve energy efficiency. Non-oriented electrical steel was cold-rolled twice to produce 0.1 mm ultrathin sheets, and

hysteresis characteristics were investigated under heat treatment conditions in the range of 800~1,100oC and varying time durations in

minutes. Furthermore, EBGAN-based data augmentation and AutoML machine learning were employed to secure untested conditions,

enhance prediction accuracy, and minimize core loss. A predictive model capable of reproducing hysteresis curves with high accuracy

(R2 > 0.97, MSE < 0.01) was successfully established, and the use of EBGAN-based augmentation further improved prediction

performance. Through machine learning and heatmap analysis, the maximum hysteresis area was predicted to be 386.119 J/m3 at

830.6oC for 1 minute, while the minimum area was predicted to be 183.772 J/m3 at 1,051.0oC for 13.6 minutes, indicating more than a

twofold difference in core loss depending on the heat treatment condition. This result suggests that heat treatment directly influences

domain wall motion and grain growth. The study highlights a potential pathway for reducing core loss through the optimization of heat

treatment processes for ultrathin electrical steel, thereby presenting new directions in magnetic material research.
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GAN 기반 데이터 증강과 머신러닝을 활용한 극박 무방향성 전기강판

히스테리시스 곡선 및 철손 예측 연구
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(2025년 9월 30일 받음, 2025년 12월 8일 최종수정본 받음, 2025년 12월 15일 게재확정)

최근 전기차 모터의 에너지 효율 향상을 위해 모터 코어의 재료인 초박형 고효율 전기강판이 연구되고 있다. 무방향성 전기강

판을 2회 냉간압연하여 0.1 mm 초박형 전기강판을 제조하고, 800~1,100oC 온도 범위와 분 단위의 시간 조건에서의 열처리를 통

해 히스테리시스 특성을 조사하였다. 그리고 EBGAN 기반 데이터 증강과 AutoML 머신러닝을 통해 미실험 조건을 확보하여 정

확성을 높여 최소 철손을 예측하는 연구를 진행하였다. 히스테리시스 곡선을 R
2 > 0.97, MSE < 0.01의 높은 정확도로 예측하는

모델을 성공적으로 구축하였으며, EBGAN을 통한 증강 사용시 정확도가 상승됨을 확인할 수 있었다. 머신러닝과 히트맵 분석을

통해 최대 면적은 830.6oC 1분에서 386.119 J/m3로 예측되었고, 최소 면적은 1,051.0oC 13.6분 조건에서 183.772 J/m3로 예측되

어, 열처리 조건에 따라 2배 이상의 철손 차이를 보임을 확인하였다. 이는 열처리 조건이 자구벽 이동과 결정립 성장에 직접적으

로 영향을 미침을 시사한다. 본 연구는 초박형 전기강판의 열처리 공정 최적화를 통한 철손 저감 방안을 제시함으로써, 자성재료

의 연구에 새로운 방향성에 대한 잠재성을 보여준다.

주제어 :강판, 머신러닝, 자기적 성질
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I. 서 론

전기차, 드론, 풍력발전기와 같은 전력 변환 장치의 수요가

증가함에 따라, 모터 코어 소재인 무방향성 전기강판(non-

oriented electrical steel, 이하 Si steel)의 자기적 효율 향상

이 중요한 과제로 떠오르고 있다. 특히, 고효율화를 위해서는

자속밀도를 높이거나 철손을 줄이는 방향의 공정 설계가 필

수적이다. 이를 위해 두께 감소, 비저항 증가, 조직 제어와

같은 공정 전략이 제안되어 왔지만, 제조 기술적 제약으로 인

해 실용적 한계가 존재한다. 예를 들어, Si 첨가량을 높이면

전기저항이 증가하여 손실을 줄일 수 있으나, 동시에 취성이

커져 압연성과 가공성이 크게 저하된다. 이로 인해 특정 두

께 이하로 소재를 안정적으로 제조하기 어렵고, 반복적인 열

처리-압연 공정이 요구된다. 전기강판을 얇게 가공하는 것은

와류 손실(eddy current loss)을 억제하여 전체적인 자기 손

실(magnetic loss)을 감소시키는 데에 유리한 효과를 제공한

다[1]. 실제로 전기강판 역사적으로 계속해서 최종 강판의 제

조 두께는 감소하고 있다[2-4]. 현재는 0.3 mm가 일반적이며

0.3 mm 이하의 강판도 일부 상업적으로 생산되고 있다[5]. 그

러나 현재 상용화된 압연 기술을 고려할 때, 초기 두께 3~5

mm의 열연강판을 단일 공정으로 0.2 mm 이하까지 감축하는

것은 기술적 · 공정적 한계로 인해 현실적으로 적용되지 못

하고 있다. 따라서 기존 상업적 생산 방식이 아닌 다른 방법

을 통해 고효율 박판 전기강판을 확보하기 위한 방안들이 지

속적으로 연구되고 있다. 그 중 하나가 2회 압연을 통해 냉

간압연을 한 번 더 진행하는 방식이다[6-9]. 이 과정에서 1차

압연을 통한 중간 두께를 확보한 뒤, 후속 압연을 통해 최종

적으로 0.5 mm 두께 이하의 시편을 제작하였다. 본 연구실

에서는 중간 두께로 0.5 mm 후 열처리된 시편을 이용하였으

며 1회 추가 압연하여 기존 상용재보다 얇은 0.1 mm 두께의

시편을 최종 제작하였다. 그러나 회복과 재결정을 통한 집합

조직의 제어를 통해 자기적 특성을 향상시키기 위해서는 특

정 온도와 시간에 따른 열처리가 필요하다. 그런 다음, 자성

을 측정하고 평가가 진행된다. 따라서, 자기적 효율인 자성에

유리한 최적 열처리 조건을 찾는 연구를 진행하였다.

지금까지는 경험적 접근이나 시행착오 기반의 실험 설계를

통해 조건을 탐색하는 경우가 많았다. 그러나 이러한 방식은

대량의 실험 데이터 축적을 필요로 하고, 새로운 조건에 대

한 확장성이 떨어진다는 한계를 지닌다. 이러한 배경에서 최

근에는 소재 데이터 해석과 공정 최적화를 위해 인공지능(AI)

기반 기법이 적극적으로 활용되고 있다. AI 모델은 제한된

실험 값으로부터 숨겨진 패턴을 추출하여 예측에 활용할 수

있으며, 특히 AutoML(Automated Machine Learning)과 같

은 최신 기법은 모델 선택과 하이퍼파라미터 조정 과정을 자

동화하여 연구자의 개입을 최소화하면서도 안정적인 성능을

보장할 수 있다는 장점이 있다. 그리고 재료 연구적 측면에

서도 결정립 형태와 상의 변화를 연구하는 분야에서 인공지

능을 이용한 연구들이 진행되고 있다[10-13].

또한, 학습 데이터의 부족 문제를 해결하기 위한 대안으로

적대적 생성 신경망(GAN, Generative Adversarial Network)

이 주목받고 있다. GAN은 기존 데이터를 기반으로 유사하지

만 새로운 데이터를 합성함으로써, 회귀 조건에서의 데이터

부족 문제를 보완할 수 있다. 소재 분야에서도 GAN을 활용

한 데이터 증강 사례가 일부 보고되고 있으며[14-17], 특히

비선형성이 강한 히스테리시스 거동과 같은 자기적 현상을 보

완하는데 있어 효과적인 도구로 활용될 가능성이 있다.

연자성체의 연구에서 주로 사용되는 재료의 특성 값은 자성

값이다. 그 중에서 히스테리시스 루프는 전기강판의 자기적 성

능을 대표하는 특성으로, 최대 자속밀도는 재료의 자화 능력

을 나타내고, 면적은 철손과 직결된다. 하지만 곡선의 형태와

면적은 온도, 시간, 미세조직의 상호작용에 의해 복잡하게 변

화하기 때문에 단순히 철손이나 자속밀도의 데이터 값만을 활

용한다거나 기존 물리 모델만으로는 정밀한 예측이 어렵다. 이

러한 한계를 극복하기 위해 최근에는 기계 학습을 기반으로

자성 재료에서 중요한 자속밀도와 철손에 대해 히스테리시스

곡선을 직접 예측하거나, 곡선으로부터 에너지 손실을 추정하

는 연구가 등장하고 있다[18,19]. 본 연구실에서도 히스테리시

스 곡선을 직접 예측하여 자속밀도를 예측하는 연구를 진행하

였었다[14]. 그러나 자속밀도의 예측은 히스테리시스 곡선의

최대값만 예측하는 것이기 때문에 히스테리시스 곡선 중에서

상부 자화만을 사용하여 얻을 수 있는데 반해 에너지 손실 예

측은 히스테리시스 곡선 전체를 예측해야 하고 재료에 따른

폐쇄 루프의 형태가 바뀌는 복잡한 부분이 있어 난이도가 더

높고 2배 이상의 데이터 처리가 필요하다. 또한 자속밀도와 달

리 면적이라는 많은 데이터의 정확도가 중요하기에 정밀도를

높이기 위해서 최신 개념의 GAN도 필요하다.

본 연구는 이러한 문제의식에서 출발하여, 제한된 실험 데

이터를 보완하기 위해 기존에 알려진 WGAN이나 CGAN 방

법에서 판별자의 형식을 에너지 방식으로 바꾸어 판별자의 정

합도를 고도화시킨 Energy-based GAN(EBGAN)[20,21]을

활용한 데이터 증강과 머신러닝, 더 나아가 AutoML 기법을

결합하고자 한다.

II. 실험 방법

1. Experimental method

본 연구에서 사용된 실험 시편은 열연 강판을 압연 후 열

처리한 두께 0.5 mm의 무방향성 전기강판을 1회 추가 압연
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을 통해 0.1 mm까지 압연 후 열처리를 진행하였다. 그리고

빠른 승온 속도를 확보할 수 있는 장입형 퀄츠 튜브 기반의

칸탈 열처리로인 SH-FU-80LTG 열처리 장비를 사용하였으며,

구체적인 열처리 변수는 Table I에 정리하였다.

또한, 시편의 주요 화학적 조성은 X선 형광 분석기(X-ray

fluorescence spectrometer, Rigaku/ZSX-PrimusIV)를 이용하

여 정량 분석을 실시하였다. Table II는 본 연구에서 사용된

전기강판이 Si과 Al을 각각 0.61 wt%, 0.34 wt% 함유하고

있다는 것을 보여준다.

자기적 특성의 측정은 IWATSU가에서 제작한 SY-8219 모

델의 단일 시편 시험 측정기(Single Sheet Tester)를 이용하

여 수행하였다[22,23]. 이를 위해 시편은 자기 특성 측정에

적합한 형태로 가공되었으며, 최종적으로 40 mm × 10 mm의

치수로 절단하여 실험에 사용하였다. 측정 과정에서는 자속밀

도(B), 자기장 세기(H), 자화 전류(I), 자속 전압(V) 데이터를

획득하였으며, 이 가운데 히스테리시스 곡선(hysteresis loop)

의 구성을 위하여 H와 B 데이터를 주요 분석 대상으로 선정

하였다. 또한, 자성 데이터의 측정 기준과 조건은 Table III에

정리되어 있다.

2. Data design framework

본 연구에서 사용된 세 가지 모델의 입력 값은 Temperature,

Time, H DATA(A/m)이며, H DATA 값의 범위는 800~

800 A/m 사이의 값으로 측정되었다. 출력 값은 B DATA(T)

로 설정하여 히스테리시스 곡선을 얻을 수 있었으며, 이를 기

반으로 자성 특성 예측을 수행하였다. 모델링에는 XGBoost,

FLAML, RandomForest의 세 가지 접근법을 도입하여 성능

을 비교하고 분석하였다.

XGBoost의 경우, 대표적인 부스팅 계열 모델로서 본 연구

에서는 랜덤서치를 100회 실시하였으며, objective=’reg:

squarederror’, n_estimators=100, max_depth=6, learning_rate=

0.1, subsample=0.8, colsample_bytree=0.8, random_state=42

를 주요 하이퍼파리미터로 설정하였다. 이러한 조건은 일반화

성능을 확보하는 동시에 과적합을 억제하기 위한 것으로, 트

리 기반 학습의 장점을 활용해 비교적 안정적인 예측력을 확

보하였다.

FLAML은 AutoML 기반 프레임워크로, 본 연구에서는 약

60초간의 제한된 탐색 시간을 기준으로 학습을 수행하였다.

FLAML은 ‘lgbm’, ‘rf’, ‘xgboost’, ‘sgd’, ‘extra_tree’, ‘xgb_

limitdepth’ 등 다양한 트리 기반 모델을 자동 탐색하여 최적

의 단일 모델을 선정하는 방식으로 작동된다. 이는 복잡한 앙

상블 구성을 배제하고 단일 모델의 성능을 극대화하는 전략

으로, 탐색 시간을 절약하면서도 안정적인 예측 성능을 보장

하는 장점이 있다. 본 논문에서 사용된 FLAML의 경우,

ExtraTreeRegressor 모델이 선택되어 사용되었다.

RandomForest는 배깅(Bagging) 기반의 대표적인 트리 앙상

블 기법으로, n_estimators(50, 100, 200), max_depth(3, 6,

9), min_samples_split(2, 5, 10)의 다양한 하이퍼파라미터 조

합을 GridSearchCV를 통해 탐색하였으며, n_estimators(100),

max_depth(3), min_samples_split(2)이 선택되었다. 이 접근법

은 모델의 단순성과 안정성을 바탕으로, 비교적 작은 데이터

셋에서도 강건한 예측 성능을 제공하는 장점이 있다.

Fig. 1은 본 연구에서 수행한 전반적인 과정을 간략히 보여

준다. 실험 데이터 수집부터 데이터 증강, 히스테리시스 루프

면적 예측 히트맵 작성까지의 전체 흐름을 한눈에 확인할 수

있도록 구성되어 있다.

FLAML(Fast Lightweight AutoML)은 경량화된 자동 머신

러닝 기법으로, 모델 탐색과 하이퍼파라미터 최적화를 동시에

수행하는데 최적화되어 있는 기법이다[24-26]. 기존의

AutoML 접근법은 베이지안 최적화(Bayesian Optimization)에

기반하여 예측 성능 향상에만 집중하는 경우가 많았다. 그러

Table I. Heat treatment conditions for cold-rolled electrical steel

specimens.

Annealing parameters Time Temperature (oC) Vacuum level

Values 1~50 800~1,100 torr

Table II. Chemical composition of specimens (wt%).

Si Al Mn

0.611 wt% 0.335 wt% 0.143 wt%

Table III. Fixed parameters for measuring magnetic properties.

Fix param Fix value Fix unit Freq (kHz) Notation

Bm 1,000 mT 0.05 W10/50

Fig. 1. Workflow of the entire experiment process.
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나 이러한 방식은 계산 차원이 제한된 상황에서 탐색 시간이

길어지고, 비용 대비 효율성이 저하되는 문제가 있었다.

FLAML은 이러한 한계를 극복하기 위해 성능과 계산 비용

을 동시에 고려하는 목적 함수를 도입하였다. 즉, 단순히 손

실 함수 L()를 최소화하는 대신, 특성 하이퍼파라미터 조합

에 대한 계산 비용 C()을 목적 함수에 포함시킨다. 이를

통해 FLAML은 예측 성능과 계산 효율성의 균형을 달성한다.

수학적으로, 최적화 문제는 다음과 같이 정의된다.

(1)

즉, FLAML은 를 통해 성능 우선 탐색과 비용 우선 탐색

사이에서 유연하게 균형을 조절한다. 이러한 전략은 제한된 탐

색 시간에서도 높은 성능을 유지할 수 있게 하며, 실제 응용

환경에서 실용적인 AutoML 기법으로 사용될 수 있게 한다.

EBGAN은 전통적인 GAN 구조를 에너지 기반 모델

(Energy-based Model, EBM)의 관점에서 재해석한 기법이다.

기존 GAN에서는 판별기(Discriminator)가 입력이 실제 데

이터(real)인지 생성 데이터(fake)인지 이진 분류(binary

classification)하는 역할을 수행하였다[27-29]. 반면, EBGAN

에서는 판별기를 에너지 함수(Energy Function)로 정의하여,

입력 샘플의 “진짜/가짜” 여부를 에너지 값으로 표현한다

[20,21].

EBGAN에서 판별기 D는 보통 오토인코더(Autoencoder)

구조로 설계되며, 주어진 입력 x에 대한 재구성 오차

(Reconstruction Error)가 에너지로 정의된다. 즉, 아래의 식처

럼 표현될 수 있다.

(2)

여기서, D(x)는 판별기(오토인코더)에 의해 재구성된 샘플을

의미하며, E(x)는 입력에 대한 에너지 값(낮을수록 “진짜” 데

이터일 가능성이 높음)을 의미한다.

생성기 G는 잠재 변수 z ~ p(z)로부터 데이터를 생성하며,

판별기의 에너지를 낮추는 방향으로 학습된다.

EBGAN의 목적 함수는 다음과 같이 정의된다.

(3)

m는 마진(margin) 파라미터를 의미하며, 첫 번째 항은 실제

데이터의 에너지를 낮추는 항이며, 두 번째 항은 가짜 데이터

의 에너지를 높이되, 마진 m을 넘지 않도록 제한하는 항이다.

즉, EBGAN은 진짜 데이터에 대해서는 낮은 에너지를, 가짜

데이터에 대해서는 높은 에너지를 부여함으로써 생성기와 판

별기를 동시에 학습시킨다. 이러한 접근은 전통적인 GAN의

불안정한 학습 문제를 완화하고, 안정적인 훈련 과정을 가능하

게 한다. Fig. 2는 EBGAN의 workflow를 나타낸 것이다.

III. 결과 및 고찰

Fig. 3은 본 연구에서 수행한 전체 연구 과정을 종합적으로

보여준다. 먼저 1단계에서는 기존 실험 데이터를 기반으로

EBGAN을 활용하여 데이터 증강을 수행하였다. 구체적으로,

실험적으로 확보된 데이터로 각 조건당 100개의 새로운 데이

터를 증강하였으며, 기존 실험에서 확보하지 못한 온도-시간

조건에 대해서는 각 온도별 2개의 새로운 데이터를 생성하였

다. 이를 통해 제한된 실험 조건을 확장하고, 다양한 온도-시

간 조합에서의 히스테리시스 곡선 학습이 가능하도록 데이터

셋을 구성하였다. 2단계에서는 이렇게 확보된 데이터를 활용

하여 히스테리시스 루프의 면적을 예측하고, 이를 기반으로

히트맵을 작성하였다. 히트맵은 온도와 시간 조건에 따른 면

적 분포를 직관적으로 나타내며, 기존 실험 데이터만을 활용

한 경우와 GAN으로 증강 및 새롭게 생성된 조건을 포함한

경우를 비교함으로써 데이터 확장이 면적 예측 범위에 미치

는 영향을 확인하였다. 이를 통해 최소-최대 면적값의 변화와

조건별 경향성을 파악할 수 있었으며, 열처리 조건 설계에서

손실 최소화를 위한 유용한 정보를 제공하였다.

마지막 3단계에서는 히트맵 기반 예측값을 바탕으로 모델

의 신뢰성을 검증하였다.

본 연구의 첫 번째 단계에서는, EBGAN을 활용하여 증

강한 데이터를 적용하기 전과 후의 모델 예측 성능을 비교

하였다. 실험에서는 세 가지 회귀 모델(XGBoost, FLAML,

RandomForest)을 사용하였으며, 학습(train) 데이터로는 800oC

6분, 900oC 2분, 1,000oC 3분, 1,050oC 4분, 1,100oC 1분

조건의 히스테리시스 곡선을 사용하였다. 평가(test) 데이터로

는 850oC 2분, 950oC 8분 조건을 적용하였으며, 본 연구에

서는 최종적으로 850oC 2분 조건을 예측하는 것으로 분석을

진행하였다. 또한, 히스테리시스 예측은 상부 곡선과 하부 곡

선으로 나누어 각각 예측을 진행하였다.

GAN 증강 이전, 각 모델의 히스테리시스 곡선 예측 성능

은 상부와 하부 영역 모두에서 유사한 수준을 나타냈다.

XGBoost 모델의 경우 상부 곡선 예측에서 R2가 0.9706,

MSE는 0.0214로 나타났으며, 하부 곡선 예측에서는 R2가

0.9730, MSE가 0.0200으로 기록되었다. FLAML 모델은 상

θ * = arg min L θ 
θΘ

+ λC θ 

E z  = xD x 
2

min maxV D G  = Ex~P
data

E x   + Ez~p z  mE G z   
+

G D

Fig. 2. Workflow diagram of Energy-based GAN (EBGAN).



≪연구논문≫ Journal of the Korean Magnetics Society Vol. 35, No. 6, December 2025  345 

부 곡선에서 R2가 0.9700, MSE가 0.0218이었고, 하부 곡선

에서 R2 0.9714, MSE가 0.0212로 안정적인 예측 성능을 보

였다. Random Forest 모델의 경우, 상부 곡선에서 R2가

0.9770, MSE가 0.0167로 가장 우수한 결과를 나타냈으며,

하부 곡선에서는 R2 0.9788, MSE 0.0157을 기록하였다.

다음으로, EBGAN을 적용하여 학습 데이터를 각 조건당

100개씩 증강한 뒤 동일한 세 모델을 재학습하였다. 그 결과,

XGBoost 모델은 상부 곡선에서 R2 0.9706, MSE 0.0214,

하부 곡선에서 R2 0.9731, MSE 0.199로 예측 성능의 안정

성을 유지하였다. FLAML 모델은 상부 곡선에서 R2 0.9710,

MSE 0.0211을 기록하였고, 하부 곡선에서는 R2 0.9741,

MSE 0.0191로 증강 데이터의 효과를 일부 반영하였다.

Random Forest 모델은 상부 곡선에서 R2 0.9763, MSE

0.0173을 보였으며, 하부 곡선에서는 R2 0.9725, MSE

0.0203으로 나타났다. 이와 같은 결과는 데이터 증강이 모델

성능을 근본적으로 변화시키지는 않았으나, 특정 조건에서 예

측 안정성을 보완하는 효과를 제공했음을 의미한다.

Fig. 4는 900oC 2분 조건에서 실제 데이터와 GAN을 통해

생성된 증강 데이터의 분포를 비교한 결과를 보여준다. (b)의

경우, (a)에 비해 다소 오차가 발생했는데, 이는 GAN 생성

과정에서 발생하는 잠재벡터 노이즈와 학습 과정의 확률적 변

동이 하부 곡선에서 보다 민감하게 작용했기 때문으로 보인

다. 비록 일부 오차가 존재하지만, 두 데이터셋의 분포는 전

반적으로 유사한 경향을 나타내어, GAN 기반 증강 데이터가

원 데이터의 특성을 잘 반영하고 있음을 확인할 수 있다.

Fig. 5는 EBGAN 학습 과정에서 에너지가 점차 감소하는

과정을 보여준다. EBGAN에서 핵심은 판별자를 전통적인 분

류기 대신 에너지 함수로 해석한다는 점이다. 여기서 에너지

함수는 오토인코더 구조를 통해 정의되며, 입력 데이터를 재

구성하는 과정에서 발생하는 오차가 곧 에너지로 간주된다.

이 과정에서 발생하는 재구성 오차는 입력 데이터의 특성과

모델 파라미터, 그리고 학습 과정에서의 노이즈에 따라 변동

할 수 있으며, 특히 히스테리시스 곡선과 같이 민감한 구조

적 특성을 가진 데이터에서는 미세한 곡선 차이가 에너지 값

에 영향을 주어 일정 수준의 오차가 나타날 수 있다. 이러한

오차는 학습 초기에는 상대적으로 크지만, 학습이 진행됨에

Fig. 3. Schematic overview of the entire research workflow.

Fig. 4. (Color online) Comparison of the data distribution between the actual data and the GAN-generated augmented data under 900oC 2 minutes;

(a) Upper part of the loop, (b) Lower part of the loop.
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따라 점차 안정화되며 생성자와 판별자 간 균형이 이루어지

게 된다. 모델의 목표는 실제 데이터에는 낮은 에너지를, 가

짜 데이터에는 높은 에너지를 할당하는 것이다. 이러한 맥락

에서 D_loss는 에너지 함수가 얼마나 잘 작동하는지를 평가

하는 지표로 볼 수 있으며, 진짜 데이터의 경우 에너지를 최

소화하도록 유도하고, 가짜 데이터의 경우 일정 수준 이상의

에너지를 유지하도록 하여 두 집단을 구분하는 역할을 수행

한다. Measure은 모델이 수렴과 균형이라는 두 가지 목표를

얼마나 잘 달성했는지 측정하는 단일 지표를 나타내며,

G_loss는 생성자가 만든 데이터가 에너지 함수에 의해 낮은

에너지를 가지도록 하는데 초점을 맞추고 있다. 즉, 생성기는

자신의 출력이 실제 데이터처럼 판별되어 재구성 오차가 작

아지도록 학습되며, 이를 통해 보다 현실적인 데이터를 만들

어낸다.

학습이 진행됨에 따라(epoch 증가) 에너지가 안정적으로 감

소하는 양상을 확인할 수 있었으며, 이는 생성자와 판별자 간

Fig. 5. (Color online) Energy reduction trend during EBGAN training, showing a stable decrease with increasing epochs; (a) Upper part of the

loop, (b) Lower part of the loop.

Fig. 6. (Color online) Comparison of predicted upper hysteresis loops at 850oC for 2 minutes using the FLAML model with three datasets: (a)

actual data, (b) actual data + 100 augmented data, and (c) actual data + 100 augmented data + newly generated data.

의 학습 균형이 적절히 이루어졌음을 의미한다. 이러한 결과

는 EBGAN이 히스테리시스 곡선 데이터의 분포 특성을 효

과적으로 학습하고, 원 데이터와 유사한 새로운 데이터를 안

정적으로 생성할 수 있는 기반을 마련했음을 보여준다.

마지막으로, EBGAN을 활용하여 기존 실험에서 확보하지

않은 새로운 온도-시간 조건을 생성하였다. 예를 들어 800oC

1분, 4분, 6분 데이터를 기반으로 7분, 10분 데이터를 생성하

였으며, 동일한 방식으로 900oC(6분, 8분), 1,000oC(14, 16분),

1,050oC(11분, 15분), 1,100oC(8분, 12분) 조건에서 새로운

데이터를 확보하였다. 선행 연구에서 최적화된 조건에 따라

[14], 각 온도-시간 조건별로 상부 4,000개, 하부 4,000개, 총

8,000개의 데이터를 생성하였다. 이로써, 기존의 제한된 조건

을 확장하여 다양한 온도-시간 조합에서의 히스테리시스 곡

선을 학습할 수 있게 되었다.

생성한 데이터를 포함하여 세 가지 모델(XGBoost, FLAML,

Random Forest)을 재평가한 결과, 모든 모델에서 예측 성능
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이 향상되었음을 확인하였다. XGBoost 모델은 상부 곡선에

서 R2 0.9911, MSE 0.0065를 기록하였고, 하부 곡선에서는

R2 0.9891, MSE 0.0081로 나타났다. FLAML의 경우, 상부

곡선에서 R2 0.9899, MSE 0.0073, 하부 곡선에서 R2 0.9879,

MSE 0.0089로 확인되었다. Random Forest 모델은 상부 곡

선에서 R2 0.9886, MSE 0.0083을, 하부 곡선에서 R2 0.9869,

MSE 0.0097을 기록하였다. 이러한 결과는 EBGAN으로 생성

된 데이터가 실제 데이터의 특성을 성공적으로 반영하고 있

으며, 예측 모델의 학습 공간을 확장하여 성능 개선을 유도

했음을 보여준다.

Fig. 6은 FLAML 모델을 기준으로, 세 가지 데이터셋(원

데이터, 원 데이터 + 100개 증강 데이터, 원 데이터 + 100개

증강 데이터 +새로 생성한 데이터)을 활용하여 850oC 2분의

상부 곡선을 예측한 결과를 비교한 그래프이다. 원 데이터만

사용했을 때보다 증강 데이터가 포함된 경우, 곡선의 실제 데

이터와의 적합도가 개선되었으며, 특히 새로 생성된 조건까지

포함한 경우 더욱 안정적인 예측 곡선을 확인할 수 있었다.

Fig. 7. (Color online) Variation of MSE across three steps of data expansion (actual data  actual data + 100 augmented data  actual data + 100

augmented data + newly generated condition data); (a) upper hysteresis loop, (b) lower hysteresis loop.

Fig. 8. (Color online) Heatmap comparison of hysteresis loop area distributions; (a) based on experimental data only, (b) including GAN-

augmented and newly generated condition data.

이를 통해 GAN 기반 데이터 생성이 모델의 일반화 능력을

강화한다는 점을 시각적으로 입증할 수 있었다.

Fig. 7은 세 단계의 데이터 확장 과정(원 데이터  원 데

이터 + 100개 증강 데이터  원데이터 + 100개 증강 데이

터 +새로운 조건 생성 데이터)에 따른 MSE 변화를 보여준

다. 결과적으로 데이터가 단계적으로 확장됨에 따라 거의 모

든 모델에서 MSE가 점진적으로 감소하는 경향을 확인할 수

있었으며, 이는 데이터 다양성 확보가 모델의 예측 안정성과

신뢰도를 강화하는데 기여했음을 의미한다.

종합하면, 새로운 조건을 GAN으로 생성하고 이를 학습에

반영하는 과정은 기존에 제한적이었던 데이터 기반 예측 모

델의 범용성을 확장시키며, 나아가 전기강판 열처리 조건 설

계 및 자성 특성 예측을 위한 도구로 활용될 수 있음을 확인

하였다.

히스테리시스 곡선의 면적은 자성 재료의 철손과 직접적으

로 연결되기 때문에, 실험 데이터와 GAN으로 생성된 조건

데이터 모두에서 중요한 비교 지표가 된다. 몇 가지 구체적
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인 면적 값을 살펴보면, 실험 데이터에서는 800oC 6분 조건

이 254.0502 J/m3, 1,000oC 3분 조건이 263.6772 J/m3, 그

리고 1,100oC 1분 조건이 269.2093 J/m3로 계산되었다. 이

에 비해 GAN으로 새롭게 생성한 조건 데이터에서는 900oC

6분 조건이 296.8 J/m3, 900도 8분 조건이 182.303 J/m3,

그리고 1,050도 11분 조건이 181.8162 J/m3로 나타났다. 이

러한 결과는 실험 조건과 GAN으로 보간된 조건 간의 차이

를 수치적으로 보여주며, 특히 GAN 데이터가 실제 실험 결

과의 범위 내에서 다양한 경향성을 모사하고 있음을 확인할

수 있다.

이와 같이 확보된 면적값을 기반으로 히트맵을 작성하여 분

포를 보다 직관적으로 확인하였다. Fig. 8은 이러한 히트맵 결

과를 시각적으로 나타낸 것으로, 실험 데이터만을 활용한 경우

와 GAN으로 증강된 데이터를 포함한 경우의 차이를 한눈에

비교할 수 있다. 먼저, GAN 데이터를 포함하지 않고 실험적

으로 확보된 데이터만을 활용하여 작성한 Fig. 8(a)의 히트맵

에서는, 최대 면적값이 830.6oC 1분에서 383.748 J/m3로 예측

되었고, 최소 면적값은 1,026.5oC 3.8분에서 244.000 J/m3로

나타났다. 이는 제한된 데이터 조건에서도 온도와 시간에 따른

면적 변화를 일정 수준 반영할 수 있음을 보여준다.

반면, GAN을 통해 생성한 새로운 조건 데이터를 포함하여

작성한 Fig. 8(b)의 히트맵에서는 최대 면적값이 830.6oC 1

분에서 386.119 J/m3로 예측되었고, 최소 면적값은 1,051.0oC

13.6분 조건에서 183.772 J/m3로 나타났다. 즉, Fig. 8에서

확인할 수 있듯이 GAN을 포함한 히트맵은 실험 데이터 기

반 히트맵에 비해 면적 분포의 범위가 확장되었으며, 이는 보

다 넓은 조건 범위에서 자성 손실 특성을 탐색할 수 있게 한

다는 점에서 의미가 크다.

Fig. 9는 Fig. 8에서 히트맵으로 예측된 면적 경향을 실제

히스테리시스 루프와 비교하여 검증한 결과를 보여준다. Fig.

Fig. 9. (Color online) Comparison of predicted hysteresis loop areas from heatmaps with actual experimental loop; (a) 800oC 1min condition, (b)

1,050oC 16 min condition.

9(a)는 히트맵에서 최대 면적값으로 예측된 조건과 유사한

800oC 1분 조건의 히스테리시스 곡선을 나타내며, Fig. 9(b)

는 상대적으로 면적이 작은 1,050oC 16분 조건의 곡선을 보

여준다. 두 곡선을 비교하면, 800oC 1분 조건의 루프 면적이

1,050oC 16oC 조건보다 넓게 나타나, 히트맵 기반 예측과 실

험 데이터 간의 경향이 일치함을 확인할 수 있다.

면적이 넓은 800oC 1분 조건에서는 자벽 이동이 상대적으

로 제약을 받고 잔류응력과 미세조직의 영향으로 히스테리시

스 손실이 증가하였다. 반대로, 1,050oC 16분 조건에서는 결

정립 성장과 집합조직(texture) 정렬이 일부 진행되어 자벽 이

동이 원활해지고 보자력(coercivity)이 낮아지면서 면적이 감

소하였다[30]. 최대 면적을 정량적으로 보면, 히트맵 예측 조

건인 830.6oC 1분에서 386.119 J/m3로 나타났으며, 실제

800oC 1분에서는 406.0589 J/m3로 계산되었다. 이는 히스테

리시스만의 결과이며, 실제 철손 값은 히스테리시스 손실과

에디 손실 등이 필요하기 때문에 직접 비교하는 것은 어렵다.

하지만 이를 통해서 히스테리시스 곡선을 통한 면적 값이 낮

을 수 있는 값을 찾을 수 있었다.

이 결과는 GAN 기반 데이터 증강과 히트맵 예측이 실제

실험 조건에서의 자기적 특성을 충분히 반영할 수 있음을 보

여주며, 데이터 기반 모델이 재료 공정 설계와 손실 최적화

평가에 실질적으로 활용될 수 있음을 의미한다.

이러한 실험 및 예측 결과를 종합하면, 히스테리시스 루프

면적이 커질수록 철손이 증가한다. 따라서 철손을 최소화하기

위해서는 루프 면적을 줄일 수 있는 미세조직적 조건을 확보

하는 것이 중요하다. 특히, grain boundary mobility의 향상

은 자벽 이동 시 발생하는 에너지 손실을 완화하여 루프 면

적 축소에 기여하는 요소로 작용한다. 이러한 관점에서, 예측

결과에서 확인된 소면적 구간은 효율적인 자성 특성을 발현

할 수 있는 잠재적 최적 조건으로 해석될 수 있다. 또한, 열



≪연구논문≫ Journal of the Korean Magnetics Society Vol. 35, No. 6, December 2025  349 

처리 과정에서 결정립 성장 거동을 정밀하게 제어하는 것이

필수적이며, 박판 시편에서는 결정립 크기가 지나치게 성장하

면 기계적·자기적 성질에 불균일성이 발생할 수 있으므로, 제

한된 시간 조건에서 열처리를 수행하는 것이 바람직하다.

IV. 결 론

본 연구는 전기강판 히스테리시스 곡선을 예측하는 모델을

구축하고, 제한된 실험 데이터를 보완하기 위해 GAN 기반

데이터 증강 기법과 머신러닝 기법을 결합하여 그 효과를 검

증하였다. 특히, 열처리 조건(온도와 시간)에 따른 히스테리시

스 곡선 특성을 정량적으로 모델링함으로써, 실제 실험이 수

행되지 않은 조건에서도 높은 신뢰도의 예측이 가능함을 확

인하였다. 본 연구의 주요 결론은 다음과 같다.

본 연구에서는 EBGAN을 활용하여 제한적인 실험 데이터

를 증강하였으며, 이를 통해 다양한 온도-시간 조건에서 히스

테리시스 곡선 학습이 가능하도록 데이터셋을 확장하였다.

GAN 증강 이전, 세 가지 예측 모델의 성능은 모두 높은

수준을 기록하였다. XGBoost는 상부 곡선에서 R2 = 0.9706,

MSE = 0.0214, 하부 곡선에서 R2 = 0.9730, MSE =

0.0200을 나타냈다. FLAML은 상부 R2 = 0.9700, MSE =

0.0218, 하부 R2 = 0.9714, MSE = 0.0212로 안정적인 성

능을 보였으며, Random Forest는 상부 R2 = 0.9770, MSE

= 0.0167, 하부 R2 = 0.9788, MSE = 0.157로 가장 우수

한 결과를 보였다.

EBGAN으로 조건당 100개의 데이터를 증강한 후,

XGBoost는 상부 R2 = 0.9706, MSE = 0.0214, 하부 R2 =

0.9731, MSE = 0.0199로 성능을 유지하였다. FLAML은 상부

R2 = 0.9710, MSE = 0.0211, 하부 R2 = 0.9741, MSE =

0.0191로 개선 효과를 보였으며, RF는 상부 R2 = 0.9763,

MSE = 0.0173, 하부 R2 = 0.9725, MSE = 0.0203으로

안정적인 수준을 기록하였다. 이는 데이터 증강이 성능을 급

격히 변화시키지는 않았으나, 일부 조건에서 예측 안정성을

강화했음을 의미한다.

새로운 온도-시간 조건 데이터를 EBGAN으로 생성하여 포

함시킨 경우, 모든 모델의 예측 성능이 유의미하게 향상되었

다. XGBoost는 상부 R2 = 0.9911, MSE = 0.0065, 하부

R2 = 0.9891, MSE = 0.0081을 기록하였다. FLAML은 상부

R2 = 0.9899, MSE = 0.0073, 하부 R2 = 0.9879, MSE =

0.0089로 확인되었으며, RF는 상부 R2 = 0.9886, MSE =

0.0083, 하부 R2 = 0.9869, MSE = 0.0097을 나타냈다. 즉,

새로운 조건 데이터를 포함할수록 세 모델 모두에서 R2가 상

승하고 MSE가 감소하는 추세를 보였다

히스테리시스 곡선의 면적 분석에서는 실험 조건과 GAN

데이터 간의 차이를 정량적으로 확인하였다. 예를 들어, 실험

데이터 800oC 6분 조건은 254.0502 J/m3, 1,000oC 3분 조

건은 263.6772 J/m3, 1,100oC 1분 조건은 269.2093 J/m3로

계산되었다. 반면 GAN 데이터에서는 900oC 6분 조건은

296.8 J/m3, 900도 8분 조건은 182.303 J/m3, 1,050도 11분

조건은 181.8162 J/m3로 나타나 실제 실험 범위 내에서 다

양한 경향성을 모사하였다.

히트맵 분석 결과, 실험 데이터만 활용한 경우, 최대 면적

은 830.6oC 1분에서 383.748 J/m3로 예측되었고, 최소 면적

은 1026.5oC 3.8분에서 244.000 J/m3로 나타났다. GAN 데

이터를 포함한 경우, 최대 면적은 830.6oC 1분에서 386.119

J/m3로 예측되었고, 최소 면적은 1,051.0oC 13.6분 조건에서

183.772 J/m3로 예측되었다. 이는 데이터 다양성이 증가하면

서 예측 가능한 조건 범위가 넓어졌음을 보여준다.

히트맵 기반 예측과 실험 곡선을 비교한 결과, 예측값

830.6oC 1분 조건의 면적은 386.119 J/m3였고, 실제 800oC

1분 조건은 406.0589 J/m3로, 일부 수치 차이는 있었으나 전

반적인 경향이 일치하였다.
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