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In recent years, ultrathin high-efficiency electrical steel sheets, which serve as the core material for electric vehicle motors, have
been studied to improve energy efficiency. Non-oriented electrical steel was cold-rolled twice to produce 0.1 mm ultrathin sheets, and
hysteresis characteristics were investigated under heat treatment conditions in the range of 800~1,100°C and varying time durations in
minutes. Furthermore, EBGAN-based data augmentation and AutoML machine learning were employed to secure untested conditions,
enhance prediction accuracy, and minimize core loss. A predictive model capable of reproducing hysteresis curves with high accuracy
(R* > 0.97, MSE < 0.01) was successfully established, and the use of EBGAN-based augmentation further improved prediction
performance. Through machine learning and heatmap analysis, the maximum hysteresis area was predicted to be 386.119 J/m® at
830.6°C for 1 minute, while the minimum area was predicted to be 183.772 J/m? at 1,051.0°C for 13.6 minutes, indicating more than a
twofold difference in core loss depending on the heat treatment condition. This result suggests that heat treatment directly influences
domain wall motion and grain growth. The study highlights a potential pathway for reducing core loss through the optimization of heat
treatment processes for ultrathin electrical steel, thereby presenting new directions in magnetic material research.
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Table I. Heat treatment conditions for cold-rolled electrical steel
specimens.

Annealing parameters Time Temperature (°C) Vacuum level
Values 1~50 800~1,100 torr

Table II. Chemical composition of specimens (wt%).
Si Al Mn
0.611 wt% 0.335 wt% 0.143 wt%

Table I11. Fixed parameters for measuring magnetic properties.
Fix param Freq (kHz)
Bm 1,000 mT 0.05

Notation
W10/50
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Fig. 1. Workflow of the entire experiment process.
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Data Augmentation Area Heatmap Generation Validation

Fig. 3. Schematic overview of the entire research workflow.
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